JPH0327154B2 - - Google Patents

Info

Publication number
JPH0327154B2
JPH0327154B2 JP60136974A JP13697485A JPH0327154B2 JP H0327154 B2 JPH0327154 B2 JP H0327154B2 JP 60136974 A JP60136974 A JP 60136974A JP 13697485 A JP13697485 A JP 13697485A JP H0327154 B2 JPH0327154 B2 JP H0327154B2
Authority
JP
Japan
Prior art keywords
signal
correction
correction signal
circuit
contour
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60136974A
Other languages
Japanese (ja)
Other versions
JPS61296884A (en
Inventor
Ryuichi Fujimura
Reiichi Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
Original Assignee
NEC Home Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd filed Critical NEC Home Electronics Ltd
Priority to JP60136974A priority Critical patent/JPS61296884A/en
Publication of JPS61296884A publication Critical patent/JPS61296884A/en
Publication of JPH0327154B2 publication Critical patent/JPH0327154B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Video Image Reproduction Devices For Color Tv Systems (AREA)
  • Processing Of Color Television Signals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、カラーテレビジヨン受像機、特に大
画面のスクリーンに投写管より3原色画像光を投
写して画像を得る、いわゆる投写型受像機に関す
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a color television receiver, particularly a so-called projection type receiver that obtains an image by projecting three primary color image lights onto a large screen from a projection tube. Regarding.

〔従来の技術〕[Conventional technology]

大型の画像面をもつCRTは製作上、現在40イ
ンチ程度が限度である。それ以上では投写管によ
る方式が現在のところ実際的である。高品質の大
型画面の場合には単に画面を大きくするだけでは
高品質は得られないので、走査本数を多くすると
ともに、画質についての要求が厳しくなる。特に
投写型では、投写管のビームの電流密度を直視形
の5〜10倍程度にするため、ビームが太くなり、
またレンズの影響のため解像度が低下すること
と、高輝度の投与管・レンズ等に起因するフレー
アとが画質低下の原因となつていた。
Due to manufacturing considerations, CRTs with large image surfaces are currently limited to about 40 inches. Beyond that, a method using a projection tube is currently practical. In the case of a large, high-quality screen, high quality cannot be obtained simply by increasing the size of the screen, so as the number of scans increases, the requirements for image quality become stricter. In particular, with the projection type, the current density of the projection tube beam is about 5 to 10 times that of the direct view type, so the beam becomes thicker.
In addition, a decrease in resolution due to the influence of the lens and flare caused by the high-intensity injection tube, lens, etc. were causes of deterioration in image quality.

投写型の大型画面の受像機は、開発段階である
ためか、上記フレア補正・輪郭補正の手段も全面
的に確定した技術として確立していない。従来、
高品位テレビ用として提案されているフレア補正
手段として、「高品位テレビ用投写形デイスプレ
イの画質改善−SAWフイルターによるフレア妨
害除去−」テレビジヨン学会1982年全国大会SP1
−14、金澤等の映像信号を一旦AM変調し、
SAWフイルタにとおし、再び復調するアナログ
フイルタを利用した方法がある。この方法は変調
信号波について変調キヤリア周波数の近傍の±
1MHzで減衰を与えることで、フレア補正のため
に低周波成分を減衰させるものである。しかしこ
の方法では変調キヤリア周波数が100MHz以上の
高周波を用いなければならず、また画面の水平方
向のフレア成分を除去できても、垂直方向成分に
応用しようとすると非常に正確な1ライン遅延線
が多数必要になり実現が困難である。
Perhaps because the projection-type large screen image receiver is still in the development stage, the means for the flare correction and contour correction described above have not yet been fully established as fully established technologies. Conventionally,
As a flare correction method proposed for high-definition televisions, "Improvement of Image Quality of Projection Displays for High-Definition Televisions - Removal of Flare Interference by SAW Filters -" Television Society 1982 National Conference SP1
−14, Kanazawa et al.'s video signal is once AM modulated,
There is a method using an analog filter that passes through a SAW filter and demodulates again. This method uses a modulated signal wave with ±
By applying attenuation at 1MHz, low frequency components are attenuated for flare correction. However, this method requires the use of a high frequency modulation carrier frequency of 100 MHz or more, and even if the horizontal flare component of the screen can be removed, if you try to apply it to the vertical component, you will have to use a very accurate one-line delay line. This is difficult to implement as a large number of them are required.

輪郭補正としては、画像の輪郭成分を抽出し
て、原信号に付加する方法が一般的であるが、画
面の水平方向だけ強調する方式が大部分で、垂直
方向の強調は何らかの方法でライン遅延つくらね
ばならないため、例がすくない。
The most common method for contour correction is to extract the contour components of the image and add them to the original signal, but most of the methods only emphasize the horizontal direction of the screen, and the vertical direction is emphasized using some method of line delay. Since it has to be created, there are few examples.

ところで、解像度低下を防ぐため、輪郭を強調
する輪郭補正と、フレアをおさえるフレア補正と
は、前者は微分を含む高周波成分の強調であり、
後者はフレアの多い画面がMTF(解像度特性)が
低域で持ち上がる形になつているので、低域の周
波数成分に減衰特性を与えることになる。したが
つて、輪郭補正とフレア補正とは周波数的には並
行的に行ないうる性質のものであるが、デイジタ
ル方式とアナログ方式とが混在するとか、あるい
は一方式に統一すれば、実現が難しいということ
で両方の補正処理を行なつた例はない。
By the way, in order to prevent resolution degradation, contour correction that emphasizes contours and flare correction that suppresses flare are two methods: the former emphasizes high-frequency components including differentials;
In the latter case, a screen with a lot of flare has a shape in which the MTF (resolution characteristics) is lifted in the low range, so it gives an attenuation characteristic to the low frequency components. Therefore, although contour correction and flare correction can be performed in parallel in terms of frequency, it is difficult to achieve this if digital and analog methods are mixed, or if one method is unified. Therefore, there is no example in which both types of correction processing were performed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上、述べたように、大画面の投写型受像機に
ついて、必要とされるフレア補正・輪郭補正手段
を全面的に採用し、高品質の画像を得る段階まで
いたつていない。ここで全面的にというのは、輪
郭・フレア補正を垂直・水平両成分とも可能にす
ることである。アナログ方式では、特にフイルタ
特性の均一性、遅延線の温度による変動等の問題
があり、また大規模の方式では、全装置のタイミ
ング調整が難しい。デイジタル方式であれば原則
的に前記問題に充分対応でき、かつ設計上の柔軟
性に富んでいる。しかし規模が大きくなる困難が
ある。問題は、いかにデイジタル補正装置を具体
化するかにある。
As described above, large-screen projection receivers have not yet reached the stage of fully adopting the necessary flare correction and contour correction means to obtain high-quality images. Here, "completely" means that contour/flare correction can be performed for both vertical and horizontal components. In the analog system, there are problems such as uniformity of filter characteristics and fluctuations due to temperature in the delay line, and in a large-scale system, it is difficult to adjust the timing of all devices. In principle, a digital system can sufficiently deal with the above problems and is highly flexible in terms of design. However, there are difficulties as the scale increases. The problem lies in how to implement the digital correction device.

本発明の目的は、上記事情に鑑み、画面の水平
および垂直方向についてフレア成分を除去すると
同時に画面の輪郭を強調する補正を並行的に行な
う画質改善装置をすべてデイジタル的手段によ
り、しかも小規模な形で実現することにある。
In view of the above-mentioned circumstances, an object of the present invention is to provide an image quality improvement device that removes flare components in the horizontal and vertical directions of the screen and at the same time performs corrections that emphasize the outline of the screen, all by digital means and on a small scale. It lies in realizing it in form.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の画質改善装置は、投写形デイスプレイ
方式のテレビジヨン受像機において、輝度信号と
2つの色信号とを入力し、それぞれA/D変換し
た後、デイジタル輝度信号を用いて輪郭・フレア
補正信号を発生するとともに、前記デイジタル輝
度信号および色信号とからマトリクス回路により
復元され、補償用遅延回路を経て遅延された3原
色映像信号、前記輪郭・フレア補正信号をそれぞ
れ合成してからD/A変換して出力するものであ
る。
The image quality improvement device of the present invention inputs a luminance signal and two color signals in a projection display type television receiver, performs A/D conversion on each, and then uses the digital luminance signal to generate a contour/flare correction signal. At the same time, the three primary color video signals restored from the digital luminance signal and color signal by a matrix circuit and delayed through a compensation delay circuit, and the contour/flare correction signal are synthesized, respectively, and then D/A conversion is performed. and output it.

前記輪郭・フレア補正信号発生部は、デイジタ
ル輝度信号を入力する輪郭・フレア補正信号作成
回路と、該補正信号作成回路に縦続しデイジタル
輝度信号の入力レベルにより利得を変化する利得
調整回路とからなり、 前記輪郭・フレア補正信号作成回路は、低域通
過型FIRフイルタ群により垂直方向・水平方向の
補正を直列に行なつた後、補正信号作成回路の入
力を遅延した信号から減算する回路であつて、 (イ) 前記垂直方向FIRフイルタは、ラインメモリ
を1デイレイとする列を共通とし、全タツプを
用いてフレア補正信号を、中央の必要数のタツ
プを用いて輪郭補正信号を、それぞれ得て両補
正信号を合成する構成であつて、 (ロ) 前記水平方向FIRフイルタは、A/D変換ロ
ツクのレジスタを1デイレイとする列を共通と
し、全タツプを用いてフレア補正信号を、中央
の必要数のタツプを用いて輪郭補正信号を、そ
れぞれ得て両補正信号を合成する構成である。
The contour/flare correction signal generation section includes a contour/flare correction signal generation circuit that inputs a digital luminance signal, and a gain adjustment circuit that is connected in series to the correction signal generation circuit and changes its gain depending on the input level of the digital luminance signal. The contour/flare correction signal generation circuit is a circuit that serially performs correction in the vertical and horizontal directions using a group of low-pass FIR filters, and then subtracts the input of the correction signal generation circuit from the delayed signal. (a) The vertical FIR filter uses a line memory with one delay in common, and uses all the taps to obtain a flare correction signal, and uses the required number of taps in the center to obtain a contour correction signal. (b) The horizontal FIR filter has a common row of A/D conversion lock registers with one delay, and uses all the taps to combine the flare correction signal into the center. The configuration is such that contour correction signals are obtained using the required number of taps, respectively, and both correction signals are combined.

ここで前記フイルタ類および利得調整回路にお
ける係数回路は、その係数を可変的に調整し、設
定できるものである。
Here, the coefficients of the filters and the coefficient circuits in the gain adjustment circuit can be variably adjusted and set.

〔作用〕[Effect]

本発明は、R、G、Bの各原色信号を適宜逆マ
トリクス回路を経て引き出された輝度信号(Y信
号)と2つの色信号すなわち広帯域色信号CW
狭帯域色信号CN(以下ここではそれぞれC1信号、
C2信号として取扱う)とを入力し輪郭・フレア
の補正を行ない高品質の3原色映像信号を得るこ
とができる。補正信号の作成は、輝度信号を入力
する1つの輪郭・フレア補正信号発生部(以下で
は補正信号発生部という)で行なう。
The present invention provides a luminance signal (Y signal) obtained by appropriately extracting each primary color signal of R, G, and B through an inverse matrix circuit, and two color signals, that is, a wideband color signal C W ,
Narrowband color signal C N (Hereinafter, C 1 signal,
It is possible to obtain a high-quality three-primary color video signal by inputting C (treated as a 2- signal) and correcting contours and flare. The correction signal is created by one contour/flare correction signal generation section (hereinafter referred to as a correction signal generation section) which inputs the luminance signal.

補正信号発生部は、補正信号作成回路と利得調
整回路とからなり、補正信号作成回路は、低減
FIRフイルタにより垂直方向・水平方向の補正を
行なつた後、入力のY信号入力から差し引くこと
によつて、高域通過型の特性の補正信号を得てい
る。低減FIRフイルタは、フレア補正と輪郭補正
とを並列に行なう構成となつていて、共通のデイ
レイ列を用いフレア補正には完全タツプを輪郭補
正には中央の必要数のタツプを使う。
The correction signal generation section consists of a correction signal generation circuit and a gain adjustment circuit.
After vertical and horizontal correction is performed using an FIR filter, a correction signal with high-pass characteristics is obtained by subtracting it from the input Y signal input. The reduction FIR filter is configured to perform flare correction and contour correction in parallel, using a common delay column, using a complete tap for flare correction, and using the required number of taps in the center for contour correction.

上記補正信号は利得調整回路によつてY信号の
レベルに対応して振幅を調整して出力される。
The amplitude of the correction signal is adjusted by a gain adjustment circuit in accordance with the level of the Y signal, and then output.

補正信号発生部からの補正信号出力を補償用遅
延回路を経た3原色映像信号の各々と合成回路で
合成し、D/A変換することで、画質の改善され
た3原映像信号を得ることができる。
By combining the correction signal output from the correction signal generation section with each of the three primary color video signals that have passed through the compensation delay circuit in a synthesis circuit and performing D/A conversion, it is possible to obtain three original video signals with improved image quality. can.

なお、フイルタ類、利得調整回路には係数回路
が必要となるが、可変的に調整可能な回路を用い
最適に調整設定しておく。
Note that coefficient circuits are required for filters and gain adjustment circuits, but variably adjustable circuits are used to optimally adjust and set them.

〔実施例〕〔Example〕

本発明の一実施例を図面を参照して説明する。
実施例の基本的構成を第1図に示す。入力信号の
X信号、C1信号、C2信号はそれぞれA/D変換
器11a〜11cによりデイジタルY信号とな
し、マトリクス回路18に入力し、RGB信号に
復元される。RGB信号は各々補償用遅延回路1
2a〜12cで遅延し合成回路14a〜14cで
補正信号発生部10の出力をそれぞれ合成する。
補償用遅延は補正信号発生部10で生ずる遅延と
合わせておく。このように補正されたデイジタル
映像信号をD/A変換器15a〜15cでアナロ
グ信号として出力する。
An embodiment of the present invention will be described with reference to the drawings.
The basic configuration of the embodiment is shown in FIG. The input signals X signal, C1 signal, and C2 signal are converted into digital Y signals by A/D converters 11a to 11c, respectively, and input to the matrix circuit 18, where they are restored to RGB signals. Each RGB signal has a compensation delay circuit 1
2a to 12c, and the outputs of the correction signal generating section 10 are synthesized by synthesis circuits 14a to 14c, respectively.
The compensation delay is combined with the delay occurring in the correction signal generating section 10. The digital video signals corrected in this manner are outputted as analog signals by the D/A converters 15a to 15c.

補正信号発生部10はデイジタルY信号、すな
わちA/D変換器11aの出力を入力して各
RGB信号に共通に用いられる補正信号を補正信
号作成回路13で発生する。
The correction signal generator 10 inputs the digital Y signal, that is, the output of the A/D converter 11a, and generates each
A correction signal generating circuit 13 generates a correction signal commonly used for RGB signals.

ところで投写管の入力信号は、陰極線管の特性
上、入力に対してガンマ乗した非線形の信号とし
ている。このような入力信号を、フイルタ処理し
補正信号を作成し加算するときに、補正信号自体
の線形性が失われ、信号レベルの低い画面暗部で
の補正フイルタの感度が低下し、暗部の画質改善
効果が低下する。この点を改良するため、補正信
号発生部10は第1図に示す構成にし、利得調整
回路17を補正信号作成回路13に縦続させる。
デイジタルY信号は、遅延器16を介して補正信
号作成回路13の信号遅延を補償した制御信号と
して利得調整回路17に入力する。そして信号レ
ベルの低いところでは、利得調整回路17の利得
を上げて補正フイルタの暗部を感度低下を補償す
る。逆に信号レベルの高いところでは利得を下げ
る。これによつて画面暗部も画質が改善される。
なお利得調整回路17の利得は各3原色ごとにそ
の利得を変え補正信号の振幅を変えることができ
る。
Incidentally, due to the characteristics of the cathode ray tube, the input signal to the projection tube is a nonlinear signal obtained by raising the input signal to the gamma power. When filtering such input signals to create and add correction signals, the linearity of the correction signal itself is lost, and the sensitivity of the correction filter decreases in dark areas of the screen where the signal level is low, making it difficult to improve image quality in dark areas. effectiveness decreases. In order to improve this point, the correction signal generation section 10 has the configuration shown in FIG. 1, and the gain adjustment circuit 17 is connected in series to the correction signal generation circuit 13.
The digital Y signal is input to the gain adjustment circuit 17 via the delay device 16 as a control signal that compensates for the signal delay of the correction signal generation circuit 13. When the signal level is low, the gain of the gain adjustment circuit 17 is increased to compensate for the decrease in sensitivity of the dark portion of the correction filter. Conversely, the gain is lowered where the signal level is high. This improves the image quality even in dark areas of the screen.
Note that the gain of the gain adjustment circuit 17 can be changed for each of the three primary colors to change the amplitude of the correction signal.

次に補正信号作成回路13につき説明する。第
2図が、回路ブロツク図であり、垂直補正と水平
補正とを縦続して行なう。垂直補正FIRフイルタ
21は低域通過型のフイルタであつてラインメモ
リ列21aを共通とし、そのタツプからの信号に
係数を乗じて加算するフレア補正用積和演算器2
1b、輪郭補正用積和演算器21cと、両積和演
算器21b,21cの出力を合成する合成回路2
1dとから構成される。水平補正FIRフイルタ2
3も同一の構成の低減通過型フイルタであるが、
23aがA/D変換クロツクのレジスタ列である
点が異なる。このフイルタシステムでは輪郭補正
とフレア補正とを並列に、各補正は垂直方向・水
平方向を直列に行なう。
Next, the correction signal generation circuit 13 will be explained. FIG. 2 is a circuit block diagram in which vertical correction and horizontal correction are performed in series. The vertical correction FIR filter 21 is a low-pass type filter that shares a line memory column 21a, and a flare correction product-sum calculator 2 that multiplies the signal from the tap by a coefficient and adds the result.
1b, a synthesis circuit 2 that combines the outputs of the contour correction product-sum calculator 21c and both product-sum calculators 21b and 21c;
1d. Horizontal correction FIR filter 2
3 is also a reduced passage type filter with the same configuration, but
The difference is that 23a is a register string for the A/D conversion clock. In this filter system, contour correction and flare correction are performed in parallel, and each correction is performed in series in the vertical and horizontal directions.

上記FIRフイルタ21,23の回路の詳細を第
3図に示す。なお第3図は垂直・水平共通の構成
を説明するため、符号を第2図と別にしている。
遅延素子列201の各遅延素子からタツプが出て
いて、フレア補正は全タツプを利用して、係数回
路群202を作成し、各係数回路出力を加算回路
203で加算することで、フレア補正信号204
を得る。フレア補正には、関与するライン数(垂
直補正の場合)、ドツト数(水平補正の場合)が
多いので、FIRフイルタで構成するためには全タ
ツプを利用する。しかしFIRフイルタは、加算回
路203で加算するとき、加算位相を合わせるこ
とで容易に直線位相を得ることができる。次に輪
郭補正は遅延素子列201の中央のタツプmとそ
の近傍の数個のタツプを利用してFIRフイルタを
構成できる。輪郭補正に関与するライン数、ドツ
トが少ないので、タツプ数も少なくてよい。図で
は3ケのタツプを利用して、係数回路群205を
作成し、各係数回路出力を加算回路206で加算
することで輪郭補正信号207を得る。フレア補
正信号204、輪郭補正信号207は合成回路2
08で合成されて出力する。
Details of the circuit of the FIR filters 21 and 23 are shown in FIG. Note that the reference numerals in FIG. 3 are different from those in FIG. 2 in order to explain the configuration common to both vertical and horizontal directions.
Taps come out from each delay element in the delay element array 201, and for flare correction, all the taps are used to create a coefficient circuit group 202, and the outputs of each coefficient circuit are added in an adder circuit 203 to create a flare correction signal. 204
get. Flare correction involves a large number of lines (in the case of vertical correction) and many dots (in the case of horizontal correction), so all taps are used to configure the FIR filter. However, in the FIR filter, when adding in the adding circuit 203, a linear phase can be easily obtained by matching the addition phases. Next, for contour correction, an FIR filter can be constructed using the central tap m of the delay element array 201 and several taps in its vicinity. Since the number of lines and dots involved in contour correction is small, the number of taps can also be small. In the figure, three taps are used to create a coefficient circuit group 205, and an adder circuit 206 adds the outputs of each coefficient circuit to obtain a contour correction signal 207. The flare correction signal 204 and the contour correction signal 207 are sent to the synthesis circuit 2.
08 to synthesize and output.

以下、第2図に説明をもどし、全体構成につき
説明する。デイジタルY信号から垂直補正FIRフ
イルタ21によつて垂直補正された信号22が水
平補正FIRフイルタ23によつてさらに水平補正
をうけ、低域特性の補正信号24として減算回路
26に入力する。
Hereinafter, the explanation will be returned to FIG. 2 and the overall configuration will be explained. A signal 22 that has been vertically corrected from the digital Y signal by a vertical correction FIR filter 21 is further horizontally corrected by a horizontal correction FIR filter 23, and is input to a subtraction circuit 26 as a correction signal 24 with low frequency characteristics.

一方デイジタルY信号を補償用遅延器25によ
つて、補償信号24のフイルタ群による位相遅延
に合うだけの遅延量を与えた信号をリフアレンス
信号として減算回路26に入力する。リフアレン
ス信号から補正信号24を差し引くことで減算回
路26の出力26aは高域特性の補正信号とな
る。
On the other hand, the digital Y signal is given a delay amount corresponding to the phase delay caused by the filter group of the compensation signal 24 by the compensation delay device 25, and is input as a reference signal to the subtraction circuit 26. By subtracting the correction signal 24 from the reference signal, the output 26a of the subtraction circuit 26 becomes a correction signal with high frequency characteristics.

このように、フイルタを低域通過型フイルタと
して構成し、その出力を入力信号から差し引くこ
とで高域通過型のフイルタとする理由を以下に説
明する。
The reason why the filter is configured as a low-pass filter and its output is subtracted from the input signal to become a high-pass filter will be explained below.

輪郭補正とフレア補正とは周波数特性としては
それぞれ高域成分の強調と低域成分の減衰であ
り、フイルタとしては両者とも高域通過型のフイ
ルタになる。しかし、高域通過型のフイルタを垂
直補正・水平補正用に直列に用いると、両面上の
4辺形ウインドウパターンの場合、垂直方向と水
平方向との補正が関連して、改善すべき極性と逆
極性の補正信号がウインドウ内角と対角になるな
なめ外側に表われる。本発明では、厳密にこの点
まで考慮して、フイルタ類はすべて、低域通過型
として、フイルタ出力を入力信号から差し引き実
効的に高域通過型にすることで、4隅における補
正の連続性を得ている。
Contour correction and flare correction have frequency characteristics that emphasize high-frequency components and attenuate low-frequency components, respectively, and both filters are high-pass filters. However, when high-pass filters are used in series for vertical and horizontal corrections, in the case of a quadrilateral window pattern on both sides, the vertical and horizontal corrections are related and the polarity to be improved is determined. A correction signal of opposite polarity appears on the diagonal outer side diagonally to the inner corner of the window. In the present invention, strictly considering this point, all filters are low-pass type, and the filter output is subtracted from the input signal to effectively make it high-pass type, thereby ensuring continuity of correction at the four corners. I am getting .

さて、減算回路26の出力26aは直ちに補正
信号作成回路13の出力としてもよいが、第2図
の回路では、コアリング回路27を介して出力し
ている。
Now, the output 26a of the subtraction circuit 26 may be directly output from the correction signal generation circuit 13, but in the circuit shown in FIG. 2, it is outputted via the coring circuit 27.

補正信号は信号の高域成分を強調するもので、
特に輪郭補正ではそれが顕著である。このとき同
じ高域領域にあるノイズも強調され、画面の細か
いところでS/Nが劣化する傾向がある。そこ
で、ノイズが問題になる、信号のレベルの低い所
では補正信号を零にしてノイズの強調を防ぐよう
にした回路がコアリング回路27である。つまり
補正信号の零近傍に無感帯を設けるのだが、投写
する画面が小さいときなどは必ずしも必要ない。
The correction signal emphasizes the high frequency components of the signal.
This is especially noticeable in contour correction. At this time, noise in the same high-frequency region is also emphasized, and the S/N tends to deteriorate in small areas of the screen. Therefore, the coring circuit 27 is a circuit that sets the correction signal to zero in areas where noise is a problem and where the signal level is low to prevent the noise from being emphasized. In other words, a dead zone is provided near zero in the correction signal, but this is not necessarily necessary when the screen to be projected is small.

以上で、本発明の回路構成の説明を行なつた
が、本発明では、各種フイルタ類、利得調整回路
あるいはコアリング回路などに多数の係数回路が
必要となる。係数回路の各係数値はさまざまなも
のになり、しかも受像機ごとに調整・設定を要す
ることが多い。したがつて、受像機の製造の最終
段階において調整可能なことが必要である。
The circuit configuration of the present invention has been described above, but the present invention requires a large number of coefficient circuits for various filters, gain adjustment circuits, coring circuits, etc. The coefficient values of each coefficient circuit vary, and often require adjustment and setting for each receiver. Therefore, it is necessary to be able to adjust the final stage of receiver manufacture.

本発明では係数を可変的に調整し、設定できる
ものとして、第4図に示すような素子を使用す
る。第4図aは係数回路を図示的に表示したもの
で、同図bはROM31、同図cは乗算回路3
2、同図dはシフター回路33である。同図bの
ROM31の場合は、入力をアドレス信号とな
し、その番地に格納されたデータが出力される
が、そのデータを入力に係数を乗じたものとすれ
ばよい。調整の際にROM書きこみをするように
してもよいし、あらかじめ各種係数値を格納して
おき、アドレス線を充分とつておいて調整の際に
アドレス線を選択することで可変としてもよい。
同図cの乗算回路32の場合は、乗算データ(係
数値)を設定することで、係数を調整できる。同
図dはシフター回路33で例えばシフター33
1,332を並列とすればシフター331が2ビ
ツトシフト、シフター332ガ3ビツトシフトと
すれば下位へのシフトであれば入力データは3/8
となつて出力する。シフト数を制御し、あるいは
シフターの数をあらかじめ充分用意して調整の際
に選択することで係数を可変的に調整し設定でき
る。
In the present invention, an element as shown in FIG. 4 is used as an element whose coefficients can be variably adjusted and set. Figure 4a is a diagrammatic representation of the coefficient circuit, Figure 4b is the ROM 31, Figure 4c is the multiplication circuit 3.
2. d in the figure is a shifter circuit 33. Figure b
In the case of the ROM 31, the input is an address signal and the data stored at that address is output, but the data may be the input multiplied by a coefficient. It may be possible to write to the ROM during adjustment, or it may be possible to store various coefficient values in advance, provide enough address lines, and make the values variable by selecting the address lines during adjustment.
In the case of the multiplication circuit 32 shown in FIG. 3C, the coefficient can be adjusted by setting the multiplication data (coefficient value). d in the figure shows a shifter circuit 33, for example, a shifter 33.
If 1,332 are connected in parallel, the shifter 331 will shift 2 bits, and if the shifter 332 will shift 3 bits, the input data will be 3/8 when shifting to the lower order.
Output as follows. The coefficient can be variably adjusted and set by controlling the number of shifts or by preparing a sufficient number of shifters in advance and selecting them at the time of adjustment.

〔発明の効果〕〔Effect of the invention〕

以上詳記したように、大画面の投写形テレビジ
ヨン受像機の画質を、輪郭・フレア補正を並行し
て行なうことで、格段と高品質とすることができ
る。本発明の効果として次のことがあげられる。
As detailed above, the image quality of a large-screen projection television receiver can be significantly improved by performing contour and flare correction in parallel. The effects of the present invention include the following.

(1) 入力信号である輝度信号を用いて、補正信号
を作成し、マトリクス回路で復元した3原色映
像信号に加算することで3原色映像信号の補正
を行なう。したがつて複雑な補正信号作成回路
などを含む補正信号発生部は1個だけでよく、
装置コストかが格段と低くなる利点がある。ま
た、輝度信号に3原色映像信号が含まれてお
り、3原色映像信号ごとに補正値を加算するか
ら補正量を適正に調節することができる。
(1) A correction signal is created using a luminance signal as an input signal, and the signal is added to the three primary color video signals restored by the matrix circuit to correct the three primary color video signals. Therefore, only one correction signal generation section including a complicated correction signal generation circuit is required.
This has the advantage of significantly lowering equipment costs. Further, since the luminance signal includes the three primary color video signals and the correction value is added for each of the three primary color video signals, the amount of correction can be adjusted appropriately.

(2) 輪郭・フレア補正用フイルタとして、両者に
FIRフイルタ、後者に複合IIRフイルタを用い
ることで、直線位相でしかも素子数の少ない小
規模な回路構成にすることができる。
(2) As a contour/flare correction filter, it can be used for both.
By using an FIR filter and a composite IIR filter for the latter, it is possible to create a small-scale circuit configuration with a linear phase and a small number of elements.

(3) フイルタ特性自体は低域通過型で、リフアレ
ンス信号との差をとることで実効的に高域通過
型にしているから、4辺形のウインドウパター
ンの4隅でも良好な補正が得られる。
(3) The filter characteristic itself is a low-pass type, and by taking the difference from the reference signal, it is effectively made into a high-pass type, so good correction can be obtained even at the four corners of the quadrilateral window pattern. .

(4) 利得調整回路を設け、信号レベルに応じて
その利得を調整し、信号レベルの低いときには
利得を上げるようにすることで、映像信号のガ
ンマ特性による画面暗部での補正フイルタの感
度低下を補償している。
(4) By providing a gain adjustment circuit and adjusting its gain according to the signal level, and increasing the gain when the signal level is low, it is possible to prevent the sensitivity of the correction filter from decreasing in dark areas of the screen due to the gamma characteristics of the video signal. Compensated.

(5) フイルタ類、利得調整回路などに用いられる
係数回路として、係数を可変的に調整し、設定
できるものを使用し、調整を容易にしているか
ら、機器の量産時に有利である。
(5) As coefficient circuits used in filters, gain adjustment circuits, etc., coefficients can be variably adjusted and set, making adjustment easy, which is advantageous when mass producing devices.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示し、第1図は基本
構成ブロツク図、第2図は補正信号作成回路の構
成ブロツク図、第3図は輪郭補正、フレア補正に
共通に用いるFIRフイルタの構成図、第4図は係
数回路の例を示す図である。 10……補正信号発生部、11a〜11c……
A/D変換器、12a〜12c……補償用遅延回
路、13……補正信号作成回路、14a〜14c
……合成回路、15a〜15c……D/A変換
器、16……遅延器、17……利得調整回路、1
8……マトリクス回路、21……垂直補正FIRフ
イルタ、23……水平補正FIRフイルタ、25…
…補償用遅延器、26……減算回路、27……コ
アリング回路、201……遅延素子列、202,
205……係数回路群(フレア補正用、輪郭補正
用)、203,206……加算回路、(フレア補正
用、輪郭補正用)、208……合成回路、30…
…係数回路、31……ROM、32……乗算回
路、33……シフター回路。
The drawings show an embodiment of the present invention, in which Fig. 1 is a basic configuration block diagram, Fig. 2 is a configuration block diagram of a correction signal generation circuit, and Fig. 3 is a configuration of an FIR filter commonly used for contour correction and flare correction. FIG. 4 is a diagram showing an example of a coefficient circuit. 10... Correction signal generation section, 11a to 11c...
A/D converter, 12a-12c...compensation delay circuit, 13...correction signal creation circuit, 14a-14c
...Composition circuit, 15a-15c...D/A converter, 16...Delay device, 17...Gain adjustment circuit, 1
8... Matrix circuit, 21... Vertical correction FIR filter, 23... Horizontal correction FIR filter, 25...
... Compensation delay device, 26 ... Subtraction circuit, 27 ... Coring circuit, 201 ... Delay element array, 202,
205... Coefficient circuit group (for flare correction, contour correction), 203, 206... Addition circuit, (for flare correction, contour correction), 208... Synthesis circuit, 30...
... Coefficient circuit, 31 ... ROM, 32 ... Multiplier circuit, 33 ... Shifter circuit.

Claims (1)

【特許請求の範囲】 1 投写形デイスプレイ方式のテレビジヨン受像
機において、輝度信号と2つの色信号とを入力
し、それぞれA/D変換した後、デイジタル輝度
信号を用いて輪郭・フレア補正信号を発生すると
ともに、前記デイジタル輝度信号および色信号と
からマトリクス回路により復元され、補償用遅延
回路を経て遅延された3原色映像信号に、前記輪
郭・フレア補正信号をそれぞれ合成してからD/
A変換して出力する画質改善装置であつて、 前記輪郭・フレア補正信号発生部は、デイジタ
ル輝度信号を入力する輪郭・フレア補正信号作成
回路と、該補正信号作成回路に縦続しデイジタル
輝度信号の入力レベルにより利得を変化する利得
調整回路からなり、 前記輪郭・フレア補正信号作成回路は、低域通
過型FIRフイルタ群により垂直方向・水平方向の
補正を直列に行なつた後、補正信号作成回路の入
力を遅延した信号から減算する回路であつて、 (イ) 前記垂直方向FIRフイルタは、ラインメモリ
を1デイレイとする列を共通とし、全タツプを
用いてフレア補正信号を、中央の必要数のタツ
プを用いて輪郭補正信号を、それぞれ得て両補
正信号を合成する構成であつて、 (ロ) 前記水平方向FIRフイルタは、A/D変換ク
ロツクのレジスタを1デイレイとする列を共通
とし、全タツプを用いてフレア補正信号を、中
央の必要数のタツプを用いて輪郭補正信号を、
それぞれ得て両補正信号を合成する構成であ
り、 前記フイルタ類および利得調整回路における係
数回路は、その係数を可変的に調整し、設定でき
るものである ことを特徴とするテレビジヨン画質改善装置。
[Claims] 1. In a projection display type television receiver, a brightness signal and two color signals are input, each is A/D converted, and then a contour/flare correction signal is generated using the digital brightness signal. The contour/flare correction signal is synthesized with the three primary color video signals which are generated, restored by the matrix circuit from the digital luminance signal and color signal, and delayed through the compensation delay circuit, and then combined with the D/Flare correction signal.
The image quality improvement device performs A conversion and outputs the image, and the contour/flare correction signal generating section is connected in series to a contour/flare correction signal generation circuit that inputs a digital luminance signal and to the correction signal generation circuit, and outputs the digital luminance signal. It consists of a gain adjustment circuit that changes the gain depending on the input level, and the contour/flare correction signal generation circuit performs correction in the vertical and horizontal directions in series using a group of low-pass FIR filters, and then outputs the correction signal generation circuit. (b) The vertical FIR filter has a line memory with one delay in common, and uses all the taps to subtract the flare correction signal from the required number of taps in the center. The horizontal direction FIR filter has a configuration in which a contour correction signal is obtained using the respective taps and both correction signals are combined, and (b) the horizontal direction FIR filter has a common column in which the register of the A/D conversion clock has a one-delay. , the flare correction signal is generated using all the taps, the contour correction signal is generated using the required number of taps in the center,
What is claimed is: 1. A television picture quality improvement device, which is configured to synthesize both correction signals obtained from each other, and wherein coefficient circuits in the filters and the gain adjustment circuit can variably adjust and set the coefficients.
JP60136974A 1985-06-25 1985-06-25 Improving device for picture quality of television Granted JPS61296884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60136974A JPS61296884A (en) 1985-06-25 1985-06-25 Improving device for picture quality of television

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60136974A JPS61296884A (en) 1985-06-25 1985-06-25 Improving device for picture quality of television

Publications (2)

Publication Number Publication Date
JPS61296884A JPS61296884A (en) 1986-12-27
JPH0327154B2 true JPH0327154B2 (en) 1991-04-15

Family

ID=15187820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60136974A Granted JPS61296884A (en) 1985-06-25 1985-06-25 Improving device for picture quality of television

Country Status (1)

Country Link
JP (1) JPS61296884A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4086479B2 (en) 2001-03-23 2008-05-14 Necディスプレイソリューションズ株式会社 Image quality improving apparatus and image quality improving method

Also Published As

Publication number Publication date
JPS61296884A (en) 1986-12-27

Similar Documents

Publication Publication Date Title
JPH0327147B2 (en)
JPH0327154B2 (en)
JPH0584982B2 (en)
JPH0330355B2 (en)
JPS61295790A (en) Improving device for television picture quality
JPH0327148B2 (en)
JPH0327151B2 (en)
JPH0327152B2 (en)
JPH0327150B2 (en)
JPH0316078B2 (en)
JPH0327149B2 (en)
JPH0327145B2 (en)
JPH0584996B2 (en)
JPH0584984B2 (en)
JPH0584983B2 (en)
JPH0327153B2 (en)
JPS61295787A (en) Improving device for television picture quality
JPH0316077B2 (en)
JPH0330353B2 (en)
JPS61295789A (en) Improving device for television picture quality
JPH0584995B2 (en)
JPH0628390B2 (en) TV image quality improvement device
JPH0130350B2 (en)
JPH0330354B2 (en)
JPS61295788A (en) Improving device for television picture quality

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees