JPH03271171A - Method for preparing mn-zn ferrite joined product - Google Patents

Method for preparing mn-zn ferrite joined product

Info

Publication number
JPH03271171A
JPH03271171A JP2072745A JP7274590A JPH03271171A JP H03271171 A JPH03271171 A JP H03271171A JP 2072745 A JP2072745 A JP 2072745A JP 7274590 A JP7274590 A JP 7274590A JP H03271171 A JPH03271171 A JP H03271171A
Authority
JP
Japan
Prior art keywords
ferrite
single crystal
crystals
joining
subjected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2072745A
Other languages
Japanese (ja)
Inventor
Kazuhiro Takaguchi
高口 和博
Masao Tobiyama
飛山 正雄
Eiji Nakamura
英二 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2072745A priority Critical patent/JPH03271171A/en
Publication of JPH03271171A publication Critical patent/JPH03271171A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Magnetic Heads (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To prepare the subject joined product prevented in the deterioration of magnetic characteristics thereof in improved joining, processing yields by subjecting a Mn-Zn ferrite single crystal and Mn-Zn ferrite multi-crystals to a solid reaction to form a directly joined product. CONSTITUTION:The joining surface of a Mn-Zn ferrite single crystal prepared by Bridgman method is subjected to a mirror surface processing in a surface roughness Rmax of approximately 1.0mum. The joining surface of Mn-Zn ferrite multi-crystals is also subjected to a mirror surface processing in a surface roughness Rmax of approximately 0.1mum, the Mn-Zn ferrite multi-crystals being prepared by grinding the same calcination product as the Mn-Zn ferrite single crystal and subsequently treating the ground product by a hot hydrostatic pressure method. The Mn-Zn ferrite single crystal and the Mn-Zn ferrite multi- crystals are superimposed on each other between the joining surfaces thereof, embedded in a mixture of the Mn-Zn ferrite powder and alumina powder, subjected to a pressure of >=2kg/cm<2> and simultaneously thermally treated at a temperature of <= the component of the hot hydrostatic pressure pressing for the solid phase reaction therebetween to directly join to each other.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁気記録再生装置、特にはVTRの磁気ヘッ
ドに使用されるMn−Znフェライト単結晶とMn−Z
nフェライト多結晶との接合体の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to Mn-Zn ferrite single crystals and Mn-Zn ferrite single crystals used in magnetic recording/reproducing devices, particularly magnetic heads of VTRs.
The present invention relates to a method for manufacturing a bonded body with n-ferrite polycrystal.

(従来の技術) Mn−Znフェライト単結晶は、VTR用磁気ヘッドの
材料として広く使用されているが、摺動ノイズが大きい
ため、近年の磁気記録の高密度化要求に対応できず、大
きな問題となってきており、早急な解決が望まれている
。一方、Mn−Znフェライト多結晶は摺動ノイズが小
さいものの、結晶粒の脱落が生じ易く、狭ギヤツプ加工
が難しい、寿命が短いなどの欠点を有しているため、V
TR用磁気ヘッドには・使用されなかった。このため、
Mn−Znフェライト単結晶とMn−Znフェライト多
結晶との接合体を用いた磁気ヘッドが使用されてきてい
る。
(Prior art) Mn-Zn ferrite single crystal is widely used as a material for magnetic heads for VTRs, but due to its large sliding noise, it cannot meet the recent demands for higher density magnetic recording, which has caused a major problem. Therefore, an immediate solution is desired. On the other hand, although Mn-Zn ferrite polycrystal has low sliding noise, it has drawbacks such as easy crystal grain dropout, difficulty in narrow gap machining, and short life.
It was not used in TR magnetic heads. For this reason,
Magnetic heads using a composite of Mn--Zn ferrite single crystal and Mn--Zn ferrite polycrystal have been used.

(発明が解決しようとする課題) この接合体を用いた磁気ヘッドには、媒体が摺動する面
に単結晶を配置しその他の部分に多結晶を配置する構成
のものと、ギャップを形成する面に単結晶を配置しその
他の部分に多結晶を配置する構成のものが知られており
、これらの磁気ヘッドでは単結晶と多結晶は固相反応に
より直接接合されたものが使用されている。この接合体
の多結晶としては、通常の焼結法により製造されたMn
−Znフェライト(以下、焼結フェライトという)また
はホットプレス法により製造されたMn−Znフェライ
ト(以下、)IPフェライトという)が一般に用いられ
ている。しかしながら、これらの多結晶フェライトは気
孔が多く、また結晶粒径も太きいため結晶粒の脱落が生
じ易く加工性が悪いので、接合に必要な粗さの鏡面を得
ることが難しく、接合歩留り低下の原因となったり、加
工時に欠は等を生じ易く、加工歩留り低下の一因であっ
た。
(Problem to be Solved by the Invention) A magnetic head using this bonded body has a structure in which a single crystal is arranged on the surface on which the medium slides and a polycrystal in other parts, and a magnetic head in which a gap is formed. There are known magnetic heads that have single crystals on one surface and polycrystals on the other parts, and these magnetic heads use single crystals and polycrystals that are directly joined by solid phase reaction. . The polycrystal of this joined body is Mn manufactured by a normal sintering method.
-Zn ferrite (hereinafter referred to as sintered ferrite) or Mn-Zn ferrite (hereinafter referred to as IP ferrite) produced by a hot pressing method is generally used. However, these polycrystalline ferrites have many pores and large crystal grains, making them easy to fall off and have poor workability. This makes it difficult to obtain a mirror surface with the roughness required for bonding, resulting in a decrease in bonding yield. This has been a cause of problems, and tends to cause chipping during processing, contributing to a decrease in processing yield.

従って、本発明の課題は、上記多結晶フェライトの加工
性を改善し、単結晶との接合を容易にし、接合及び加工
歩留りを改善することにある。
Therefore, an object of the present invention is to improve the workability of the polycrystalline ferrite, facilitate bonding with a single crystal, and improve bonding and processing yields.

(課題を解決するための手段) 本発明者等は、前述の問題点を解決するため、特に多結
晶の特性を改善することに注力し、熱間静水圧プレスで
製造されたMn−Znフェライト多結晶が有効であるこ
とを見出し、本発明を完成させた。本発明の要旨は、 Mn−Znフェライト単結晶と熱間静水圧プレス法によ
り得られたMn−Znフェライト多結晶とを固相反応に
より直接接合することを特徴とするMn−Znフェライ
ト接合体の製造方法である。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present inventors focused on improving the properties of polycrystals in particular, and developed Mn-Zn ferrite manufactured by hot isostatic pressing. They discovered that polycrystals are effective and completed the present invention. The gist of the present invention is to provide an Mn-Zn ferrite bonded body, which is characterized in that an Mn-Zn ferrite single crystal and an Mn-Zn ferrite polycrystal obtained by hot isostatic pressing are directly joined by solid phase reaction. This is the manufacturing method.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

先ず、接合体に使用するMn−Znフェライト単結晶お
よび多結晶の組成は路間−であることが必要であり、こ
のMn−Znフェライト単結晶は、公知のブリッジマン
法により作製される。
First, it is necessary that the composition of the Mn--Zn ferrite single crystal and polycrystal used in the bonded body be in the range of 1-2, and this Mn--Zn ferrite single crystal is produced by the well-known Bridgman method.

また、Mn−Znフェライト多結晶は、単結晶と同様仮
焼物を作り、これを粉砕後、通常の焼結法、ホットプレ
ス法および熱間静水圧プレス法により作製する。
Moreover, Mn--Zn ferrite polycrystal is produced by making a calcined product in the same way as a single crystal, and after pulverizing it, it is produced by the usual sintering method, hot pressing method, and hot isostatic pressing method.

本発明の最大の特徴はMn−Znフェライト多結晶の製
造に熱間静水圧プレス法を採用したことである。この方
法により得られたMn−Znフェライト多結晶(以下、
HIPフェライトという)は、焼結フェライトやHPフ
ェライトに比較して気孔が少なく、結晶粒も小さいため
、結晶粒が脱落し難く、加工性に優れ単結晶との接合歩
留が改善される。しかしながら、 HIPフェライトは
HIP処理された時の温度よりも高い温度で熱処理する
と、)IIP処理でつぶされた気孔が蘇生してきたり、
結晶粒が成長するため、結晶粒の脱落が生じ易くなり、
加工性が悪化する。従ってMn−Znフェライト単結晶
と多結晶を接合する際の熱処理温度は、HIPフェライ
トがHIP処理された時の温度もしくはそれ以下の温度
で熱処理することが好ましい。
The most important feature of the present invention is that hot isostatic pressing is employed to produce Mn--Zn ferrite polycrystals. The Mn-Zn ferrite polycrystal obtained by this method (hereinafter referred to as
Compared to sintered ferrite and HP ferrite, HIP ferrite has fewer pores and smaller crystal grains, so the crystal grains are less likely to fall off and have excellent workability, improving the bonding yield with single crystals. However, when HIP ferrite is heat-treated at a temperature higher than the temperature at which it was HIP-treated, the pores crushed by the IIP treatment will be revived.
As crystal grains grow, crystal grains tend to fall off,
Workability deteriorates. Therefore, the heat treatment temperature when joining the Mn--Zn ferrite single crystal and the polycrystal is preferably the temperature at which the HIP ferrite is subjected to the HIP treatment or a temperature lower than that.

この固相反応による接合に当たっては、先ず、単結晶お
よび多結晶の接合面を共に表面粗さRmaxを0.1μ
m程度の鏡面に加工することが必要である。次いで、こ
の鏡面にした接合面同志を重ね合わせ、Mn−Znフェ
ライト粉とアルミナ粉の混合粉中に埋設し、2 kg/
cm”以上の圧力をかけながら前記温度条件下に熱処理
し、接合すれば良い。
In joining by this solid phase reaction, first, the surface roughness Rmax of both the single crystal and polycrystal joint surfaces is set to 0.1 μm.
It is necessary to process it into a mirror surface of about m. Next, the mirror-finished joint surfaces were overlapped and buried in a mixed powder of Mn-Zn ferrite powder and alumina powder, and 2 kg/
They may be bonded by heat treatment under the above-mentioned temperature conditions while applying a pressure of 1.5 cm or more.

この固相反応による接合方法には、1)上述したような
接合面を直接加熱圧着する方法の他に、2)接合助剤と
してHCl、 HNOs、 HgSO4,H3P0.等
の無機酸を塗布する方法、3) MnC1z、ZnC1
z、 Mn (NO3) 2、Zn(Non)2.Mn
5Q4、ZnSO4,Mns (PO4)2、zns(
po4)z等の金属塩類の水溶液を塗布する方法等があ
るが、これらを本発明と併用することは任意である。
This solid-phase reaction bonding method includes 1) the above-mentioned method of directly heat-pressing the bonding surfaces, and 2) the use of HCl, HNOs, HgSO4, H3P0. 3) Method of applying inorganic acids such as MnC1z, ZnC1
z, Mn (NO3) 2, Zn (Non) 2. Mn
5Q4, ZnSO4, Mns (PO4)2, zns(
There are methods of applying an aqueous solution of metal salts such as po4)z, but it is optional to use these in combination with the present invention.

以下、本発明を実施例と比較例を挙げて具体的に説明す
るが、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

(実施例1) Fe、On 53モル%、Mn030モル%、Zn01
7モル%をボールミルを用いて混合し、1200℃で仮
焼した。この仮焼物を粉砕して白金のルツボの中に投入
し溶解した後、ルツボを徐々に降下し、ルツボ先端から
単結晶化させ、Mn−Znフェライト単結晶を作製した
。このMn−Znフェライト単結晶インゴットより20
mmX 20mmX l mmtのプレートを切り出し
、20mmX 20mmの面を接合面として、表面粗さ
Rmaxが0.08μmの鏡面に加工した。
(Example 1) Fe, On 53 mol%, Mn0 30 mol%, Zn01
7 mol% was mixed using a ball mill and calcined at 1200°C. This calcined material was crushed, put into a platinum crucible, and melted, and then the crucible was gradually lowered and single crystallized from the tip of the crucible to produce a Mn--Zn ferrite single crystal. 20 from this Mn-Zn ferrite single crystal ingot
A plate measuring mm x 20 mm x l mmt was cut out and processed into a mirror surface with a surface roughness Rmax of 0.08 μm using the 20 mm x 20 mm surface as a bonding surface.

この単結晶とほぼ同じ組成である焼結フェライト、HP
フェライトおよびHIPフェライトの3種類の多結晶フ
ェライトを作製し、20mmX 20mmX 2mmt
のプレートを切り出した。これら3種類の多結晶の製造
条件は次の通りである。
Sintered ferrite, which has almost the same composition as this single crystal, HP
Three types of polycrystalline ferrites, ferrite and HIP ferrite, were produced, and the size was 20 mm x 20 mm x 2 mm.
I cut out the plate. The manufacturing conditions for these three types of polycrystals are as follows.

焼結フェライト−平衡酸素分圧下1.300°Cで5時
間焼成。
Sintered ferrite - sintered at 1.300°C for 5 hours under equilibrium oxygen partial pressure.

HPフェライト   空気中で1.250℃×2時間、
圧力300kg/cm2゜ HIPフェライト□Ar中1.200℃×1時間、圧力
1000kg/cm2゜ これら多結晶も20mmX 20mmの面を単結晶と同
じ方法で鏡面に加工した。比較のために作製した焼結フ
ェライトおよびHPフェライトでは結晶粒の脱落が生じ
ており、表面粗さの悪化がみられた。
HP ferrite 1.250℃ x 2 hours in air,
Pressure: 300 kg/cm2° HIP ferrite□Ar in 1.200°C x 1 hour, pressure: 1000 kg/cm2° These polycrystals were also machined into mirror-finished surfaces measuring 20 mm x 20 mm in the same manner as the single crystals. In the sintered ferrite and HP ferrite produced for comparison, crystal grains had fallen off and surface roughness had deteriorated.

次に上記のように作製したMn−Znフェライト単結晶
及び多結晶の鏡面にした接合面同志を重ね合わせ、Mn
−Znフェライト粉とアルミナ粉の混合粉中に埋設し、
5 kg/cm2の圧力をかけながら1.200℃で熱
処理し接合した。この接合歩留りを第1表に示す。また
、これらの接合体にトラック巾20μmのトラック加工
を行ない、その際の加工歩留りについても第1表に併記
した。
Next, the mirror-finished joint surfaces of the Mn-Zn ferrite single crystal and polycrystal produced as described above are stacked together, and the Mn-Zn ferrite single crystal and polycrystalline
- Embedded in a mixed powder of Zn ferrite powder and alumina powder,
They were heat-treated at 1.200° C. while applying a pressure of 5 kg/cm 2 to join. The bonding yield is shown in Table 1. Further, these joined bodies were subjected to track processing with a track width of 20 μm, and the processing yields at that time are also listed in Table 1.

第1表 (実施例2) Mn−Znフェライト単結晶とHIP法で製造した多結
晶との接合熱処理温度を1.150.1,200.1.
300℃とした以外は、実施例1と同一条件でMn−Z
nフェライト接合体結晶を作製した。その多結晶部の気
孔率および平均粒径は第2表のようであった。
Table 1 (Example 2) The bonding heat treatment temperature between the Mn-Zn ferrite single crystal and the polycrystal produced by the HIP method was 1.150.1, 200.1.
Mn-Z was prepared under the same conditions as in Example 1 except that the temperature was 300°C.
An n-ferrite junction crystal was produced. The porosity and average grain size of the polycrystalline portion were as shown in Table 2.

第2表 接合時の温度がHIP時の温度である1、 200℃を
越えると、気孔率が増加し、結晶粒が成長してしまうこ
とが判かる。
Table 2 shows that when the temperature during bonding exceeds 1,200°C, which is the temperature during HIP, the porosity increases and crystal grains grow.

4、発明の効果 本発明は、Mn−Znフェライト単結晶と熱間静水圧プ
レス法により得られたMn−Znフェライト多結晶とを
固相反応により直接接合することを特徴とするMn−Z
nフェライト接合体の製造方法であって、本発明によれ
ば、Mn−Znフェライト単結晶とMn−Znフェライ
ト多結晶との接合体を磁気特性に影響を及ぼす不純物を
接合剤として使用することなく、直接接合でき、磁気特
性の劣化のない高品質のMn−Znフェライト接合体を
歩留り良く製造でき、加工歩留りも高いので、産業上そ
の利用価値は極めて大きい。
4. Effects of the invention The present invention is an Mn-Zn ferrite single crystal and an Mn-Zn ferrite polycrystal obtained by a hot isostatic pressing method, which are directly bonded by a solid phase reaction.
A method for manufacturing an n-ferrite bonded body according to the present invention, in which a bonded body of an Mn-Zn ferrite single crystal and an Mn-Zn ferrite polycrystal is manufactured without using impurities that affect magnetic properties as a bonding agent. Since it can be directly bonded, a high-quality Mn-Zn ferrite bonded body without deterioration of magnetic properties can be manufactured at a high yield, and the processing yield is also high, its utility value is extremely large in industry.

Claims (1)

【特許請求の範囲】[Claims] 1.Mn−Znフェライト単結晶と熱間静水圧プレス法
により得られたMn−Znフェライト多結晶とを固相反
応により直接接合することを特徴とするMn−Znフェ
ライト接合体の製造方法。
1. A method for producing an Mn-Zn ferrite bonded body, which comprises directly joining an Mn-Zn ferrite single crystal and an Mn-Zn ferrite polycrystal obtained by hot isostatic pressing through a solid phase reaction.
JP2072745A 1990-03-22 1990-03-22 Method for preparing mn-zn ferrite joined product Pending JPH03271171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2072745A JPH03271171A (en) 1990-03-22 1990-03-22 Method for preparing mn-zn ferrite joined product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2072745A JPH03271171A (en) 1990-03-22 1990-03-22 Method for preparing mn-zn ferrite joined product

Publications (1)

Publication Number Publication Date
JPH03271171A true JPH03271171A (en) 1991-12-03

Family

ID=13498203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2072745A Pending JPH03271171A (en) 1990-03-22 1990-03-22 Method for preparing mn-zn ferrite joined product

Country Status (1)

Country Link
JP (1) JPH03271171A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088215A (en) * 2005-09-22 2007-04-05 Doshisha Magnetic substance material and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007088215A (en) * 2005-09-22 2007-04-05 Doshisha Magnetic substance material and its manufacturing method

Similar Documents

Publication Publication Date Title
JPH0355884B2 (en)
JPH03271171A (en) Method for preparing mn-zn ferrite joined product
JPS6215518B2 (en)
JPH0336798B2 (en)
JPS6249647B2 (en)
JP2799238B2 (en) Method for producing Mn-Zn ferrite joined body
JP2862693B2 (en) Manufacturing method of composite ferrite
JPH0471874B2 (en)
JPH0244099A (en) Single crystal ferrite, magnetic head using same, and production of single crystal ferrite
JP2823626B2 (en) Method for producing Mn-Zn ferrite joined body
JPS6224380B2 (en)
JP2862694B2 (en) Manufacturing method of composite ferrite
JPH0440318B2 (en)
JP2925775B2 (en) Method of manufacturing composite magnetic head
JPS61146781A (en) Manufacture of single crystal
JPS5926994A (en) Preparation of oxide single crystal
JPS5918188A (en) Preparation of ferrite of single crystal
SU1482768A1 (en) Method of producing manganese-zinc ferrites for magnetic head cores
JPS61101484A (en) Production of single crystal ferrite
JPH0796476B2 (en) Manufacturing method of single crystal ferrite
JP2579728B2 (en) Method for producing Mn-Zn single crystal ferrite
JPH01242494A (en) Manufacture of single-crystal ferrite
JPS62216986A (en) Production of single crystal ferrite
JP2000256097A (en) Production of single crystal ferrite joined body
JPH075439B2 (en) Method for manufacturing bonded ferrite