JPH0326955A - Method for measuring bounary impedance distribution in micro-region - Google Patents

Method for measuring bounary impedance distribution in micro-region

Info

Publication number
JPH0326955A
JPH0326955A JP16070989A JP16070989A JPH0326955A JP H0326955 A JPH0326955 A JP H0326955A JP 16070989 A JP16070989 A JP 16070989A JP 16070989 A JP16070989 A JP 16070989A JP H0326955 A JPH0326955 A JP H0326955A
Authority
JP
Japan
Prior art keywords
probe
sample
tip
solution
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16070989A
Other languages
Japanese (ja)
Other versions
JP2725843B2 (en
Inventor
Toshio Shibata
柴田 俊夫
Hisamitsu Mizuki
水木 久光
Hiromitsu Fukumoto
福本 博光
Shinji Fujimoto
藤本 慎司
Yoshio Tanaka
田仲 良雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP1160709A priority Critical patent/JP2725843B2/en
Publication of JPH0326955A publication Critical patent/JPH0326955A/en
Application granted granted Critical
Publication of JP2725843B2 publication Critical patent/JP2725843B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PURPOSE:To enhance measuring accuracy by connecting the tip of a probe to the surface of a sample to form a space, from which the solution in the probe does not leak, in the probe to limit a measuring range. CONSTITUTION:The tip 4a of a probe 4, for example, composed of a glass pipe is arranged so as to be connected to the surface 2a of the sample 2 immersed in a solution 1 and composed of the cross-section of a stainless steel foil coated with a resin. The tip 4a of this probe 4 is constituted of an elastic material composed of an org. resin such as a vinyl type resin, an acrylic resin, polyethylene or a fluorine type resin or rubber and, when the tip 4a is connected to the surface 2a of the sample 2, the solution 1 in the space 4b of the probe 4 does not leak to the outside of the probe 1. Therefore, the space preventing the leakage of the solution 1 can be formed in the probe 4 and a range to be measured can be limited only to the interior of the fine pipe of the probe 4. By this method, impedance can be measured within a limited area and highly sensitive measurement can be performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、微小領域における界面インピーダンス分布測
定方法に関し、特に、試料の表面にプローブの下端を密
合させて溶液が漏れない空間を形成することによって、
微小領域の測定範囲を限定し、検出精度を向上させるた
めの新規な改良に関する, 〔従来の技術〕 従来、塗覆装を施した金属材料の腐食性を測定するため
の界面インピーダンス分布の測定は、Isaacs氏、
Leidheiser氏ら′によって試みられており、
Isaacs氏は3電極式、Leidheiser氏は
2電極式で測定しているが、何れも、第7図に示される
ように、溶液1中に浸漬された試料2に対し、電!I1
3を内部に有するプローブ4の先端4aが接近して配設
され、プローブ4を試料2にできるだけ近づけることに
より、プローブ4の検出範囲を限定するようにした方法
である. 〔発明が解決しようとする課題〕 従来の微小領域における界面インピーダンス分布測定方
法は、以上のように構戒されているため、次のような課
題が存在していた. すなわち、プローブの下端を試料に近(=tけ、試料と
は非接触の状態で検出範囲を限定する方法では、プロー
ブの近傍の電気信号にプローブから遠く離れた部分の電
気信号が混入し、平面方向の分解能が低下していた. また、測定範囲が明確に検定されないため、測定された
インピーダンス値を単位面積当りに換算することが難し
く、測定値の絶対性に欠け、広く使用できる汎用測定方
法として収汲うことが困難であった. さらに、前述の・ように、1ローブを試料に接触させる
ことなく測定を行った場合には、第6図に示すように、
試料から離れた位置においても電位振幅の減少が認めら
れ、ブロードな状態の特性曲線となっている. 本発明は、以上のような課題を解決するためになされた
もので、特に、試料の表面に1ローブの先端を密合させ
て溶液が漏れない空間を形或することによって、微小領
域の測定範囲を限定し、検出精度を向上させるようにし
た微小頭域における界面インピーダンス分布測定方法を
提供することを目的とする. 〔課題を解決するための手段〕 本発明による微小領域における界面インピーダンス分布
測定方法は、溶液中に浸漬させた試料に対して、プロー
ブにより界面インピーダンスを測定するようにした方法
において、前記プローブの先端を前記試料の表面に接h
さぜ、前記プローブ内の溶液が漏れない空間をプローブ
内に形成して測定範囲を限定するようにした方法である
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for measuring interfacial impedance distribution in a microscopic area, and in particular, a method for measuring interfacial impedance distribution in a microscopic area, in particular, a method in which the lower end of a probe is brought into close contact with the surface of a sample to form a space from which a solution does not leak. By this,
[Conventional technology] Conventionally, interfacial impedance distribution measurements for measuring the corrosivity of coated metal materials have been conducted. , Mr. Isaacs,
It has been attempted by Leidhiser et al.
Mr. Isaacs uses a 3-electrode method, and Mr. Leidheiser uses a 2-electrode method, but in both cases, as shown in Figure 7, the sample 2 immersed in the solution 1 receives an electric current! I1
In this method, the tip 4a of a probe 4 having a probe 3 inside thereof is placed close to each other, and the detection range of the probe 4 is limited by bringing the probe 4 as close as possible to the sample 2. [Problems to be solved by the invention] Conventional methods for measuring interfacial impedance distribution in microscopic areas are subject to the above-mentioned limitations, and as a result, the following problems have existed. In other words, in a method in which the detection range is limited by keeping the lower end of the probe close to the sample (=t) and not in contact with the sample, the electrical signal near the probe is mixed with the electrical signal from the part far away from the probe. The resolution in the planar direction was reduced. Also, because the measurement range was not clearly verified, it was difficult to convert the measured impedance value per unit area, and the measurement value lacked absoluteness, making it difficult to use for general-purpose measurement that can be widely used. Furthermore, as shown in Fig. 6, when measurements were carried out without bringing one lobe into contact with the sample, as described above,
A decrease in potential amplitude is observed even at positions far from the sample, resulting in a broad characteristic curve. The present invention was made to solve the above-mentioned problems, and in particular, it is possible to measure a minute area by closely fitting the tip of one lobe to the surface of a sample to form a space in which the solution does not leak. The purpose of this study is to provide a method for measuring interfacial impedance distribution in a small head area that limits the range and improves detection accuracy. [Means for Solving the Problems] A method for measuring interfacial impedance distribution in a micro region according to the present invention is a method in which the interfacial impedance of a sample immersed in a solution is measured using a probe. is in contact with the surface of the sample.
In this method, a space is formed within the probe so that the solution within the probe does not leak, thereby limiting the measurement range.

〔作 用〕[For production]

本発明による微小領域における界面インピーダンス分布
測定方法においては、プローブの先端を試枳の茂面に接
触させるため、溶液が漏れない空間をプローブ内に形成
することができ、測定対象範囲を1ロープの細管内部の
みとすることが可能となる. 従って、プローブと試料が接合することにより、プロー
ブから離間した部位までが測定対象とならず、プローブ
内のみの微小領域にら限られるため、界面インピーダン
スがR=ρ・L/S ( R :インピーダンス、ρ:
比抵抗、L:長さ、S:断面積)に従うことから、測定
対象面積(S)が小さくなった分だけ、インピーダンス
が大きくなるものである. 〔実施例〕 以下、図面と共に本発明による微小領域における界面イ
ンピーダンス分布測定方法の好適な実施例について詳細
に説明する. 尚、従来例と同一又は同等部分には、同一符号を付して
説明する. 第1図から第6図迄は、本発明による微小領域における
界面インピーダンス分布測定方法を示すためのもので、
第l図は測定状態を示す構成図、第2図は第1図のプロ
ーブを詳細に示す横戒図、第3図は測定状態を示す原理
図、第4図は界面インピーダンス分布測定装置を示すブ
ロック図、第5図は測定データの特性曲線図である.図
において符号1で示されるものは、0.0IM旧,SO
,のl容液て゛あり、この冫8液1中に浸iNされ{男
脂で肢覆したステンレス箔(厚さ:20um}の断面よ
りなる試f:I2の表面2aには、ガラス管よりなるプ
ローブ4の先端4aが接合して配設されている.このプ
ローブ4の先端4aの内径は、0.37i+mに設定さ
れている. 前記先@4aは、ビニール系、アクリル系、ポリエチレ
ン、フッ素系(テフロン)等の有機樹脂、ゴム等からな
る弾性材料で構成されており、先端4aが1lc料2の
表面2aに接合した場な、プローブ4内の空間4b内に
おける溶液1は51ローブ4外に漏れることのないよう
に横或されている。
In the method for measuring interfacial impedance distribution in a minute area according to the present invention, since the tip of the probe is brought into contact with the surface of the test tube, a space can be created in the probe from which the solution does not leak, and the measurement target area can be reduced to one rope. It becomes possible to limit the amount to only the inside of the tubule. Therefore, by joining the probe and the sample, the measurement target does not extend to the area far away from the probe, but is limited to a minute area only within the probe, so the interface impedance is R = ρ・L/S (R: impedance , ρ:
(specific resistance, L: length, S: cross-sectional area), the impedance increases as the area to be measured (S) decreases. [Example] Hereinafter, a preferred example of the method for measuring interfacial impedance distribution in a minute area according to the present invention will be described in detail with reference to the drawings. Note that the same or equivalent parts as in the conventional example are given the same reference numerals and explained. FIG. 1 to FIG. 6 are for illustrating the method of measuring interfacial impedance distribution in a minute area according to the present invention.
Figure 1 is a configuration diagram showing the measurement state, Figure 2 is a horizontal diagram showing the probe in Figure 1 in detail, Figure 3 is a principle diagram showing the measurement state, and Figure 4 shows the interfacial impedance distribution measuring device. The block diagram and Figure 5 are characteristic curve diagrams of measured data. In the figure, the number 1 indicates 0.0IM old, SO
, and the surface 2a of I2 is made of a cross section of stainless steel foil (thickness: 20 um) immersed in this liquid 8 and coated with male fat. The tip 4a of the probe 4 is connected and disposed.The inner diameter of the tip 4a of this probe 4 is set to 0.37i+m.The tip @ 4a is made of vinyl, acrylic, polyethylene, or fluorine. When the tip 4a is bonded to the surface 2a of the 1LC material 2, the solution 1 in the space 4b inside the probe 4 has 51 lobes 4. It is placed horizontally to prevent leakage.

前記1ローブ4内の前記空間4b内には、電極3が配設
されている. 前記電極3は、第2図で示されるように構成されており
、中心位置に形戒された参照電極軸3a、この参照電極
輪3aの外周に形或された参照電極軸絶縁被Fm!3b
、この参照電極軸3aの先端に形成された微小参照電極
3a^、および、前記参照電極軸絶縁被ff3bの外周
位置に非接触状態でスバイラル状に形成された対極30
とから構成され、この対極3cは直系0.13mmの白
金で構成されている5 前記試料2、溶Mlおよびプローブ4を有する容器10
は、マイクロコンピュータ1lにより制御を受けるバル
スモータ制御部12によって、X,Y,Zの三次元方向
に位置合わせを行うことができるテーブル13上に配設
されている。
An electrode 3 is disposed within the space 4b within the one lobe 4. The electrode 3 is constructed as shown in FIG. 2, with a reference electrode shaft 3a shaped at the center, and a reference electrode shaft insulation sheath Fm! shaped around the outer periphery of this reference electrode ring 3a. 3b
, a minute reference electrode 3a^ formed at the tip of this reference electrode shaft 3a, and a counter electrode 30 formed spirally in a non-contact state on the outer circumferential position of the reference electrode shaft insulating covering ff3b.
5, the counter electrode 3c is made of platinum with a diameter of 0.13 mm; a container 10 containing the sample 2, the dissolved Ml, and the probe 4;
are arranged on a table 13 that can be aligned in three-dimensional directions of X, Y, and Z by a pulse motor control section 12 controlled by a microcomputer 1l.

前記プローブ4内の電極3才3よび試料2は、ボテンシ
ョスタット14に接続されており、このボテンシゴスタ
ットl4は、前記マイクロコンビ.ユータ11に接続さ
れたロックインアンプ15及びインピーダンス解析装置
16に接続されている。
The electrode 3 in the probe 4 and the sample 2 are connected to a botensiostat 14, which is connected to the microcombi. It is connected to a lock-in amplifier 15 connected to the user 11 and an impedance analysis device 16.

前記マイクロコンピュータl1には、プリンタ17およ
びハードディスクl8が接続されており、マイクロコン
ピュータ11に対するデータの出入を行うことができる
ように構成されている.次に、前述の電極3に対して交
流電流源3Aおよび電圧源3Bを、第3図で示すように
、印加した攪、第4図に示す走査インピーダンス測定装
置20におけるテーブル】3を,バルスモー夕制御部1
2によって、三次元方向に移動させながら、試料2の被
測定点を検出し、試料2の界面インピーダンスを測定し
た. 尚、前記走査インピーダンス測定装置20におけるボテ
ンショスタット14は東方技研のMode l2000
を用い、インピーダンス解析装置16はNF回路505
0^を用いると共に、ロックインアンブ15はNF回路
5610を用いた. 従って、ボテンショスタッ1・】4から得られた前記電
極3からの出力信号は、インピーダンス解析装[16で
処理された後、マイクロコンビスータ11を介して、プ
リンタ17で印字されると共に、ハードディスク18に
記憶されるように構成されている. 次に、実際に行ったインピーダンスの測定においては、
0.01H Na2SO4中に浸漬させた、樹脂で被覆
したステンレス箔〈厚さ+ 20pm)よりなる試料2
の断面に、プロープ4の先端4aを密着して接合させて
か八行った。
A printer 17 and a hard disk 18 are connected to the microcomputer 11, and the microcomputer 11 is configured to be able to input and output data to and from the microcomputer 11. Next, an alternating current source 3A and a voltage source 3B are applied to the electrode 3 as shown in FIG. Control unit 1
2, the measurement point of sample 2 was detected while moving in three-dimensional direction, and the interfacial impedance of sample 2 was measured. The botensiostat 14 in the scanning impedance measuring device 20 is Model 12000 manufactured by Toho Giken.
The impedance analysis device 16 uses the NF circuit 505
0^ was used, and the lock-in amplifier 15 used an NF circuit 5610. Therefore, the output signal from the electrode 3 obtained from the potentiometer 1.4 is processed by the impedance analyzer [16], then printed by the printer 17 via the micro combisuiter 11, and printed on the hard disk 18. It is configured so that it is stored in Next, in the actual impedance measurement,
Sample 2 consisting of resin-coated stainless steel foil (thickness + 20 pm) immersed in 0.01H Na2SO4
The tip 4a of the probe 4 was closely joined to the cross section of the probe.

一点目の位置のインピーダンス測定が終了した?麦、電
極3を試料2から離間さぜて、水平方向に移動させ、再
び試料2に密着させ、インピーダンスを測定する手順で
、ステンレス箔よりなる試料2の断面を横断するように
2.2 es−だけ走査させた.この時の測定結果を第
5図に示している。
Has the impedance measurement at the first point been completed? Then, the electrode 3 was separated from the sample 2, moved horizontally, brought into close contact with the sample 2 again, and the impedance was measured. − was scanned. The measurement results at this time are shown in FIG.

この第5図の特性曲線は、電流変調モードでの測定例で
あり、印加電流をOII^に保持し、o.ott+^の
電流変調を与えた時の電位振幅を示している.従って、
第5図から明らかなように、電極3が試料のステンレス
T3(寸近にくると、電位振幅のシャープな減少がみら
れ、金属箔部分と他の部分との差異が明確で、位置分解
能に陵れていることが明らかである. これに対して、比較例・とじて、プローブ4を試料2に
接含させずに同様の測定を行った場きにはく従来方法〉
、第6図に示したように、ステンレス箔から離れた位置
においても電位振幅の減少が認められ、第5図よりもブ
ロードな特性曲線を描いている. また、電位振幅の値を比較すると、同一条件で測定した
渇きに、本発明の方法の方が5〜10倍程度電位振幅が
大きい.つまり、インピーダンスΔV (R)は、R一訂、但し、Δ■はt泣振幅、△lは電流
変調であるから、明らかに本発明の方法で測定した方が
インピーダンスが大きくなっている。
The characteristic curve in FIG. 5 is an example of measurement in current modulation mode, where the applied current is maintained at OII^ and o. It shows the potential amplitude when applying current modulation of ott+^. Therefore,
As is clear from Fig. 5, when the electrode 3 comes close to the stainless steel T3 sample, there is a sharp decrease in the potential amplitude, and the difference between the metal foil part and other parts is clear, and the positional resolution increases. On the other hand, in a comparative example, when similar measurements were made without the probe 4 coming into contact with the sample 2, the conventional method failed.
As shown in Fig. 6, a decrease in the potential amplitude was observed even at a position away from the stainless steel foil, and the characteristic curve was broader than that in Fig. 5. Furthermore, when comparing the potential amplitude values, the potential amplitude of the method of the present invention is about 5 to 10 times larger than that of thirst measured under the same conditions. In other words, the impedance ΔV (R) is the same as R1, but since Δ■ is the amplitude and Δl is the current modulation, it is clear that the impedance is larger when measured by the method of the present invention.

これは、プローブ4を試料2に接合させずに測定した場
合には、電′S3から遠く離間した部位までが測定対象
となるため、インピーダンスがR一ρ・L/S (但し
、ρ:比抵抗、I、:長さ、S:断面積〉に従うことか
ら、測定対象面flf(S)が大きくなった分だけ、イ
ンピーダンスが小さくなることによるものと考えられる
. さらに、電位振幅の値を比較しても、本発明の方法の方
が、測定範囲を限定できるために、極めて優れているこ
とが明らかである. 〔発明の効果〕 本発明による微小領域における界面インビーダンス分布
測定方法は、以上のように構成されているため、次のよ
うな効果を得ることができる.すなわち、プローブの先
端を試料の表面に接合させて、界面インピーダンス分布
を微小頭域に限定し、プローブ内の溶液を漏れない状態
としているため、プローブの先端の内径に相当する極め
て限定された面積内におけるインピーダンス測定を行う
ため、極めて高感度の測定を得ることができる. 従って、試料における金属箔部分と他の部分ととの差異
を明確に測定し、優れた位置分解能を得ることができる
ものである.
This is because when measuring without connecting the probe 4 to the sample 2, the impedance is R-ρ・L/S (where ρ: ratio Resistance, I: length, S: cross-sectional area〉, it is thought that this is because the impedance becomes smaller as the surface to be measured flf(S) becomes larger. Furthermore, the values of potential amplitude are compared. However, it is clear that the method of the present invention is extremely superior because the measurement range can be limited. [Effects of the Invention] The method of measuring interfacial impedance distribution in a minute area according to the present invention is With the above configuration, the following effects can be obtained: the tip of the probe is joined to the surface of the sample, the interfacial impedance distribution is limited to a minute head area, and the solution inside the probe is Since the impedance measurement is performed within an extremely limited area corresponding to the inner diameter of the tip of the probe, extremely sensitive measurements can be obtained. It is possible to clearly measure the difference between different parts and obtain excellent positional resolution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第6図迄は、本発明による微小Wi域におけ
る界面インピーダンス分布測定方法を示すためのもので
、第1図は測定状態を示す構或図、第2図は第1図のプ
ローブを詳細に示す構成図、第3図は測定状態を示す原
理図、第4図は界面インピーダンス分布測定装置を示す
ブロック図、第5図は測定データの特性曲線図、第6図
および第7図は従来の界面インピーダンス分布測定方法
を示すためのもので、第6図は特性曲線図、第7図は測
定状態を示す構成図である. 1は溶液、2は試料、2aは表面、4は1ローブ、4a
発明の先端、4bは空間である。 第1図 *K(A)’ 測x対!?[ 領ヱ或゛(日)泪り定ダ寸象力)ら陳きたし)頒1或゛
第4図 1t 18 第5図 第6図 1mm
1 to 6 are for illustrating the method of measuring interfacial impedance distribution in a minute Wi region according to the present invention. FIG. 1 is a diagram showing the configuration of the measurement state, and FIG. Fig. 3 is a principle diagram showing the measurement state, Fig. 4 is a block diagram showing the interfacial impedance distribution measuring device, Fig. 5 is a characteristic curve diagram of measurement data, and Figs. 6 and 7. Figure 6 is a characteristic curve diagram, and Figure 7 is a configuration diagram showing the measurement state. 1 is solution, 2 is sample, 2a is surface, 4 is 1 lobe, 4a
The leading edge of the invention, 4b, is space. Figure 1 *K(A)' Measure x pair! ? [Region ヱ゛(Japanese) Crying Determination of Power) ra Chinshi) Distribution 1〖゛Fig. 4 1t 18 Fig. 5 Fig. 6 Fig. 1mm

Claims (2)

【特許請求の範囲】[Claims] (1)溶液(1)中に浸漬させた試料(2)に対して、
プローブ(4)により界面インピーダンスを測定するよ
うにした微小領域における界面インピーダンス分布測定
方法において、 前記プローブ(4)の先端(4a)を前記試料(2)の
表面に接合させ、前記プローブ(4)内の溶液(1)が
漏れない空間(4b)をプローブ(4)内に形成して測
定範囲を限定することを特徴とする微小領域におけるに
おける界面インピーダンス分布測定方法。
(1) For the sample (2) immersed in the solution (1),
In a method for measuring an interfacial impedance distribution in a micro region, in which the interfacial impedance is measured by a probe (4), the tip (4a) of the probe (4) is bonded to the surface of the sample (2), and the probe (4) A method for measuring interfacial impedance distribution in a minute area, characterized in that the measurement range is limited by forming a space (4b) in the probe (4) from which the solution (1) inside does not leak.
(2)前記プローブ(4)の先端(4a)に設けられた
弾性部材を有し、前記弾性部材が前記試料(2)の表面
(2a)に接合していることを特徴とする請求項1記載
の界面インピーダンス分布測定方法。
(2) The probe (4) has an elastic member provided at the tip (4a), and the elastic member is bonded to the surface (2a) of the sample (2). The interfacial impedance distribution measurement method described.
JP1160709A 1989-06-26 1989-06-26 Measurement method of interface impedance distribution in micro area Expired - Lifetime JP2725843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1160709A JP2725843B2 (en) 1989-06-26 1989-06-26 Measurement method of interface impedance distribution in micro area

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1160709A JP2725843B2 (en) 1989-06-26 1989-06-26 Measurement method of interface impedance distribution in micro area

Publications (2)

Publication Number Publication Date
JPH0326955A true JPH0326955A (en) 1991-02-05
JP2725843B2 JP2725843B2 (en) 1998-03-11

Family

ID=15720775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1160709A Expired - Lifetime JP2725843B2 (en) 1989-06-26 1989-06-26 Measurement method of interface impedance distribution in micro area

Country Status (1)

Country Link
JP (1) JP2725843B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668435A (en) * 1994-08-01 1997-09-16 Hitachi, Ltd. Color display system with color cathode ray tube having a high breakdown voltage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173451A (en) * 1984-02-20 1985-09-06 Toshiba Corp Instrument for measuring corrosion of metal
JPS62222156A (en) * 1986-03-25 1987-09-30 Toshiba Corp Stirring electrode device
JPS63317760A (en) * 1987-06-19 1988-12-26 Univ Tohoku Potential measuring electrode cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60173451A (en) * 1984-02-20 1985-09-06 Toshiba Corp Instrument for measuring corrosion of metal
JPS62222156A (en) * 1986-03-25 1987-09-30 Toshiba Corp Stirring electrode device
JPS63317760A (en) * 1987-06-19 1988-12-26 Univ Tohoku Potential measuring electrode cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5668435A (en) * 1994-08-01 1997-09-16 Hitachi, Ltd. Color display system with color cathode ray tube having a high breakdown voltage

Also Published As

Publication number Publication date
JP2725843B2 (en) 1998-03-11

Similar Documents

Publication Publication Date Title
Afsarimanesh et al. Development of IoT-based impedometric biosensor for point-of-care monitoring of bone loss
EP0107844B1 (en) Eddy-current defect-detecting system for metal tubes
Klusmann et al. pH-microscopy—theoretical and experimental investigations
JP2007271640A (en) Kit for measuring coagulation time of blood sample
US3840806A (en) Instrument for measuring blood clotting times
CN100360928C (en) Composite scanning chlorion sensitive micro-probe and preparing process thereof
JP2001046344A (en) Skin character measuring probe
Meyne et al. Resonant microwave sensors for picoliter liquid characterization and nondestructive detection of single biological cells
TW201843441A (en) Methods and systems for hematocrit measurement
WO1988001383A1 (en) Probe for composite analyzer tester
US3821643A (en) Blood coagulation timer
JPH0326955A (en) Method for measuring bounary impedance distribution in micro-region
JP3369829B2 (en) Moisture measurement device
JPH0546495B2 (en)
US4058438A (en) Rapid universal sensing cell
US3265962A (en) Method of and apparatus for microsample conductivity measurement
CN106290539A (en) The method of tyrosine concentration in detection solution
CN106290536B (en) The method for detecting aspartic acid concentration in solution
Spence Electrical impedance measurement as an endpoint detection method for routine coagulation tests
Trethewey et al. New methods of quantitative analysis of localized corrosion using scanning electrochemical probes
RU2167416C2 (en) Method and device for determining hydrogen ion concentration
US11740229B2 (en) Method and system for determining biomarker concentration
JPH1119060A (en) Skin moisture content evaluation method
JPS6236555A (en) Eddy current inspection
JPS6029735Y2 (en) Specific resistance measuring device for annular conductor