JPH03269251A - Measuring method for strength of ceramic component - Google Patents

Measuring method for strength of ceramic component

Info

Publication number
JPH03269251A
JPH03269251A JP2069280A JP6928090A JPH03269251A JP H03269251 A JPH03269251 A JP H03269251A JP 2069280 A JP2069280 A JP 2069280A JP 6928090 A JP6928090 A JP 6928090A JP H03269251 A JPH03269251 A JP H03269251A
Authority
JP
Japan
Prior art keywords
strength
diopside
sample
ceramic
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2069280A
Other languages
Japanese (ja)
Other versions
JP2852682B2 (en
Inventor
Masaru Takato
高藤 勝
Takahiro Higuchi
樋口 隆博
Akihide Takami
明秀 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2069280A priority Critical patent/JP2852682B2/en
Publication of JPH03269251A publication Critical patent/JPH03269251A/en
Application granted granted Critical
Publication of JP2852682B2 publication Critical patent/JP2852682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To secure strength reliability and quality by measuring the amount of the diopside of a ceramic component by X-ray diffraction, estimating the strength and measuring the strength without destruction. CONSTITUTION:The X-rays are generated in an X-ray ball tube 1 in a tube shield 2. From the linear X-ray source through a shutter 3 X-rays are projected on a sample 7 provided on a sample part 6 through a solar slit 4 and diverging slit 5 at a viewing angle theta. The X-rays diffracted in the sample 7 are inputted into a counting tube 12 through a light receiving slit 8, a solar slit 9 and scattering slit 11. The viewing angle theta is rotated and scanned highly accurately, and the counted number for the number of rotation 2theta is measured. The diopside amount of the arbitrary part of a ceramic component as the sample 7 is measured by X-ray diffraction, and the strength is estimated. Then, the strength can be measured without destruction. Thus the strength can be well secured, and the quality control can be performed sufficiently.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、セラミック部品の強度を非破壊で測定するセ
ラミック部品の強度測定法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for measuring the strength of ceramic parts in a non-destructive manner.

(従来の技術) 一般に、窒化けい素や炭化けい素などの構造用セラミッ
クは耐熱強度や耐摩耗性に優れていることから、高性能
、高出力エンジンのような熱的特性が強く要求されるエ
ンジン部材として極めて有用である。
(Conventional technology) Structural ceramics such as silicon nitride and silicon carbide generally have excellent heat resistance and wear resistance, so they are strongly required to have thermal properties similar to those of high performance and high output engines. Extremely useful as an engine component.

一方、上記のようなセラミックは脆く、亀裂や欠陥に対
する感受性が高く、欠陥の大きさに応じて強度が大幅に
低下すると共に、この欠陥が内部より表面側に位置する
ほうが同一程度の欠陥であっても強度低下が大きく影響
を受ける傾向にある。
On the other hand, ceramics such as those mentioned above are brittle and highly susceptible to cracks and defects, and their strength decreases significantly depending on the size of the defect. However, the strength decrease tends to be significantly affected.

そして、このセラミック部材をエンジン部材などとして
実用化するためには、特に強度信頼性やその品質確保が
大きな課題となる。
In order to put this ceramic member into practical use as an engine member, strength reliability and quality assurance are particularly important issues.

そして、従来より、このようなセラミック部品の強度測
定もしくは欠陥検出のために、例えば、X線透過による
欠陥検出、プルーフ試験、ロット毎での抜取りによる破
壊試験、曲げ試験による強度測定などが行われている。
Conventionally, in order to measure the strength or detect defects in such ceramic parts, for example, defect detection by X-ray transmission, proof tests, destructive tests by sampling from each lot, strength measurements by bending tests, etc. have been carried out. ing.

(発明が解決しようとする課題) しかして、セラミック部品の強度測定において、前記X
線などの非破壊検査は、強度に大きな影響を与える亀裂
や欠陥を検出し、強度の満足しない部品を非破壊的に排
除する方法であるが、前記のように欠陥の位置や大きさ
によって強度は大きく変化するが、この検査法では欠陥
の大きさに対する検出限界や欠陥の位置の特定が容易で
なく、特に強度的に厳しい部位の部材形状が複雑となる
と、強度を的確に把握することとが難しい問題がある。
(Problem to be solved by the invention) However, in measuring the strength of ceramic parts, the
Non-destructive inspection of wires, etc. is a method of detecting cracks and defects that greatly affect strength, and non-destructively eliminating parts whose strength is not satisfactory, but as mentioned above, strength However, with this inspection method, it is not easy to determine the detection limit for the size of the defect or to identify the location of the defect, and it is difficult to accurately understand the strength, especially when the shape of the part is complex in areas where strength is required. There is a difficult problem.

また、プルーフ試験法は、部品の実働負荷条件よりも低
位の応力を負荷し、低強度品を除去する方法であって、
これでは負荷をかけることにより微細な亀裂の生じる可
能性が多分にあり、この試験を行うことによって、誤っ
て強度の信頼性を損なうという問題が生じる。
In addition, the proof test method is a method that applies a stress lower than the actual load condition of the component and removes low-strength products.
In this case, there is a high possibility that fine cracks will occur due to the application of load, and conducting this test will cause the problem of erroneously impairing the reliability of the strength.

さらに、曲げ試験による強度測定は一般的に行われてい
る強度測定法であり、部品からの切り出しや同一ロット
で処理した試験品により強度を測定するものであり、測
定精度は優れているが、試験片の形状や仕上精度、試験
条件によるバラツキが大きくなる。また、部品そのもの
の強度ではなくあくまでも同じ処理品のテストピースに
よる強度であり、応力集中部分などの特定部位の強度の
測定はできず、測定結果をどのような基準で適用するか
困難な問題を有する。
Furthermore, strength measurement by bending test is a commonly used strength measurement method, and the strength is measured by cutting out parts or test items processed from the same lot, and although the measurement accuracy is excellent, Variations due to test piece shape, finishing accuracy, and test conditions increase. In addition, it is not the strength of the part itself, but the strength of a test piece of the same processed product, and it is not possible to measure the strength of specific parts such as stress concentration areas, making it difficult to decide what criteria to apply the measurement results to. have

そこで、本発明は上記事情に鑑み、セラミック部品の応
力集中部などの部分の強度をX線により非破壊で測定し
、強度信頼性やその品質確保を図るようにしたセラミッ
ク部品の強度測定法を提供することを目的とするもので
ある。
Therefore, in view of the above circumstances, the present invention provides a method for measuring the strength of ceramic parts in which the strength of parts such as stress concentration parts of ceramic parts is non-destructively measured using X-rays to ensure strength reliability and quality. The purpose is to provide

(課題を解決するための手段) 上記目的を達成するために本発明の強度測定法は、窒化
けい素Si3N4を主成分とするセラミック部品の強度
を測定するものであって、このセラミック部品の任意の
部分をX線回折によりデイオプサイド量を測定し、該デ
ィオプサイド量により強度を推定することを特徴とする
ものである。
(Means for Solving the Problems) In order to achieve the above object, the strength measuring method of the present invention measures the strength of a ceramic component whose main component is silicon nitride, Si3N4, The method is characterized in that the amount of diopside is measured in the portion by X-ray diffraction, and the intensity is estimated based on the amount of diopside.

窒化けい素セラミックの高強度化としては、欠陥の発生
防止、結晶粒の微細化、粒界層の結晶化などにより実現
できるものであって、本発明では、例えば、ロータリピ
ストンエンジン用アペックスシールのような高い曲げ強
さ(150MPa以上)が要求される窒化けい素セラミ
ックを得る際に、上記粒界層の結晶化について、該粒界
層の生成物およびそれらの結晶化度と強度の関係を明ら
かにして、強度推定を可能にしたものである。
Increasing the strength of silicon nitride ceramics can be achieved by preventing defects, making grains finer, and crystallizing grain boundary layers. When obtaining a silicon nitride ceramic that requires a high bending strength (150 MPa or more), it is important to consider the products of the grain boundary layer and the relationship between their crystallinity and strength regarding the crystallization of the grain boundary layer. This makes it possible to estimate the intensity.

本発明方法が適用可能な対象セラミックとしては、ディ
オプサイドおよびアパタイトの粒界層物質を有するよう
な配合成分、焼結および熱処理を施した窒化けい素を主
成分とするセラミック部品である。
The target ceramic to which the method of the present invention is applicable is a ceramic component whose main component is silicon nitride, which has been subjected to blending components such as diopside and apatite grain boundary layer materials, and which has been subjected to sintering and heat treatment.

この窒化けい素セラミックの構成物質とその結晶構造は
下記の通りであり、窒化けい素β−8i3N4による六
方晶系の結晶粒子を母材とし、母材結晶粒子の間に生成
される粒界層が単斜晶系のディオプサイドと六方晶系の
アパタイトで構成されている。この窒化けい素セラミッ
クの結晶化の製造プロセスは、原料を混合し、製品形状
に成形した後、焼結し、結晶化を行うものである。
The constituent materials and crystal structure of this silicon nitride ceramic are as follows: The base material is hexagonal crystal grains of silicon nitride β-8i3N4, and the grain boundary layer is formed between the base material crystal grains. is composed of monoclinic diopside and hexagonal apatite. The manufacturing process for crystallizing silicon nitride ceramic is to mix raw materials, shape the product into a product shape, and then sinter and crystallize it.

J、母材 ■ β−8i3N4 −一六方晶系 ■1粒界層 IIa・・・ディオプサイド −一単斜晶系■ Ca 
(Mg、Pe、AI)(SjAl) 203■ CaM
g (Sing ) 2 nb・・・アパタイト   −−六六方系系 Ce4.
bt (Sin4) 30■ Y5  (Sin4)N ■ MgY4Si3013 前記粒界層物質の検出は、ディオプサイドが単斜晶系、
アパタイトが六方晶系の形態で生成されていることから
、この微量の粒界層物質を結晶構造に対するX線回折の
分析で量的に検出する。その際、X線回折のX線源の強
度、試料の前処理や回折角度などを最適条件に設定し、
回折結果として粒界層物質のプロファイルを得る。
J, base material ■ β-8i3N4 - monoclinic system ■ 1 grain boundary layer IIa... diopside - monoclinic system ■ Ca
(Mg, Pe, AI) (SjAl) 203■ CaM
g (Sing) 2 nb...Apatite -- hexagonal system Ce4.
bt (Sin4) 30■ Y5 (Sin4)N ■ MgY4Si3013 The detection of the grain boundary layer substance is performed when diopside is monoclinic,
Since apatite is produced in a hexagonal system, this minute amount of grain boundary layer material is quantitatively detected by X-ray diffraction analysis of the crystal structure. At that time, the intensity of the X-ray source for X-ray diffraction, sample pretreatment, diffraction angle, etc. are set to the optimal conditions.
A profile of the grain boundary layer material is obtained as a diffraction result.

そして、上記回折結果のプロファイルの回折角度から粒
界層物質としての各種ディオプサイドおよびアパタイト
物質を特定し、その回折強度から各物質の定量化を行う
。これより、全体としてのディオプサイド量およびアパ
タイト量を算出し、全粒界層物質の中でディオプサイド
量の占める回折強度を求める。または、回折プロファイ
ルから半価幅を求めることにより定量化を行ってもよい
Then, various diopside and apatite substances as grain boundary layer substances are identified from the diffraction angle of the profile of the above-mentioned diffraction results, and each substance is quantified from the diffraction intensity. From this, the overall amount of diopside and apatite is calculated, and the diffraction intensity occupied by the amount of diopside in all grain boundary layer materials is determined. Alternatively, quantification may be performed by determining the half width from the diffraction profile.

前記X線回折で求めた粒界層物質量と窒化けい素セラミ
ックの強度との関係は、全粒界層物質のに対するディオ
プサイド量の占める比率が多くなるほど、曲げ強さが大
きくなるものであって、予め両者の関係を求めた特性に
基づいて、実際のセラミック部品のX線回折からディオ
プサイド量を非破壊的に計測し、上記特性と照合するこ
とで曲げ強さを推定するものである。
The relationship between the amount of grain boundary layer material determined by X-ray diffraction and the strength of silicon nitride ceramic is that the bending strength increases as the ratio of diopside to the total grain boundary layer material increases. The bending strength is estimated by non-destructively measuring the amount of diopside from the X-ray diffraction of the actual ceramic component based on the characteristics whose relationship has been determined in advance, and comparing it with the above characteristics. It is.

(作用) 上記のようなセラミック部品の強度測定法では、焼結や
熱処理で結晶粒界にディオプサイド結晶が形成された窒
化けい素製部品の強度的に厳しい部位などの任意部分の
X線回折を行うことにより、強度状態に大きく関係する
ディオプサイド、結晶化度を測定し、窒化けい素セラミ
ック部品の強度をX線による非破壊測定で精度良く推定
が行えるようにしている。
(Function) In the above-mentioned method for measuring the strength of ceramic parts, X-rays are used to measure the strength of silicon nitride parts where diopside crystals have been formed at the grain boundaries during sintering or heat treatment. By performing diffraction, diopside and crystallinity, which are significantly related to the strength state, are measured, making it possible to accurately estimate the strength of silicon nitride ceramic parts by non-destructive measurement using X-rays.

(実施例) 以下、図面に沿って本発明の詳細な説明する。(Example) The present invention will be described in detail below with reference to the drawings.

第1図はX線回折装置の概略を示し、チューブシールド
2内のX線管球1で発生されたX線は、シャッタ3を経
た線状線源がソーラスリット4、発散スリット5を介し
て、試料部6に設置された試料7(セラミック部品)に
視射角θ(入射角の余角)で照射され、試料7で回折さ
れたX線は受光スリット8、ソーラスリット9、散乱ス
リット11を経て計数管12(カウンタ)に入射される
FIG. 1 shows the outline of an X-ray diffraction apparatus. , a sample 7 (ceramic component) placed in the sample section 6 is irradiated at a glancing angle θ (complementary angle of the incident angle), and the X-rays diffracted by the sample 7 are passed through a light receiving slit 8, a solar slit 9, and a scattering slit 11. The signal is input to the counter 12 (counter) through the .

そして、前記視射角θは高精度に回転走査され、回折角
2θに対するカウント数を計測する。
Then, the glancing angle θ is rotated and scanned with high precision, and the number of counts with respect to the diffraction angle 2θ is measured.

前記発散スリット5は発散するX線の水平面内の発散角
を制限するものであり、また、受光スリット8は試料7
で回折され収束したX線を収集させるものであり、さら
に、散乱スリット11は空気散乱X線などの試料以外の
ところから散乱X線が計数管12に入るのを防ぐもので
ある。
The divergence slit 5 limits the divergence angle of the divergent X-rays in the horizontal plane, and the light receiving slit 8 restricts the divergence angle of the divergent X-rays in the horizontal plane.
Further, the scattering slit 11 prevents scattered X-rays such as air-scattered X-rays from entering the counter tube 12 from sources other than the sample.

また、前記X線管球1では、フィラメントに高電圧をか
けてターゲット(X線発生源)に電子線を照射し、この
ターゲットからX線を発生させる。
Furthermore, in the X-ray tube 1, a high voltage is applied to the filament to irradiate a target (X-ray generation source) with an electron beam, thereby generating X-rays from the target.

このターゲットから発生する特性X線を試料7に照射し
、試料7から発生する反射X線(約10μm程度X線が
入る)を、回折角2θを変更しつつ検出するものである
The sample 7 is irradiated with the characteristic X-rays generated from this target, and the reflected X-rays (the X-rays enter about 10 μm) generated from the sample 7 are detected while changing the diffraction angle 2θ.

そして、X線回折強度(カウント数)が強いところの回
折角2θを求め、格子面間隔dをブラッグの公式(2d
sinθ#nλ、λ:入射X線の波長、n:正の整数)
に代入して求め、各結晶がもつ固有の格子面間隔dとの
比較によって、前記セラミック中の物質■〜■の同定を
行う。
Then, find the diffraction angle 2θ where the X-ray diffraction intensity (count number) is strong, and calculate the lattice spacing d using Bragg's formula (2d
sinθ#nλ, λ: wavelength of incident X-ray, n: positive integer)
Substances (1) to (2) in the ceramic are identified by comparing with the unique lattice spacing d of each crystal.

前記窒化けい素セラミック中の物質■〜■のうち、■の
母材を除く、■、■のディオプサイドおよび■、■、■
のアパタイトの結晶は微粒で、それらが検出される回折
角2θは15°から40゜の範囲であり、この領域の検
出精度を高めてピークを強調して良好な測定を行う条件
を設定する。
Among the substances ■ to ■ in the silicon nitride ceramic, excluding the base material of ■, ■, diopside of ■, and ■, ■, ■
The apatite crystals are fine grains, and the diffraction angle 2θ at which they are detected is in the range of 15° to 40°, and conditions are set to improve the detection accuracy in this region and emphasize the peaks to perform good measurements.

上記X線回折の条件としては、X線管電圧およびX線管
電流を高めに設定すると共に、試料7の前処理としての
腐食時間を調整することで行う。
The conditions for the above X-ray diffraction are such that the X-ray tube voltage and X-ray tube current are set high, and the corrosion time as a pretreatment of the sample 7 is adjusted.

次に、具体的な強度測定の実験例を説明すれば、測定を
行うセラミック部品としては、第2図のロータリピスト
ンエンジンのアペックスシール14をセラミックによっ
て構成したもの、および第3図のディーゼルエンジンの
グロープラグ15の先端のセラミック部15aについて
の例である。上記アペックスシール14は先端部Aが強
度的に最も厳しい部分であり、この先端部Aの強度を測
定する。また、グロープラグ15についても楕円で囲っ
た部分Bについての強度を測定する。
Next, to explain concrete examples of strength measurement experiments, the ceramic parts to be measured include the apex seal 14 of the rotary piston engine shown in Fig. 2 made of ceramic, and the one of the diesel engine shown in Fig. 3. This is an example of the ceramic portion 15a at the tip of the glow plug 15. The tip A of the apex seal 14 has the strongest strength, and the strength of this tip A is measured. Furthermore, the strength of the glow plug 15 is also measured at a portion B surrounded by an ellipse.

そして、上記アペックスシール14およびグロープラグ
15の一セラミック部15aを実験の試料として調整す
る。試料の大きさは3 X 4 mm、試料に前処理と
して腐食を2時間程度施し、試料面の0 表面粗さを1μm程度に調整する。
Then, the apex seal 14 and the ceramic portion 15a of the glow plug 15 are prepared as experimental samples. The size of the sample is 3 x 4 mm, and the sample is subjected to corrosion for about 2 hours as a pretreatment, and the zero surface roughness of the sample surface is adjusted to about 1 μm.

また、X線回折条件としては、X線管の加速電圧を40
KV、フィラメント電流を80mA、ターゲットの材質
をCu、回折角(2θ)の変動範囲を15〜40度に設
定する。なお、回折角2θが15度の場合の格子面間隔
dは5.90オングストローム、40度の場合は2.2
5オングストロームである。
In addition, as the X-ray diffraction conditions, the acceleration voltage of the X-ray tube was set to 40
KV, filament current of 80 mA, target material of Cu, and diffraction angle (2θ) variation range of 15 to 40 degrees. The lattice spacing d is 5.90 angstroms when the diffraction angle 2θ is 15 degrees, and 2.2 when the diffraction angle 2θ is 40 degrees.
It is 5 angstroms.

上記条件でX線回折を行った測定結果を、第4図に示す
。この第4図はX線回折のプロファイルであり、回折角
2θに対する回折強度CPS (1秒間のカウント数)
を示している。
The measurement results of X-ray diffraction performed under the above conditions are shown in FIG. This figure 4 is the X-ray diffraction profile, and the diffraction intensity CPS (number of counts per second) with respect to the diffraction angle 2θ
It shows.

第4図において、それぞれの回折角度でピークが生じる
物質、すなわちそれぞれの物質の結晶方向に対応する格
子面間隔dは予め求められており、このデータと照合す
ることでピークが発生した回折角度での物質が特定でき
、その物質の同定によって前記窒化けい素の構成物質が
母材かディオプサイドかアパタイトか判定できるもので
あって、第4図中に示した符号■〜■は前記物質に該当
するものであり、該当物質がその強度に対応した量だけ
結晶化して生成されているものである。
In Figure 4, the lattice spacing d corresponding to the crystal direction of the substance at which a peak occurs at each diffraction angle, that is, the crystal direction of each substance, is determined in advance, and by comparing this data, it is possible to By identifying the substance, it is possible to determine whether the constituent substance of the silicon nitride is a matrix, diopside, or apatite, and the symbols ■ to ■ shown in FIG. 4 indicate the substances. This is a substance that is produced by crystallizing an amount of the substance corresponding to its strength.

続いて、上記X線回折のプロファイルから、ディオプサ
イドとアパタイトとの粒界層の全量を求めると共に、全
粒界層に対するディオプサイドの占める割合を求める。
Next, from the above-mentioned X-ray diffraction profile, the total amount of the grain boundary layer of diopside and apatite is determined, and the proportion of diopside to the total grain boundary layer is determined.

これによって強度が推定できるものである。This allows the strength to be estimated.

すなわち、第5図は上記全粒界層に対するディオプサイ
ドの占める割合と曲げ強度との関係を求めた各データを
記入したものであり、ディオプサイドの占める割合が増
大するほど、換言するとアパタイトの比率が低下する程
、曲げ強度は高くなる傾向にあることが判明している。
In other words, Figure 5 shows the data for determining the relationship between the ratio of diopside to the total grain boundary layer and the bending strength. It has been found that the bending strength tends to increase as the ratio decreases.

そして、前記のX線回折によるセラミック部品の回折プ
ロファイルから求めた、全粒界層に対するディオプサイ
ドの占める割合の測定データを、前記第5図の特性に適
用して強度を推定するものである。なお、第5図におい
て、Aのアペックスシールは要求強度も高く、ディオプ
サイド量が高くなるように、セラミック部材の配合組成
、焼結1 温度条件などを設定するものであり、Bのグロープラグ
のセラミック部はそれより要求強度が低いことから、デ
ィオプサイド量も低い領域で十分な強度が確保できるも
のであり、それに対応して実施が容易な条件での設定に
よるセラミック部品を得るようにしている。
Then, the strength is estimated by applying the measured data of the ratio of diopside to the total grain boundary layer obtained from the diffraction profile of the ceramic component by the above-mentioned X-ray diffraction to the characteristics shown in Fig. 5 above. . In Figure 5, the apex seal A has a high required strength and the composition of the ceramic member, the sintering temperature conditions, etc. are set so that the amount of diopside is high, and the glow plug B Since the required strength of the ceramic part is lower than that, sufficient strength can be secured with a low amount of diopside. ing.

上記のような実施例によれば、X線回折によってセラミ
ック部品の所定部位のディオプサイド量を測定し、その
部品おいて要求される強度に対応したディオプサイド間
の範囲に照合して、強度を推定して許容範囲内か否かを
判定することができる。
According to the embodiment described above, the amount of diopside at a predetermined portion of a ceramic component is measured by X-ray diffraction, and the amount of diopside is compared to the range between diopsides corresponding to the strength required for the component. It is possible to estimate the intensity and determine whether it is within the allowable range.

なお、窒化けい素を主成分とするセラミックの強度は、
前記のように粒界層のディオプサイドの生成状態の影響
を大きく受けるものであるが、これは配合組成、焼結条
件(温度、時間)などによって変化し、その調整によっ
て要求強度のセラミック部品が得られる。
The strength of ceramics whose main component is silicon nitride is
As mentioned above, it is greatly influenced by the state of diopside formation in the grain boundary layer, which changes depending on the composition, sintering conditions (temperature, time), etc., and by adjusting it, it is possible to create ceramic parts with the required strength. is obtained.

(発明の効果) 上記のような本発明によれば、窒化けい素を主2 成分とするセラミック部品の任意の部分をX線回折によ
りディオプサイド量を測定し、該ディオプサイド量によ
り強度を推定するようにしたことにより、強度的に厳し
い部分そのものの強度をX線による非破壊測定で精度良
く推定することができ、セラミック部品の信頼性が高め
られるものである。
(Effects of the Invention) According to the present invention as described above, the amount of diopside in any part of a ceramic component containing silicon nitride as the main two components is measured by X-ray diffraction, and the strength is determined based on the amount of diopside. By estimating , it is possible to accurately estimate the strength of the portion itself where the strength is severe by non-destructive measurement using X-rays, and the reliability of the ceramic component is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に適用するX線回折装置の概略構成図、 第2図はセラミック部品の一例を示す正面図、第3図は
他のセラミック部品を示す要部正面図、第4図はX線回
折による測定結果の例を示す回折プロファイル図、 第5図はX線回折の測定と曲げ強度との関係を示すグラ
フである。 1・・・・・・X線管球、5,8.11・・・・・・ス
リット、7・・・・・・試料、12・・・・・・計数管
、14.15・・・・・・セラミック部品。 3 4 特開平3 269251(6)
Fig. 1 is a schematic configuration diagram of an X-ray diffraction apparatus applied to the present invention, Fig. 2 is a front view showing an example of a ceramic part, Fig. 3 is a front view of main parts showing another ceramic part, and Fig. 4 is a front view showing an example of a ceramic part. Diffraction profile diagram showing an example of measurement results by X-ray diffraction. FIG. 5 is a graph showing the relationship between measurement of X-ray diffraction and bending strength. 1...X-ray tube, 5,8.11...Slit, 7...Sample, 12...Counter tube, 14.15... ...Ceramic parts. 3 4 Japanese Unexamined Patent Publication No. 3 269251 (6)

Claims (1)

【特許請求の範囲】[Claims] (1)窒化けい素を主成分とするセラミック部品の強度
測定法であって、前記セラミック部品の任意の部分をX
線回折によりディオプサイド量を測定し、該ディオプサ
イド量により強度を推定することを特徴とするセラミッ
ク部品の強度測定法。
(1) A method for measuring the strength of a ceramic component whose main component is silicon nitride, in which any part of the ceramic component is
A method for measuring the strength of ceramic parts, characterized by measuring the amount of diopside by line diffraction and estimating the strength based on the amount of diopside.
JP2069280A 1990-03-19 1990-03-19 Strength measurement method for ceramic parts Expired - Fee Related JP2852682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2069280A JP2852682B2 (en) 1990-03-19 1990-03-19 Strength measurement method for ceramic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2069280A JP2852682B2 (en) 1990-03-19 1990-03-19 Strength measurement method for ceramic parts

Publications (2)

Publication Number Publication Date
JPH03269251A true JPH03269251A (en) 1991-11-29
JP2852682B2 JP2852682B2 (en) 1999-02-03

Family

ID=13398065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2069280A Expired - Fee Related JP2852682B2 (en) 1990-03-19 1990-03-19 Strength measurement method for ceramic parts

Country Status (1)

Country Link
JP (1) JP2852682B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032164A (en) * 2010-07-28 2012-02-16 Rigaku Corp X-ray diffraction method and portable x-ray diffraction apparatus using the same
CN114137008A (en) * 2021-11-30 2022-03-04 重庆登康口腔护理用品股份有限公司 Method for detecting bioactive ceramic active ingredients in toothpaste

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012032164A (en) * 2010-07-28 2012-02-16 Rigaku Corp X-ray diffraction method and portable x-ray diffraction apparatus using the same
US9518940B2 (en) 2010-07-28 2016-12-13 Rigaku Corporation X-ray diffraction method and portable X-ray diffraction apparatus using same
CN114137008A (en) * 2021-11-30 2022-03-04 重庆登康口腔护理用品股份有限公司 Method for detecting bioactive ceramic active ingredients in toothpaste
CN114137008B (en) * 2021-11-30 2024-03-01 重庆登康口腔护理用品股份有限公司 Method for detecting bioactive ceramic active ingredients in toothpaste

Also Published As

Publication number Publication date
JP2852682B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
Fewster et al. Absolute lattice-parameter measurement
KR101275532B1 (en) Apparatus and method for analysis of a sample having a surface layer
Bennett A Study of the Damaging Effect of Fatigue Stressing on SAE X4130 Steel
EP3845893B1 (en) System and method applicable for measuring thickness of ultrathin film on substrate
Kämpfe et al. Energy dispersive x‐ray diffraction
Tanaka et al. Diffraction Measurements of Residual Macrostress and Microstress UsingX-Rays, Synchrotron and Neutrons
TWI329736B (en) X-ray scattering with a polychromatic source
JPH03269251A (en) Measuring method for strength of ceramic component
Doig et al. The use of stretch zone width measurements in the determination of fracture toughness of low strength steels
EP0780677B1 (en) Method of determining cause of defects on steel material surface
JP3968350B2 (en) X-ray diffraction apparatus and method
Bauch et al. A comparison of the KOSSEL and the X‐ray Rotation‐Tilt Technique
JPH0619268B2 (en) Method for measuring thickness of coating film on metal
JP2905659B2 (en) X-ray apparatus and evaluation analysis method using the apparatus
JPH1048159A (en) Method and apparatus for analyzing structure
JP2003065978A (en) Method for assessing remaining life of heat resisting material
JP3950074B2 (en) Thickness measuring method and thickness measuring apparatus
JP2000213999A (en) X-ray stress measuring method
JP3000892B2 (en) Film thickness measurement method using X-ray diffraction
JP2785848B2 (en) Measurement method for internal strain of crystal substrate
Keller et al. Nondestructive characterization of hydroxylapatite coated dental implants by XRD method
DE4236291A1 (en) Texture and stress analysis and crystal orientation determn. method - involves exposing specimen to x-rays and measuring radiation from specimen with energy resolution detector at various output angles
RU2107894C1 (en) Method for measurement of coating thickness on substrate
Langer et al. Studies of polycrystalline materials by Pseudo Kossel technique
Lisin et al. Characteristic features of deformation of electron spectra behind two-layer barriers

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees