JPH032696A - Air borne transportation container for nuclear fuel - Google Patents

Air borne transportation container for nuclear fuel

Info

Publication number
JPH032696A
JPH032696A JP1138504A JP13850489A JPH032696A JP H032696 A JPH032696 A JP H032696A JP 1138504 A JP1138504 A JP 1138504A JP 13850489 A JP13850489 A JP 13850489A JP H032696 A JPH032696 A JP H032696A
Authority
JP
Japan
Prior art keywords
container
inner container
partition
nuclear fuel
absorbing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1138504A
Other languages
Japanese (ja)
Other versions
JPH0672949B2 (en
Inventor
Junichi Kuragami
倉上 順一
Minoru Kubo
稔 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Reactor and Nuclear Fuel Development Corp filed Critical Power Reactor and Nuclear Fuel Development Corp
Priority to JP1138504A priority Critical patent/JPH0672949B2/en
Publication of JPH032696A publication Critical patent/JPH032696A/en
Publication of JPH0672949B2 publication Critical patent/JPH0672949B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To absorb an impact energy effectively by arranging a partition cylinder onto a wooden shock absorber filled layer which is cylindrically shaped and is placed between an outer container and an inner container, concentrically at a intermediate position facing the inner container. CONSTITUTION:A sealed container 3 is housed in an inner container 5. A shock absorbing material 4 for absorption of an impact energy is filled into a gap between the inner container 5 and the sealed container 3. Then, the inner container 5 is housed in an outer container 6 in a manner that a wooden shock absorber material 7 is filled so as to place the inner container 5 at an almost center part of the outer container 6. For example, to a cylindrical wooden shock absorber layer 9 placed between the outer container 6 and the inner container 5, partition cylinders 10 are concentrically arranged at a intermediate positions facing the inner container, and also, to wooden shock absorbing layers 11 and 12, a plurality of partition discs 13 rectangularly and longitudinally crossing the layers 11 and 12, are arranged with a proper spacing. Consequently, when a transporating container falls down by an accident and receives a vertical impact by colliding with a surface of an obstacle, the partition discs 13 make an impact energy absorb into the shock absorbing material 7.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は核燃料物質や放射性物質を飛行機で航空輸送す
る場合に使用される該燃料航空輸送容器に関するもので
ある。
The present invention relates to a fuel air transportation container used when nuclear fuel materials and radioactive materials are transported by airplane.

【従来の技術】[Conventional technology]

核燃料物質等を航空輸送するときに使用される輸送容器
に関する規格がなかったときは国際原子力機関(IAE
A)が作成した放射性物質安全輸送規則を準用したてい
たが、1975年、米国は公法94−79によって航空
機事故に耐える安全な輸送容器が開発されるまではプル
トニウムの航空輸送を禁じ、続いて1978年、上記I
AEAの輸送規則より厳しい航空輸送容器承認の規格基
準(NUREG −0360)を制定した。 この規格基準によると、く衝突試験〉輸送容器を降伏の
生じない平面に衝突速度129 m/s以上で衝突させ
る。く圧潰試験〉厚さ5印、輸送容器の直径以上の長さ
を有する鉄板を介して32トンの静的圧縮を該輸送容器
に加える。く貫通試験〉降伏しない平面に設置された円
錐状環へ輸送容器を3mの高さより落下させる。くスラ
ッシュ試験〉45°に傾けた輸送容器へ46mの高さか
ら幅5インチ、厚さ0.5インチの断面をもつ長さ1.
8mの構造用鋼材を落下させる。く火災試験〉灯油燃焼
下で少なくとも1時間保持。 く浸漬試験〉水深90cmで8時間以上保持という一連
の試験に耐えなければならない。 上記した規格基準に基づき、米国政府はプルトニウム航
空輸送容器PAT−1型(NUREG0381、 NU
REG/C1?−0030,5AND 83−0154
)とFAT−2型(SAND 8l−0001)を開発
した。もつとも前者のプルトニウム収納量は3 、1.
5 kgと限られたものであり、後者はプルトニウム収
納量が150gと極めて小さい分析サンプル輸送のため
ものであって、プルトニウムの大量航空輸送に向けられ
たものではなかった。これ等輸送容器の構造を簡単にい
うと、核燃料収容体を収容した密封容器と、充填した木
製の衝撃吸収材で前記した密封容器をほぼ中央に内蔵し
た内部容器と、充填した木製の衝撃吸収材で前記した内
部容器をほぼ中央に内蔵した外部容器とから構成され、
木製の衝撃吸収材が圧潰することで衝撃時のエネルギを
吸収するようにしていた。 航空輸送に課せられた厳しい試験条件に耐えられるよう
に、ポリウレタンフォームで裏張りされたキャップを外
部容器の両端部に取付け、衝突時には該キャップにより
外部容器壁の変形にだかを嵌めるようにした発明が特開
昭63−222299号公報に開示され、内部容器およ
び外部容器内に充填される木製の衝撃吸収材の厚さおよ
びその繊維の配列については衝突時の運動エネルギを吸
収するように計算により決定されること、キャップは可
撓性エポキシ樹脂接着剤によって2枚の鋼板を接着した
ものとすることで良好なたが掛けを保証すると記載され
ている。
When there were no standards for transport containers used when transporting nuclear fuel materials by air, the International Atomic Energy Agency (IAE)
However, in 1975, the United States enacted Public Law 94-79, which prohibited the transport of plutonium by air until a safe transport container that could withstand aircraft accidents was developed. 1978, above I
We have established standards for approval of air transport containers (NUREG-0360), which are stricter than the AEA transport regulations. According to this standard, a collision test is conducted in which a transport container is collided with a flat surface where no yielding occurs at a collision speed of 129 m/s or more. Crush test> Static compression of 32 tons is applied to the transport container through a steel plate having a thickness of 5 marks and a length equal to or greater than the diameter of the transport container. Penetration Test> A transport container is dropped from a height of 3 m onto a conical ring set on a flat surface that will not yield. Slash test> A 1.5 inch long cross-section with a cross section of 5 inches wide and 0.5 inch thick from a height of 46 m into a shipping container tilted at 45 degrees.
Structural steel material is dropped 8m. Fire test: Hold for at least 1 hour under kerosene combustion. Immersion test> It must withstand a series of tests in which it is held at a depth of 90 cm for 8 hours or more. Based on the above specifications, the U.S. government has approved the plutonium air transport container PAT-1 (NUREG0381, NU
REG/C1? -0030,5AND 83-0154
) and FAT-2 type (SAND 8l-0001). However, the plutonium storage capacity of the former is 3.1.
The latter was intended for transporting analytical samples with an extremely small plutonium storage capacity of 150 g, and was not intended for mass air transport of plutonium. To put it simply, the structure of these transportation containers is: a sealed container that houses the nuclear fuel container, an inner container that has the above-mentioned sealed container built in almost in the center with a wooden shock absorber filled with it, and a wooden shock absorber filled with a sealed container. It consists of an outer container with the inner container as described above built in almost the center,
The wooden shock-absorbing material was designed to collapse and absorb the energy upon impact. In order to withstand the severe test conditions imposed on air transport, an invention in which caps lined with polyurethane foam are attached to both ends of the outer container, and the caps are fitted to compensate for the deformation of the outer container wall in the event of a collision. is disclosed in Japanese Unexamined Patent Publication No. 63-222299, and the thickness of the wooden shock absorbing material filled in the inner container and the outer container and the arrangement of its fibers are calculated to absorb the kinetic energy in the event of a collision. It is stated that the cap is made of two steel plates glued together with a flexible epoxy resin adhesive to ensure good hooping.

【発明か解決しようとする課題】[Invention or problem to be solved]

上記した衝撃吸収材の材料である木材は春材、秋材の差
でも性質が異なるから、比較的小さく裁断したちのを組
合わせて均質化を図ると共に、上記した厳しい試験条件
に耐え、しかも核燃料物質等の大量航空輸送用として実
用に供し得る輸送容器たらしめるためには、木製衝撃吸
収材充填層の中間に新たに鋼製の殻を配設して該充填層
を内外分割するとよいのではないかと考えられた。とこ
ろが実験を行った結果では、衝突時、鋼製の殻は恰も弾
丸のように突走り、むしろ輸送容器の破壊に荷担するこ
とがわかった。 本発明の目的はかかる欠点を解消して、真に核燃料物質
等の大量航空輸送用として実用に供し得る輸送容器を提
供することにある。
The wood that is used as the material for the above-mentioned shock absorbers has different properties depending on whether it is spring wood or autumn wood, so we cut it into relatively small pieces and combine them to make them homogeneous. In order to create a transport container that can be used practically for mass air transport of nuclear fuel materials, etc., it is recommended that a new steel shell be placed in the middle of the wooden impact absorbing material filling layer and dividing the filling layer into the inner and outer parts. It was thought that it might be. However, the results of the experiment showed that during a collision, the steel shell travels like a bullet and actually contributes to the destruction of the transport container. An object of the present invention is to eliminate such drawbacks and to provide a transport container that can be practically used for mass air transportation of nuclear fuel materials and the like.

【課題を解決するための手段】[Means to solve the problem]

上記の目的を達成するため、本発明の核燃料航空輸送容
器は、核燃料収容体を封じ込めた密封容器と、充填した
衝撃吸収材で前記した密封容器をほぼ中央に内蔵した内
部容器と、充填した木製の衝撃吸収材で前記した内部容
器をほぼ中央に内蔵した外部容器とからなる核燃料航空
輸送容器において、外部容器と内部容器との間の円筒状
をなす木製の衝撃吸収材充填層には該内部容器と対峙す
る中間位置に仕切用円筒が同心状に配設され、また内部
容器の端面と接する左右の円柱状をなす木製の衝撃吸収
材充填層には長手方向に直交する複数の仕切用円板が適
宜間隔を置いて配設されることを特徴とするものである
。 好ましくは仕切用円筒の両側に仕切用円環を取付ける。 外部容器は複数枚の薄鋼板が単に重ね合わされた積層構
造とするのがよい。
In order to achieve the above object, the nuclear fuel air transportation container of the present invention includes a sealed container containing a nuclear fuel container, an inner container in which the above-mentioned sealed container is built in approximately the center with a shock absorbing material filled with it, and a wooden container filled with a In a nuclear fuel air transport container consisting of an outer container with the above-mentioned inner container built in a shock absorbing material approximately in the center, a cylindrical wooden impact absorbing material filling layer between the outer container and the inner container has a shock absorbing material inside the inner container. A partitioning cylinder is arranged concentrically at an intermediate position facing the container, and a plurality of partitioning circles perpendicular to the longitudinal direction are arranged on the left and right cylindrical wooden impact absorbing material filling layers that touch the end surface of the inner container. It is characterized in that the plates are arranged at appropriate intervals. Preferably, partition rings are attached to both sides of the partition cylinder. It is preferable that the outer container has a laminated structure in which a plurality of thin steel plates are simply stacked on top of each other.

【作 用】[For use]

輸送容器が衝撃を受けたときに、仕切用円板と仕切用円
筒は木製の衝撃吸収材の局部的な変形を防止すると共に
、垂直方向の衝撃は仕切用円板が、水平方向の衝撃は仕
切用円筒がその衝撃エネルギをより効率的に木製の衝撃
吸収材に吸収させる。しかし、仕切用円筒および仕切用
円板は別個独立しているので、前記鋼製の殻の場合に見
られた輸送容器の破壊に荷担するような弾丸効果は生じ
ないようにできる。 この作用は仕切用円筒の両側に仕切用円環を取付ける方
が更に有効となる。また外部容器を複数枚の薄鋼板が単
に重なり合う積層構造とすると容易に塑性座屈すること
になって、破裂を回避させることができる。
When the transport container is subjected to an impact, the partition disc and partition cylinder prevent local deformation of the wooden shock absorber, and the partition disc protects the vertical impact and the horizontal impact. The partition cylinder allows the impact energy to be more efficiently absorbed by the wooden shock absorber. However, since the partition cylinder and partition disk are separate and independent, the bullet effect that contributes to the destruction of the transport container, which was observed in the case of the steel shell, can be avoided. This effect becomes more effective when partition rings are attached to both sides of the partition cylinder. Furthermore, if the outer container is made of a laminated structure in which a plurality of thin steel plates are simply overlapped, plastic buckling will easily occur, and rupture can be avoided.

【実施例】【Example】

第1図に示した本発明に係る第1実施例において、この
核燃料航空輸送容器1は商業用再処理工場のプルトニウ
ム貯蔵施設及び輸送容器取扱施設の装置と整合性を持た
せるように、商業用再処理工場の仕様に準拠した材質、
寸法、形状を有する核燃料収容体2を複数個収納する場
合の例として示している。核燃料収容体2を封じ込めて
輸送容器1の密封境界を構成する密封容器3は、軽量性
、耐貫通性、塑性変形の防止、海水に対する耐蝕性を考
慮してチタン合金製とするのがよい。チタン合金は鉄鋼
に比べて比重が43%も軽く、耐海水腐食性もよいため
耐圧殻材料として好適な材料であって、所定の肉厚を確
保することにより1万m相当の水圧にも十分耐えられる
。 この密封容器3は内部容器5内に内蔵される。 内部容器5は衝撃によって密封容器3が輸送容器1を貫
通して外部に飛び出したりしないように守ると共に、裸
火にさらされたときの防火壁となるものであるから、密
封容器3と同様、軽量で強度が大きく融点の高いチタン
合金製とするのがよい。内部容器5と密封容器3との隙
間には衝撃エネルギ吸収のための緩衝材4が充填される
。前記した内部容器5は外部容器6のほぼ中央に来るよ
うに木製の衝撃吸収材7が充填されて内蔵される。外部
容器6の表面には複数の通気孔8が形成され、衝撃で圧
縮された内部空気を外部へ逃がすようにしている。 本発明によれば、第1図の例では、外部容器6と内部容
器5との間の円筒状をなす木製の衝撃吸収材充填層9に
は該内部容器5と対峙する中間位置に仕切用円筒10が
同心状に配設され、また内部容器5の端面と接する左右
の円柱状をなす木製の衝撃吸収材充填層11.12には
長手方向に直交する複数の仕切用円板13が適宜間隔を
置いて配設される。航空機に積載していた輸送容器1が
事故によって落下し障害物の表面に衝突して垂直衝撃を
受けたときには複数の仕切用円板13が衝撃エネルギを
より効率的に木製の衝撃吸収材7に吸収させるようにす
る。また、水平衝撃を受けたときには仕切用円筒10が
衝撃エネルギをより効率的に木製の衝撃吸収材7に吸収
させるようにする。しかし、仕切用円筒10および仕切
用円板■3は別個独立しているので、前記鋼製の殻の場
合に見られたような弾丸効果はない。 第2実施例を示す第2図の例では、仕切用円筒10の両
側に仕切用円環I4を取付け、輸送容器1が垂直衝撃を
受けたときに複数の仕切用円板13と共に仕切用円環[
4も同じ働きをするようにして、衝撃エネルギをより効
率的に外部容器6と内部容器5との間の円筒状をなす木
製の衝撃吸収材充填層9の木製衝撃吸収材7に吸収させ
るようにしている。 外部容器6は、2枚の薄鋼板6a、 6bが単に重ね合
わされて積層構造をなすものであって、従来のように接
着によって一体化させたり一枚の鋼板で形成されてはい
ない。このように内外2層を単なる重ね合わせによる積
層構造とすることによって、通常時は所定の構造強度を
発揮しているが、衝撃時にはそれぞれの薄fF4阪8a
、 6bが容易に塑性座屈して破裂を可及的回避させ、
座屈変形による衝撃エネルギーの吸収を可能とする。薄
鋼板枚数は2枚とした例しか図示していないが、更に大
型の核燃料航空輸送容器の場合には2枚以上として2層
以上の嵌合構造としてもよい。また外部容器6は、前記
した一定の構造強度と適切な塑性座屈を生じさすことが
可能であれば、木製衝撃吸収材7と共に2つ以上に分割
し、その分割構造体を更に複数の薄板で一体化してもよ
い。 一般に円筒殻に内圧が加わったときのたが張り応力は子
午線応力の2倍となるから、衝撃時の外部容器6の両端
部における破裂防止と塑性変形による効率的な衝撃エネ
ルギ吸収を図るために、外部容器6の両端部に鋼製カバ
ー15.15を嵌着させ、更に各鋼製カバー15.  
[5にゴムリング16を嵌着させて、輸送容器1が高所
から落下する際に外部容器6の両端部に加わる衝撃エネ
ルギをこのゴムリング1Bで吸収したり輸送容器取扱時
の打撲防止を図るとよい。 上記した内部容器5、外部容器6、鋼製カバー15の衝
撃時の破裂防止と突起物による貫通防止のため、表面を
繊維強化樹脂で補強することは有効である。図の符号[
7はかかる繊維強化樹脂ライニング層を示す。この場合
の補強用繊維としては特に高強度の高分子で折れ曲がり
にくい剛直高分子繊維(例えばアラミド繊維)が好適で
ある。アラミド繊維製織布を巻きつけてエポキシ樹脂等
で接着することで耐衝撃性、耐カット性に勝れたライニ
ング層17が得られる。
In a first embodiment of the present invention shown in FIG. Materials compliant with reprocessing plant specifications,
This is shown as an example of accommodating a plurality of nuclear fuel containers 2 having different dimensions and shapes. The sealed container 3 that encloses the nuclear fuel container 2 and constitutes the sealed boundary of the transport container 1 is preferably made of a titanium alloy in consideration of lightness, penetration resistance, prevention of plastic deformation, and corrosion resistance against seawater. Titanium alloy has a specific gravity that is 43% lighter than steel and has good seawater corrosion resistance, making it a suitable material for pressure shell materials.If the specified wall thickness is ensured, it can withstand water pressure equivalent to 10,000 meters. I can endure it. This sealed container 3 is housed within an inner container 5. The inner container 5 protects the sealed container 3 from penetrating the transport container 1 and flying out due to impact, and also serves as a fire barrier when exposed to an open flame. It is preferable to use a titanium alloy that is lightweight, strong, and has a high melting point. The gap between the inner container 5 and the sealed container 3 is filled with a cushioning material 4 for absorbing impact energy. The inner container 5 described above is filled with a wooden shock absorbing material 7 so as to be located approximately in the center of the outer container 6. A plurality of vent holes 8 are formed on the surface of the outer container 6 to allow internal air compressed by the impact to escape to the outside. According to the present invention, in the example shown in FIG. The cylinders 10 are disposed concentrically, and a plurality of partition disks 13 perpendicular to the longitudinal direction are appropriately arranged on the left and right cylindrical wooden impact absorbing material filling layers 11 and 12 that are in contact with the end surface of the inner container 5. placed at intervals. When the transport container 1 loaded on an aircraft falls due to an accident and hits the surface of an obstacle and receives a vertical impact, the plurality of partition discs 13 more efficiently transfer the impact energy to the wooden impact absorbing material 7. Let it absorb. Furthermore, when receiving a horizontal impact, the partitioning cylinder 10 allows the impact energy to be more efficiently absorbed by the wooden impact absorbing material 7. However, since the partition cylinder 10 and the partition disk 3 are separate and independent, there is no bullet effect as seen in the case of the steel shell. In the example shown in FIG. 2 showing the second embodiment, partition rings I4 are attached to both sides of the partition cylinder 10, and when the transport container 1 receives a vertical impact, the partition rings ring[
4 has the same function, so that the impact energy is more efficiently absorbed by the wooden shock absorber 7 of the cylindrical wooden shock absorber filling layer 9 between the outer container 6 and the inner container 5. I have to. The outer container 6 has a laminated structure by simply overlapping two thin steel plates 6a and 6b, and is not integrated by adhesive or formed from a single steel plate as in the conventional case. By creating a laminated structure in which the inner and outer layers are simply overlapped, a certain level of structural strength is achieved under normal conditions, but in the event of an impact, each thin fF4
, 6b easily plastically buckles to avoid rupture as much as possible,
Enables absorption of impact energy due to buckling deformation. Although only two thin steel plates are shown in the figure, in the case of an even larger nuclear fuel air transportation container, two or more thin steel plates may be used and a two or more layered fitting structure may be used. Furthermore, if it is possible to generate the above-mentioned constant structural strength and appropriate plastic buckling, the outer container 6 can be divided into two or more parts together with the wooden shock absorbing material 7, and the divided structure can be further divided into a plurality of thin plates. It may be integrated with Generally, the hoop tension stress when internal pressure is applied to a cylindrical shell is twice the meridian stress, so in order to prevent rupture at both ends of the outer container 6 and to efficiently absorb impact energy through plastic deformation at the time of impact. , steel covers 15.15 are fitted to both ends of the outer container 6, and each steel cover 15.15 is fitted to both ends of the outer container 6.
[5 is fitted with a rubber ring 16, so that the rubber ring 1B absorbs the impact energy applied to both ends of the outer container 6 when the transport container 1 falls from a high place, and prevents bruises when handling the transport container.] It's good to plan. In order to prevent the inner container 5, outer container 6, and steel cover 15 described above from bursting upon impact and from being penetrated by protrusions, it is effective to reinforce the surfaces with fiber-reinforced resin. Figure symbol [
7 shows such a fiber-reinforced resin lining layer. In this case, particularly suitable reinforcing fibers are rigid polymeric fibers (such as aramid fibers) that are made of high-strength polymers and are difficult to bend. A lining layer 17 with excellent impact resistance and cut resistance can be obtained by wrapping a woven aramid fiber cloth and adhering it with epoxy resin or the like.

【発明の効果】【Effect of the invention】

以上の説明かられかるように、本発明における仕切用円
筒と仕切用円板の配設は、輸送容器が衝撃を受けたとき
に、木製衝撃吸収材で衝撃エネルギをより効率的に吸収
するうえで甚だ有効であり、しかも、仕切用円筒および
仕切用円板は別個独立しているので、前記鋼製の殻の場
合に見られた輸送容器の破壊に荷担するような弾丸効果
は生じないようにできるという点で甚だ優れており、仕
切用円筒の両側に仕切用円環を取付けるときには更に有
効である。また外部容器を複数枚の薄鋼板が単に重なり
合う積層構造とすると容易に塑性座屈することになって
衝撃エネルギを吸収し、輸送容器の破裂を可及的回避さ
せることができる。こうして、本発明によれば、従来の
容器に比べて最低2倍のプルトニウムを輸送できるよう
になり、商業用再処理工場の製品プルトニウム貯蔵缶及
び密封容器を収納でき、従来容器で必要であった詰替施
設を不要とするといった副次的効果も期待できることに
なる。
As can be seen from the above description, the arrangement of the partition cylinder and partition disc in the present invention allows the wooden shock absorber to absorb impact energy more efficiently when the transport container receives an impact. Moreover, since the partition cylinder and partition disk are separate and independent, the bullet effect that contributes to the destruction of the transport container seen in the case of the steel shell does not occur. This method is extremely superior in that it can be used for a wide range of purposes, and is even more effective when attaching partition rings to both sides of a partition cylinder. Furthermore, if the outer container is made of a laminated structure in which a plurality of thin steel plates are simply overlapped, it will easily undergo plastic buckling and absorb impact energy, making it possible to avoid rupture of the transport container as much as possible. Thus, according to the present invention, it is possible to transport at least twice as much plutonium compared to conventional containers, and it is possible to accommodate product plutonium storage canisters and sealed containers from commercial reprocessing plants, which is not necessary with conventional containers. Secondary effects such as eliminating the need for refilling facilities can also be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる核燃料航空輸送容器の一実施例を
示す断面図、第2図は第1図の核燃料航空輸送容器の一
部を切断して内部を現した斜視図である。 1・・・核燃料航空輸送容器、2・・・核燃料収容体3
・・・密封容器、4・・・緩衝材、5・・・内部容器、
6・・・外部容器、[fa、 [lb・・・外部容器を
構成する薄鋼板、7・・・木製衝撃吸収材、9・・・円
筒状をなす木製の衝撃吸収材充填層、10・・・仕切用
円筒、11゜12・・・左右の円柱状をなす木製の衝撃
吸収材充填層、13・・・仕切用円板、14・・・仕切
用円環、15・・・鋼製カバー 16・・・ゴムリング
、17・・・繊維強化樹脂ライニング層。 特許出願人   動力炉・核燃料開発事業団化  理 人 尾  股 行  雄
FIG. 1 is a sectional view showing an embodiment of the nuclear fuel air transport container according to the present invention, and FIG. 2 is a perspective view showing the inside of the nuclear fuel air transport container by partially cutting away the nuclear fuel air transport container of FIG. 1...Nuclear fuel air transport container, 2...Nuclear fuel container 3
... Sealed container, 4... Cushioning material, 5... Inner container,
6... External container, [fa, [lb... Thin steel plate constituting the external container, 7... Wooden shock absorber, 9... Cylindrical wooden shock absorber filled layer, 10. ... Cylinder for partition, 11° 12 ... Cylindrical wooden impact absorbing material filling layer on the left and right, 13 ... Disk for partition, 14 ... Annular ring for partition, 15 ... Made of steel Cover 16...Rubber ring, 17...Fiber reinforced resin lining layer. Patent applicant: Power Reactor and Nuclear Fuel Development Corporation, Rijino Matoyuki Yu

Claims (1)

【特許請求の範囲】 1、核燃料収容体を封じ込めた密封容器と、充填した衝
撃吸収材で前記した密封容器をほぼ中央に内蔵した内部
容器と、充填した木製の衝撃吸収材で前記した内部容器
をほぼ中央に内蔵した外部容器とからなる核燃料航空輸
送容器において、外部容器と内部容器との間の円筒状を
なす木製の衝撃吸収材充填層には該内部容器と対峙する
中間位置に仕切用円筒が同心状に配設され、また内部容
器の端面と接する左右の円柱状をなす木製の衝撃吸収材
充填層には長手方向に直交する複数の仕切用円板が適宜
間隔を置いて配設されることを特徴とする核燃料航空輸
送容器。 2、仕切用円筒の両側に仕切用円環を取付けた請求項1
の核燃料航空輸送容器。 3、外部容器は複数枚の薄鋼板が単に重ね合わされて積
層構造をなす請求項1の核燃料航空輸送容器。
[Scope of Claims] 1. A sealed container enclosing a nuclear fuel container, an inner container filled with a shock-absorbing material and containing the above-mentioned sealed container approximately in the center, and an inner container filled with a wooden shock-absorbing material as described above. In a nuclear fuel air transport container consisting of an outer container with a built-in container approximately in the center, a cylindrical wooden impact absorbing material filling layer between the outer container and the inner container has a partition at an intermediate position facing the inner container. Cylinders are arranged concentrically, and a plurality of partition disks are arranged at appropriate intervals perpendicular to the longitudinal direction on the left and right cylindrical wooden impact absorbing material filling layers that touch the end surfaces of the inner container. A nuclear fuel air transport container characterized by: 2. Claim 1, in which partition rings are attached to both sides of the partition cylinder.
Nuclear fuel air transport container. 3. The nuclear fuel air transportation container according to claim 1, wherein the outer container has a laminated structure by simply overlapping a plurality of thin steel plates.
JP1138504A 1989-05-31 1989-05-31 Nuclear fuel air transport container Expired - Fee Related JPH0672949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1138504A JPH0672949B2 (en) 1989-05-31 1989-05-31 Nuclear fuel air transport container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1138504A JPH0672949B2 (en) 1989-05-31 1989-05-31 Nuclear fuel air transport container

Publications (2)

Publication Number Publication Date
JPH032696A true JPH032696A (en) 1991-01-09
JPH0672949B2 JPH0672949B2 (en) 1994-09-14

Family

ID=15223676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1138504A Expired - Fee Related JPH0672949B2 (en) 1989-05-31 1989-05-31 Nuclear fuel air transport container

Country Status (1)

Country Link
JP (1) JPH0672949B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002050847A1 (en) * 2000-12-21 2002-06-27 Cogéma Logistics Packaging device for bulk transportation of uraniferous fissile materials
JP2003315493A (en) * 2002-04-19 2003-11-06 Hitachi Ltd Impact buffer body for fuel cask
WO2004001766A3 (en) * 2002-06-25 2004-03-18 Polygro Trading Ag Container system for the transport and storage of highly reactive materials
FR2846778A1 (en) * 2002-11-06 2004-05-07 Cogema Logistics Nuclear transport and storage flask, e.g. for non-irradiated fuel assemblies, includes spacers permitting local deformation of internal sidewall during testing
JP2005049177A (en) * 2003-07-31 2005-02-24 Toshiba Corp Cask
JP2008224460A (en) * 2007-03-13 2008-09-25 Ihi Corp Canister storage container
JP2009198401A (en) * 2008-02-22 2009-09-03 Mitsubishi Heavy Ind Ltd Buffer for cask
CN111916243A (en) * 2020-07-23 2020-11-10 中国核电工程有限公司 Transport container

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002050847A1 (en) * 2000-12-21 2002-06-27 Cogéma Logistics Packaging device for bulk transportation of uraniferous fissile materials
FR2818790A1 (en) * 2000-12-21 2002-06-28 Transnucleaire PACKAGING DEVICE FOR THE BULK TRANSPORT OF URANIFER FISSIL MATERIAL
JP2003315493A (en) * 2002-04-19 2003-11-06 Hitachi Ltd Impact buffer body for fuel cask
WO2004001766A3 (en) * 2002-06-25 2004-03-18 Polygro Trading Ag Container system for the transport and storage of highly reactive materials
FR2846778A1 (en) * 2002-11-06 2004-05-07 Cogema Logistics Nuclear transport and storage flask, e.g. for non-irradiated fuel assemblies, includes spacers permitting local deformation of internal sidewall during testing
WO2004044925A3 (en) * 2002-11-06 2005-10-06 Cogema Logistics Container for the storage/transport of unirradiated radioactive materials such as nuclear fuel assemblies
JP2006505780A (en) * 2002-11-06 2006-02-16 コジェマ ロジスティックス Containers for storage / transport of unirradiated radioactive material such as nuclear fuel assemblies
JP4727229B2 (en) * 2002-11-06 2011-07-20 コジェマ ロジスティックス Containers for storage / transport of unirradiated radioactive material such as nuclear fuel assemblies
JP2005049177A (en) * 2003-07-31 2005-02-24 Toshiba Corp Cask
JP2008224460A (en) * 2007-03-13 2008-09-25 Ihi Corp Canister storage container
JP2009198401A (en) * 2008-02-22 2009-09-03 Mitsubishi Heavy Ind Ltd Buffer for cask
CN111916243A (en) * 2020-07-23 2020-11-10 中国核电工程有限公司 Transport container

Also Published As

Publication number Publication date
JPH0672949B2 (en) 1994-09-14

Similar Documents

Publication Publication Date Title
JP4681681B1 (en) Cask buffer
CA2702310C (en) Package assemblies and internal support structures for transport and storage of radioactive materials
KR101602661B1 (en) Transport container for nuclear fuel assembly and method of transporting a nuclear fuel assembly
KR100319076B1 (en) Shock limiter for waste fuel transportation cask
US7186993B2 (en) Container system for the transport and storage of highly reactive materials
US4815605A (en) Air transport container for dangerous materials
JPH032696A (en) Air borne transportation container for nuclear fuel
US4810890A (en) Package for the shipment of dangerous materials
CN110494927B (en) Impact limiter for a container for transporting spent nuclear fuel
US20140001381A1 (en) System for storage and transport of uranium hexafluoride
US5337917A (en) Crash resistant container
US20220208405A1 (en) High level waste transport system with containment feature
JP3982312B2 (en) Shock absorber for fuel cask
RU2241268C1 (en) Packing set for nuclear fuel shipment and storage
Ryabov et al. Numerical simulations of dynamic deformation of air transport package PАТ-2 in accidental impacts
LU502319B1 (en) Radiation and impact-protected radioactive waste cask
JP3876118B2 (en) Canister and concrete storage container having the same
Cable SR-102 Package Replacement
Lee et al. Analysis technology on the thick plate free drop impact of the cask for radioactive material transport
Andersen New developments in the air transport of plutonium
Andersen Plutonium accident resistant container project.[Air transport]
Pierce et al. Plutonium Air Transport Package Development for Worst-Case Accident
Cruse TRUPACT-2 design, testing and certification
Kurakami et al. Overview of JNC Pu Air Transport Packaging Development
WO1995010839A1 (en) Impact limiter for spent nuclear fuel transportation cask

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees