JPH032691A - Fuel assembly for boiling water reactor - Google Patents

Fuel assembly for boiling water reactor

Info

Publication number
JPH032691A
JPH032691A JP1136186A JP13618689A JPH032691A JP H032691 A JPH032691 A JP H032691A JP 1136186 A JP1136186 A JP 1136186A JP 13618689 A JP13618689 A JP 13618689A JP H032691 A JPH032691 A JP H032691A
Authority
JP
Japan
Prior art keywords
fuel assembly
fuel
water
solid moderator
boiling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1136186A
Other languages
Japanese (ja)
Inventor
Takemi Akatsuchi
赤土 雄美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP1136186A priority Critical patent/JPH032691A/en
Publication of JPH032691A publication Critical patent/JPH032691A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To prevent a generation of voids in a water pipe completely and to keep a burning condition which has beem presumed at a designing phase, even under a low power and a low flow operation by arranging a solid moderator material at a part corresponding to an upper part of an effective fuel length of a fuel assembly. CONSTITUTION:A capsule (a container) 2g containing a solid moderator material (a zirconium hydride) 2f is fixed to a region corresponding to an upper part of an effective fuel length in a water channel 2A. An axial length of the solid moderator material 2f or the capsule 2g corresponds to around 15% of the effective fuel length. In a fuel assembly 10 being constituted in this way, a space beneath the container capsule 2g of the solid moderator material in the water channel 2A is unfailingly filled by not-boiling water even in an output condition of a 60% flow and a 70% output and therefore its burning condition is coincided with a presumed one at a designing phase and there is no possibility to degrade a reliability of a designing calculation.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は沸騰水型原子炉(BWR)用燃料集合体に係り
、更に詳細には、水管(つ才一タロッド、ウォータチャ
ンネル等)内の減速材として冷却水と固体減速材とを併
用する形式の燃料集合体に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a fuel assembly for a boiling water reactor (BWR), and more specifically, to a fuel assembly for a boiling water reactor (BWR), and more specifically, to a fuel assembly for a boiling water reactor (BWR). This invention relates to a fuel assembly that uses both cooling water and a solid moderator as a moderator.

[従来の技術] 本願では主にBWR用燃料集合体の水管を貫流する冷却
水流量を問題とするが、先ず従来のBWR用燃料集合体
の燃料棒、水管、燃料集合体全体の各構成について第2
図を参照しながら説明する。
[Prior Art] This application mainly deals with the flow rate of cooling water flowing through the water pipes of a BWR fuel assembly. First, we will discuss the configuration of the fuel rods, water pipes, and the entire fuel assembly of a conventional BWR fuel assembly. Second
This will be explained with reference to the figures.

〈燃料棒〉 第2図(イ)に燃料棒の構成を示す。<Fuel rod> Figure 2 (a) shows the configuration of the fuel rod.

燃料棒1は、焼結された二酸化ウランベレット1aをジ
ルカロイ製の被覆管1bに充填し、更に被覆管1bの上
方のブレナム領域にブレナムスプリング1Cを配置して
熱伝導度の良い不活性ガス(ヘリウム)を封入し、被覆
管1bの上下端をそれぞれ上部端栓1d、下部端栓1e
で密封溶接して構成されている。
The fuel rod 1 is constructed by filling a zircaloy cladding tube 1b with sintered uranium dioxide pellets 1a, and arranging a blennium spring 1C in the blennium region above the cladding tube 1b, and using an inert gas with good thermal conductivity ( helium), and the upper and lower ends of the cladding tube 1b are filled with an upper end plug 1d and a lower end plug 1e, respectively.
It is constructed by sealing and welding.

この燃料棒1のうち何本かは上下部端栓1d。Some of these fuel rods 1 have upper and lower end plugs 1d.

1eにネジ部を設けた結合用燃料棒であり、そのネジ付
下部端栓は、下部タイブレート4(第2図(ハ)参照)
の対応するネジ付下部端栓挿入孔に結合される。一方、
ネジ付上部端栓はロットスプリングを取り付けた後、上
部タイブレート3の端栓挿入孔を貫通してナツト7によ
り結合される。
1e is a connecting fuel rod with a threaded portion, and its lower threaded end plug is connected to the lower tie plate 4 (see Figure 2 (c)).
is coupled to a corresponding threaded lower end plug insertion hole. on the other hand,
After installing the rod spring, the threaded upper end plug passes through the end plug insertion hole of the upper tie plate 3 and is connected with a nut 7.

他の燃料棒は上下部端栓を下部タイブレート端栓挿入孔
に挿入して上下部タイブレート3.4間に束ねられる。
Other fuel rods are bundled between the upper and lower tie plates 3.4 by inserting the upper and lower end plugs into the lower tie plate end plug insertion holes.

〈水管〉 第2図(ロ)に水管(図示の例ではつオータロラド)の
構成を示す。
<Water Pipe> Figure 2 (b) shows the configuration of a water pipe (in the illustrated example, a water tube).

つオータロラド2Bは、燃料棒1と同様に本体の上下部
に上下部端栓2d、2eが溶接され、これら端栓2d、
2eの付近にそれぞれ設けられた孔2a、2bを介して
未沸騰水が下部から上部へ貫流するようになっている。
Similar to the fuel rod 1, the Autororad 2B has upper and lower end plugs 2d and 2e welded to the upper and lower parts of the main body, and these end plugs 2d,
Unboiled water flows from the bottom to the top through holes 2a and 2b provided near holes 2e.

〈燃料集合体〉 第2図(ハ)に燃料集合体の全体的な概略構成を示す。<Fuel assembly> FIG. 2(c) shows the overall schematic configuration of the fuel assembly.

全体を符号20で示される燃料集合体は、その外周をチ
ャンネルボックス6で覆われており、このチャンネルボ
ックス6の下端は下部タイブレート4上面よりも下に位
置するようになっている。
The fuel assembly, generally designated by the reference numeral 20, has its outer periphery covered with a channel box 6, and the lower end of the channel box 6 is positioned below the upper surface of the lower tie plate 4.

尚、このチャンネルボックス6は、上部タイブレート3
の上面四隅のボスト9のうちの】木とチャンネルファス
ナー(図示せず)によりネジ固定されている。また、上
記燃料棒1とつオータロラド2Bとは、燃料集合体20
の軸方向に数段設けられたスペーサ5により互いの間隔
が保持されるようになっている。
Note that this channel box 6 is connected to the upper tie plate 3.
One of the posts 9 at the four corners of the top surface is fixed with screws to wood and channel fasteners (not shown). In addition, the fuel rod 1 and the autorod 2B are the fuel assembly 20.
The mutual spacing is maintained by spacers 5 provided in several stages in the axial direction.

このように構成された燃料集合体20において、下部タ
イブレート4の開口部より流入した冷却水は、下部タイ
ブレート4のリーク孔4a及び下部タイブレート4〜チ
ヤンネルボツクス6間の隙間からリークした分を除き、
燃料集合体20を下部から上部へ流れ、核反応で発生し
た熱を除去すると共に中性子減速材としての作用をも果
たす。
In the fuel assembly 20 configured in this manner, the cooling water that has flowed in through the opening of the lower tie plate 4 is reduced except for the amount that leaks from the leak hole 4a of the lower tie plate 4 and the gap between the lower tie plate 4 and the channel box 6.
It flows from the bottom to the top of the fuel assembly 20 to remove heat generated by the nuclear reaction and also acts as a neutron moderator.

ここで冷却水の流路として上記つオータロラド2Bが併
用されているのは以下の理由による。
The reason why the above-mentioned Autororad 2B is used together as the cooling water flow path is as follows.

燃料集合体20内の水平方向の出力分布は一様ではない
。即ち、大量の未沸騰冷却水が存在する集合体周辺部で
は、中性子減速効果が大きい(熱中性子束が大きい)の
で出力が大きくなり、逆に沸騰で液相の冷却水が少ない
集合体中央部では出力が低くなる傾向がある。そこで上
記ウォータロッF2Bを中央部に配置し、貫流する冷却
水で中性子減速効果を高めると共に、中央部の燃料棒1
の濃縮度を高くして水平方向出力分布が一様になるよう
図られている。
The horizontal power distribution within the fuel assembly 20 is not uniform. In other words, in the periphery of the aggregate where there is a large amount of unboiled cooling water, the neutron moderating effect is large (the thermal neutron flux is large), so the output increases, whereas in the central area of the aggregate where there is less boiling and liquid cooling water. output tends to be low. Therefore, the above-mentioned water rod F2B is placed in the center, and the cooling water flowing through it increases the neutron moderation effect, and the fuel rods in the center
The horizontal power distribution is made uniform by increasing the concentration of the power.

〈水管貫流量〉 次に水管内を貫流する冷却水の流量(貫流量)について
述べるが、以下の説明では水管として第2図中の符号2
Bで示される如きつオータロラドに代表させて説明する
<Water pipe flow rate> Next, the flow rate (flow rate) of cooling water flowing through the water pipes will be described.
The explanation will be made using the example shown in B as an example of an autarorad.

ウォータロッド内を貫流する冷却水は、出口に至るまで
未沸騰状態にあることが望ましく、貫流中の核反応熱、
つオータロラドの発熱、及びつオータロラド外面からの
伝熱等によるエンタルピー上昇を考慮して十分な流量を
確保する必要がある。ここでつオータロラド貫流量を定
めるに際して想定すべき原子炉運転条件としては、通常
は定格運転(100%出力、100%流量)状態が選ば
れている。
It is desirable that the cooling water flowing through the water rod be in an unboiled state until it reaches the outlet, so that the heat of the nuclear reaction flowing through the water rod,
It is necessary to ensure a sufficient flow rate, taking into consideration the increase in enthalpy due to the heat generation of the autororad and the heat transfer from the outer surface of the autororad. Here, the rated operating condition (100% output, 100% flow rate) is usually selected as the reactor operating condition to be assumed when determining the autororad flow rate.

また、つオータロラド貫流量は、以下に記載するつオー
タロラド貫流入出日間の圧力損失により定められる。
Further, the amount of water flowing through the two-wheeled roller is determined by the pressure loss during the inflow and outflow days of the two-wheeled roller, which will be described below.

つオータロラド外側の貫流入出日間の圧力損失△P、は
、 (1−1)スペーサの局所圧損△PEL(1−2)燃料
棒、つオータロラド外面及びチャンネルボックス内面の
摩擦圧損△pcr (1−3)液相より蒸気相への体積増加による加速圧損
△Pい (1−4)  ウォータロッド外側で貫流入出日間の静
水頭△P0.。
The pressure loss △P during the inflow and outflow on the outside of the outer roller is: (1-1) Local pressure drop △PEL of the spacer (1-2) Friction pressure loss △pcr of the fuel rod, the outer surface of the outer roller, and the inner surface of the channel box (1-3 ) Accelerated pressure loss △P due to volume increase from liquid phase to vapor phase (1-4) Hydrostatic head during inflow and outflow outside the water rod △P0. .

の和てあり、 △PE=△PEL+△Po、+△PEA+△PEI((
I) となる。
There is a sum of △PE=△PEL+△Po, +△PEA+△PEI ((
I) becomes.

方、ウォータロッド内側で貫流入出日間の圧力損失△P
I は、 (2−1)出入口における局所圧損△PIL(2−2)
  ウォータロッド内面における摩擦圧損△ PIF (2−3)貫流入出日間の静水頭△PIH(2−4)貫
流入出日間の冷却水体積変化による加速圧損△PIA の和であり、 △PI=△PIL+△PIF+△PIH+△PIA(I
I ) となり、 (I)式と(II )との間には、△PE=
△PI の関係が成立する。
On the other hand, pressure loss △P during inflow and outflow inside the water rod
I is (2-1) Local pressure loss △PIL at the entrance/exit (2-2)
Frictional pressure loss on the inner surface of the water rod △ PIF (2-3) Hydrostatic head during inflow and outflow days △PIH (2-4) Accelerated pressure loss due to cooling water volume change during inflow and outflow days △PIA Sum of △PI = △PIL + △ PIF+△PIH+△PIA(I
I), and between formula (I) and (II), △PE=
The relationship △PI holds true.

[発明が解決しようとする課題] 近年、全発電に対する原子力発電の占有率の増加に伴な
い、原子力発電所の運転を昼夜の電力需要に合せた日負
荷追従運転へ変更する必要か生じつつある。
[Problem to be solved by the invention] In recent years, as the share of nuclear power generation in total power generation has increased, it has become necessary to change the operation of nuclear power plants to daily load following operation that matches the day and night power demand. .

BWRの日負荷追従運転としては、一般に炉心の再循環
流量を変化(中性子減速材を兼ねる冷却水の密度を変化
)させて出力を制御する再循環流量制御が採用されてい
る。この再循環流量制御による日負荷追従運転の一例と
して、高出力レベル95%、低出力レベル70%で高出
力保持時間14時間、低出力保持時間8時間、出力上昇
・降下各1時間(いわゆる1 4h−1h−8h−1h
方式)を繰り返し実施した場合の原子炉出力と流量の関
係を第3図に示す。この場合、流量60%のとき出力は
70%となる。
For the daily load follow-up operation of a BWR, recirculation flow rate control is generally adopted in which output is controlled by changing the core recirculation flow rate (by changing the density of cooling water that also serves as a neutron moderator). As an example of daily load following operation using this recirculation flow rate control, at a high output level of 95% and a low output level of 70%, the high output retention time is 14 hours, the low output retention time is 8 hours, and the output rises and falls for 1 hour each (so-called 1 hour). 4h-1h-8h-1h
Figure 3 shows the relationship between reactor output and flow rate when the method (method) is repeatedly implemented. In this case, when the flow rate is 60%, the output is 70%.

このような低流量・低出力運転では、上述のつオータロ
ラド外側の圧力損失△P、が小さくなり、つオータロラ
ド内が非沸騰水で満たされている場合の静水頭(この静
水頭を以下、「設計静水頭」と称す)よりも小さくなる
場合がある。この場合、つオータロラドを貫流する冷却
水流量は著しく少なくなり、つオータロラド出入口にお
ける局所圧損△P、い摩擦圧損△PIFはほぼ0となり
、加速圧損△PIAも小さく、静水頭△P、□が大部分
となる。即ち、ウォータロッド形状や冷却水出入口の局
所圧損特性をいくら調整しても効果はなく、静水頭のみ
でウォータロッド外側の圧損と釣り合うことになる。こ
のつオータロラド外側の圧損△P、が設計静水頭より小
さいということは、つオータロラド上部に蒸気部(ボイ
ド空間)が発生することを意味する。このような状態で
燃焼が続くと、「クォータロット内部が常に非沸騰水で
満たされること」を仮定して設計された燃料集合体の濃
縮度分布、可燃性毒物(典型的にはガドリニア)分布の
燃焼による変化が設計値から外れ、設計計算の信頼性を
低下させてしまう。最悪の場合には、予測計算されたも
のとは異なる出力分布が生じ、燃料棒の焼損・破損の恐
れがある。
In such a low flow rate/low power operation, the above-mentioned pressure loss △P on the outside of the overlord becomes small, and the hydrostatic head when the inside of the overlord is filled with non-boiling water (this hydrostatic head is hereinafter referred to as " (referred to as "design static head"). In this case, the flow rate of cooling water flowing through the two-way roller is significantly reduced, the local pressure loss △P and frictional pressure loss △PIF at the two-way roller inlet and outlet become almost 0, the acceleration pressure drop △PIA is also small, and the static head △P and □ are large. become a part. That is, no matter how much you adjust the water rod shape or the local pressure drop characteristics of the cooling water inlet/outlet, it will have no effect, and the pressure loss outside the water rod will be balanced only by the hydrostatic head. The fact that the pressure drop ΔP on the outside of the overlord is smaller than the design hydrostatic head means that a steam section (void space) is generated above the overlord. If combustion continues under these conditions, the enrichment distribution and burnable poison (typically gadolinia) distribution of the fuel assembly, which is designed on the assumption that the quarterlot will always be filled with non-boiling water, will change. Changes due to combustion of fuel deviate from the design values, reducing the reliability of design calculations. In the worst case, a power distribution different from that predicted and calculated may occur, leading to the risk of burnout or damage to the fuel rods.

この傾向は、燃料の高燃焼度化を狙ってつオータロラド
を大口径化する(若しくは大型角管つオタチャンネルの
採用)に従って大きくなってしまう。
This tendency increases as the diameter of the two-way rotor is increased (or a large square tube or channel is adopted) with the aim of increasing the burn-up of the fuel.

ここで1107jKWe級BWRにおけるボイド発生の
例として、定格出力−流量曲線上で流量を下げた場合の
炉心出力と、炉心周辺と内側に位置する燃料集合体のウ
ォータロット内の燃料有効長に占めるボイド空間の割合
を第4図に示す。炉心周辺に位置する燃料燃料集合体で
は、流量か燃料サポートに取り付けられたオリフィスに
よって炉心内側に位置する燃料よりも絞られ、結果とし
てつオータロラド外側の圧損が小さくなり、つオータロ
ラド内でボイド発生が生ずる。
Here, as an example of void generation in a 1107jKWe class BWR, we will explain the core output when the flow rate is lowered on the rated power-flow rate curve, and the voids that occupy the effective fuel length in the waterlot of the fuel assembly located around and inside the core. Figure 4 shows the proportions of the space. The fuel assemblies located around the reactor core are more restricted than the fuel located inside the core due to the flow rate or orifices attached to the fuel support, resulting in a smaller pressure drop outside the reactor and the generation of voids within the reactor. arise.

本発明は上記従来技術の有する問題点に鑑みてなされた
ものであり、その目的とするところは、低流量・低出力
運転下においても、(iA縮度分布や可燃性毒物分布の
燃焼による変化、出力分布等の設計計算の信頼性が損な
われることのないBWR用燃料集合体を提供することに
ある。
The present invention has been made in view of the above-mentioned problems of the prior art, and its purpose is to prevent changes in iA contraction degree distribution and burnable poison distribution due to combustion even under low flow rate and low power operation. It is an object of the present invention to provide a fuel assembly for a BWR in which the reliability of design calculations such as power distribution is not impaired.

[課題を解決するための手段] 本発明のBWR用燃料集合体は、正方格子配列の複数の
燃料棒のうち前記配列のほぼ中央部の燃料棒複数本を一
本または複数本の水管(例えばつオータロット、または
つオータチャンネル)に置換えてなる燃料集合体におい
て、前記燃料集合体の燃料有効長の上部に相当する前記
水管内部に固体減速材を配置したことにより上記目的を
達成したものである。
[Means for Solving the Problems] The BWR fuel assembly of the present invention has a plurality of fuel rods arranged in a square lattice arrangement, in which a plurality of fuel rods located approximately at the center of the arrangement are connected to one or more water pipes (e.g. The above objective is achieved by arranging a solid moderator inside the water tube corresponding to the upper part of the effective fuel length of the fuel assembly in a fuel assembly that is replaced with a 2-autolot or 2-autachannel. be.

この場合、前記固体減速材の好ましい軸方向長さは、燃
料有効長の約15%である。
In this case, the preferred axial length of the solid moderator is about 15% of the effective fuel length.

また、前記固体減速材に上下に貫通する孔を設け、この
貫通孔と前記水管の上下部端栓に設けた通孔とで、前記
水管を貫流する流路を形成する構成としても良い。
Alternatively, a configuration may be adopted in which a hole is provided that passes through the solid moderator in the vertical direction, and this through hole and through holes provided in the upper and lower end plugs of the water tube form a flow path that flows through the water tube.

更に、前記固体減速材は、好ましくは水素化ジルコニウ
ム(ZrH2)である。
Furthermore, the solid moderator is preferably zirconium hydride (ZrH2).

尚、前記固体減速材は前記水管内に直接に配置する構成
に限らず、この固体減速材を収納した環状容器を介して
前記水管内に配置する構成としても良い。
Note that the solid moderator is not limited to being directly disposed within the water pipe, but may be disposed within the water pipe via an annular container containing the solid moderator.

[作用コ 上述した通り水管の外側の圧損△PEが設計静水頭より
小さいと、水管上部の蒸気部の発生は避けられない。
[Operations] As mentioned above, if the pressure drop ΔPE outside the water pipe is smaller than the design hydrostatic head, the generation of steam in the upper part of the water pipe is unavoidable.

そこで本発明では、水管内部の蒸気部の発生位置に相当
する箇所に固体の減速材を配置させる。つまり水管内部
の従来の蒸気部の発生位置に相当する箇所は、本発明で
は固体減速材で占められることになり、蒸気部の存在を
許さない。
Therefore, in the present invention, a solid moderator is disposed at a location corresponding to the location of the steam generation inside the water pipe. In other words, in the present invention, the position corresponding to the generation position of the conventional steam part inside the water pipe is occupied by the solid moderator, and the presence of the steam part is not allowed.

この固体減速材が内部に設けられた水管の軸方向セグメ
ントでは、水管内部の存在物は常に固体減速材の組成で
あり、出力や流量によって変化しないので、設計計算の
信頼性を砥下させることがない。
In the axial segment of the water pipe in which this solid moderator is installed, the composition inside the water pipe is always solid moderator and does not change with output or flow rate, which improves the reliability of design calculations. There is no.

ここで、低流量・低出力運転条件として60%流量、7
0%出力の条件を仮定すると、前述の第4図より炉心周
辺に配置された燃料集合体の水管の燃料有効長に占める
ボイド空間の割合が11%になるので、固体減速材の軸
方向長さは、燃料有効長の約15%に相当する長さとす
れば良い。
Here, the low flow rate and low output operating conditions are 60% flow rate and 7
Assuming the condition of 0% output, as shown in Figure 4 above, the ratio of void space to the effective fuel length of the water tubes of the fuel assembly placed around the core is 11%, so the axial length of the solid moderator The length may be set to a length corresponding to about 15% of the effective length of the fuel.

また、固体減速材を上下に貫通する孔を設け、この貫通
孔と水管の上部端栓に設けた通孔(入日通孔)及び下部
端栓に設けた通孔(出口通孔)から水管を貫流する流路
を形成すると、水管の人出口通孔間距離が大きくなり、
その間の圧力損失が犬きくなるから、水管内の非沸騰水
領域を大きくすることができる。
In addition, a hole is provided that passes through the solid moderator up and down, and the water pipe is connected from this through hole, a through hole provided at the upper end plug of the water pipe (inlet hole), and a through hole provided at the lower end plug (exit hole). By forming a flow path that flows through the water pipe, the distance between the water pipe's exit holes becomes larger.
Since the pressure loss during that time is reduced, the area of non-boiling water in the water pipe can be increased.

尚、固体減速材の材質としては、冷温時及び高温時に安
定で且つ熱中性子の吸収が少なく、減速機能を有してい
る水素化ジルコニウムが適している。
As a material for the solid moderator, zirconium hydride is suitable because it is stable at low and high temperatures, absorbs few thermal neutrons, and has a moderating function.

更に、粉末状の固体減速材を用いる場合、固体減速材を
環状収納容器を介して水管内に配置する構成とすると、
固体減速材の流出等を防止できる。
Furthermore, when using a powdered solid moderator, if the solid moderator is arranged in a water pipe via an annular storage container,
It is possible to prevent solid moderator from flowing out.

本発明の特徴と利点を一層明確にするために、好ましい
実施例について添付図面とともに説明すれば以下の通り
である。
In order to further clarify the features and advantages of the present invention, preferred embodiments will be described below with reference to the accompanying drawings.

[実施例] 第1図に本発明の一実施例を示す。ここでは、水管とし
て3×3型つオータチャンネルを採用した高燃焼度用9
×9型燃料集合体に本発明を適用した例を示す。
[Example] FIG. 1 shows an example of the present invention. Here, a high burnup 9
An example in which the present invention is applied to a ×9 type fuel assembly will be shown.

第1図(イ)において、全体を符号10で示される燃料
集合体の基本的な構成は、つオータチャンネル2Aを除
いては前述の従来燃料と同じである。また、内部構造が
明らかとなるように燃料棒1の大部分は図示を省略しで
ある。
In FIG. 1(A), the basic structure of the fuel assembly, generally designated by the reference numeral 10, is the same as that of the conventional fuel assembly described above, except for the over-channel 2A. Further, most of the fuel rod 1 is omitted from illustration so that the internal structure is clear.

以下、本発明の特徴的なつオータチャンネル2Aの構成
について第1図(ロ)を参照して説明する。
The configuration of the automatic channel 2A, which is characteristic of the present invention, will be described below with reference to FIG. 1(b).

ウォータチャンネル2A内の燃料有効長の上部に相当す
る領域には、固体減速材(水素化ジルコニウム)2fを
収納したキャプセル(収納容器)2gが固定されている
。この固体減速材2f乃至キャプセル2gの軸方向長さ
は、燃料有効長の約15%に相当する。
A capsule (container) 2g containing a solid moderator (zirconium hydride) 2f is fixed in a region corresponding to the upper part of the effective fuel length in the water channel 2A. The axial length of the solid moderator 2f to capsule 2g corresponds to about 15% of the effective fuel length.

一般に固体減速材は、水(冷却水)に比べると減速特性
で劣り、更に廃棄物量も増える。従ってその軸方向長さ
は短い方が好ましい。本実施例では、第4図に示した日
負荷追従運転の60%流量、70%出力の条件下におい
て、炉心周辺に配置された燃料集合体10のつイータチ
ャンネル2A内の燃料有効長に占めるボイド空間の割合
が11%となることを考慮している。
In general, solid moderators have inferior moderating properties compared to water (cooling water), and also increase the amount of waste. Therefore, the shorter the length in the axial direction, the better. In this example, under the conditions of 60% flow rate and 70% output in the daily load follow-up operation shown in FIG. It is taken into consideration that the ratio of void space is 11%.

一方、キャプセル2gの側周形状はウォータチャンネル
2Aの内縁形状に合致させてあり、両者の間に余計な空
間が生じないようにしである。
On the other hand, the shape of the side circumference of the capsule 2g is made to match the shape of the inner edge of the water channel 2A, so that no unnecessary space is created between the two.

上記のように構成された燃料集合体10では、つイータ
チャンネル2A内の固体減速材収納キャプセル2gより
も下側の空間は、例えば上記60%流量、70%出力条
件下でも必ず非沸騰水で満たされているので、設計時に
仮定された燃焼状態と合致し、設計計算の信頼性を損な
うことはない。
In the fuel assembly 10 configured as described above, the space below the solid moderator storage capsule 2g in the feeder channel 2A is always filled with non-boiling water even under the above-mentioned 60% flow rate and 70% output conditions, for example. Since the conditions are satisfied, the combustion conditions are consistent with those assumed at the time of design, and the reliability of design calculations is not compromised.

また、図示の例では、キャプセル2gを貫いて貫通孔2
hが設けられており、この貫通孔2hを貫流した冷却水
が上部端栓2dに設けた出口通孔2bからウォータチャ
ンネル2A外へ流出するようにしである。これは前述し
たように、クォータチャンネル人出口通孔2a−2b間
の圧力損失を大きくし、つイータチャンネル2A内の非
沸騰水領域を大きくするためである。この構成を採る場
合でも、低流量・低出力条件下で貫通孔2hの部分がボ
イド空間になってしまうが、そのボイド空間の大きさは
小さいため、設計時に仮定された燃焼状態と大きく離れ
ることはない。従って、設計計算の信頼性を大きく損な
う恐れはない。
In addition, in the illustrated example, the through hole 2 extends through the capsule 2g.
h, and the cooling water that has flowed through the through hole 2h flows out of the water channel 2A from the outlet hole 2b provided in the upper end plug 2d. As described above, this is to increase the pressure loss between the quarter channel person outlet passages 2a and 2b and to increase the non-boiling water area within the quarter channel 2A. Even if this configuration is adopted, the through hole 2h will become a void space under low flow rate and low output conditions, but since the size of the void space is small, the combustion state may differ greatly from the one assumed at the time of design. There isn't. Therefore, there is no risk of significantly impairing the reliability of design calculations.

尚、上記実施例では水管としてクォータチャンネル2A
を採用した例を示したが、ウォータロッドを採用した構
成としてもよい。また、固体減速材2fは、キャプセル
2gに収めることなく、適宜に固形成形して直接に水管
内に配置する構成としてもよい。
In the above embodiment, quarter channel 2A is used as the water pipe.
Although an example is shown in which a water rod is used, a configuration using a water rod may also be used. Furthermore, the solid moderator 2f may be suitably solid-molded and placed directly in the water pipe, without being housed in the capsule 2g.

[発明の効果コ 以上説明したように本発明のBWR用燃料集合体によれ
ば、水管内の燃料有効長の上部に相当する部分に固体減
速材を配置することにより、この部分のボイド空間の発
生が防止され、固体減速材より下側の水管内空間が常に
非沸騰水で満たされる。従って例えば日負荷追従運転に
おける低出力保持時の如き低出力・低流量運転下におい
ても、設計時に仮定した燃焼状態が保たれ、設計計算の
信頼性が損なわれることがない。
[Effects of the Invention] As explained above, according to the BWR fuel assembly of the present invention, by arranging the solid moderator in the part corresponding to the upper part of the effective fuel length in the water pipe, the void space in this part can be reduced. This prevents the generation of water, and the space within the water pipe below the solid moderator is always filled with non-boiling water. Therefore, even under low output and low flow rate operation, such as when low output is maintained during daily load follow-up operation, the combustion state assumed at the time of design is maintained, and the reliability of design calculations is not impaired.

ここで、固体減速材の軸方向長さを燃料有効長の約15
%とすると、通常想定される日負荷追従運転の最低流量
においても水管内ボイド発生を完全に防ぐことができる
Here, the axial length of the solid moderator is approximately 15% of the effective fuel length.
%, it is possible to completely prevent the occurrence of voids in water pipes even at the lowest flow rate of daily load follow-up operation that is normally assumed.

また、固体減速材に設けた貫通孔と水管の人口出口通孔
とから水管を貫流する流路を形成する構成を採ると、水
管内の非沸騰水領域を大きくすることができる。
Furthermore, if a configuration is adopted in which a flow path is formed through the water pipe from a through hole provided in the solid moderator and an artificial outlet hole of the water pipe, the non-boiling water region within the water pipe can be enlarged.

更に、粉末状固体減速材を収納容器に収めて水管内に配
置する構成を採りてもよい。
Furthermore, a configuration may be adopted in which the powdered solid moderator is housed in a storage container and disposed within the water pipe.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)は本発明の一実施例に係るBWR用燃料集
合体の内部構造を示す斜視図、第1図(ロ)は前回にお
けるウォータチャンネルの内部構造を示す縦断面図、第
2図(イ)、(ロ)。 (ハ)はそれぞれ従来の燃料棒、つオータロツド、BW
R用燃料集合体の内部構造を示す縦断面図、第3図は日
負荷追従運転時の炉出力と炉心流量の関係を示す線図、
第4図は定格出力−流量曲線上でのつオータロラド・内
における燃料有効長相当空間のボイド割合を示す線図で
ある。 [主要部の符号の説明] 1・・・・・・・燃料棒、2A・・・・・・ウォータチ
ャンネル、2a・・・・・・・ウォータチャンネル入口
通孔、 ウォータチャンネル出口通孔、 ・・・・・・固体減速材、 キャプセ ル、 貫通孔 尚、 各図中、 同一符号は同一または相当部を示 す。
FIG. 1(a) is a perspective view showing the internal structure of a fuel assembly for BWR according to an embodiment of the present invention, FIG. Figures (a) and (b). (c) are conventional fuel rods, two-way rods, and BW, respectively.
A vertical cross-sectional view showing the internal structure of the R fuel assembly, Figure 3 is a diagram showing the relationship between reactor output and core flow rate during daily load follow-up operation,
FIG. 4 is a diagram showing the void ratio of the space corresponding to the effective length of the fuel in the autororad on the rated output-flow rate curve. [Explanation of symbols of main parts] 1...Fuel rod, 2A...Water channel, 2a...Water channel inlet hole, Water channel outlet hole, ・...Solid moderator, capsule, through hole In each figure, the same reference numerals indicate the same or equivalent parts.

Claims (5)

【特許請求の範囲】[Claims] (1)正方格子配列の複数の燃料棒のうち前記配列のほ
ぼ中央部の燃料棒複数本を一本または複数本の水管に置
換えてなる燃料集合体において、前記燃料集合体の燃料
有効長の上部に相当する前記水管内部に固体減速材を配
置したことを特徴とする沸騰水型原子炉用燃料集合体。
(1) In a fuel assembly in which a plurality of fuel rods in a square lattice arrangement, a plurality of fuel rods located approximately in the center of the arrangement are replaced with one or more water pipes, the effective fuel length of the fuel assembly is A fuel assembly for a boiling water reactor, characterized in that a solid moderator is disposed inside the water tube corresponding to the upper part.
(2)前記固体減速材の軸方向長さが、燃料有効長の約
15%であることを特徴とする請求項1に記載の沸騰水
型原子炉用燃料集合体。
(2) The fuel assembly for a boiling water reactor according to claim 1, wherein the axial length of the solid moderator is about 15% of the effective length of the fuel.
(3)前記固体減速材に上下に貫通する孔を設け、この
貫通孔と前記水管の上下部端栓に設けた通孔とで、前記
水管を貫流する流路を形成したことを特徴とする請求項
1または2の何れかに記載の沸騰水型原子炉用燃料集合
体。
(3) A hole is provided in the solid moderator that penetrates vertically, and this through hole and a through hole provided in the upper and lower end plugs of the water pipe form a flow path that flows through the water pipe. The fuel assembly for a boiling water nuclear reactor according to claim 1 or 2.
(4)前記固体減速材が水素化ジルコニウムであること
を特徴とする請求項1乃至3の何れかに記載の沸騰水型
原子炉用燃料集合体。
(4) The fuel assembly for a boiling water reactor according to any one of claims 1 to 3, wherein the solid moderator is zirconium hydride.
(5)前記固体減速材が、この固体減速材を収納した環
状容器を介して前記水管内に配置されていることを特徴
とする請求項1乃至4の何れかに記載の沸騰水型原子炉
用燃料集合体。
(5) The boiling water nuclear reactor according to any one of claims 1 to 4, wherein the solid moderator is disposed within the water pipe via an annular container containing the solid moderator. Fuel assembly for use.
JP1136186A 1989-05-31 1989-05-31 Fuel assembly for boiling water reactor Pending JPH032691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1136186A JPH032691A (en) 1989-05-31 1989-05-31 Fuel assembly for boiling water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1136186A JPH032691A (en) 1989-05-31 1989-05-31 Fuel assembly for boiling water reactor

Publications (1)

Publication Number Publication Date
JPH032691A true JPH032691A (en) 1991-01-09

Family

ID=15169358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1136186A Pending JPH032691A (en) 1989-05-31 1989-05-31 Fuel assembly for boiling water reactor

Country Status (1)

Country Link
JP (1) JPH032691A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106531232A (en) * 2016-12-29 2017-03-22 中科瑞华原子能源技术有限公司 Fuel assembly available for integral replacement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106531232A (en) * 2016-12-29 2017-03-22 中科瑞华原子能源技术有限公司 Fuel assembly available for integral replacement

Similar Documents

Publication Publication Date Title
US6512805B1 (en) Light water reactor core and fuel assembly
US20040052326A1 (en) Nuclear fuel assembly for a reactor cooled by light water comprising a nuclear fuel material in particle form
US5388132A (en) Nuclear fuel assembly and core
JPS61278788A (en) Fuel assembly
US10020079B2 (en) Core of light water reactor and fuel assembly
JP3531011B2 (en) Fuel assemblies and reactors
JPH0816710B2 (en) Fuel bundle with extended fuel height in a boiling water reactor
JPH07101237B2 (en) Fuel assembly and nuclear reactor
US3475272A (en) Gas-cooled fast reactor
US3079321A (en) Sodium deuterium reactor
JPH07306285A (en) Reactor core of nuclear reactor
JPS58135989A (en) Fuel assembly for bwr type reactor
JP3283902B2 (en) Fuel assemblies and burnable poison sticks
JP2856728B2 (en) Fuel assembly
JP3160341B2 (en) Fuel assembly
JPH032691A (en) Fuel assembly for boiling water reactor
JP2003139881A (en) Reactor cooled with supercritical pressure water, channel box, water rod and fuel assembly
WO2017149864A1 (en) Fuel assembly and reactor core loaded with same
JP3958545B2 (en) Fuel assembly
US3703437A (en) Means for supporting fissile material in a nuclear reactor
RU2242810C2 (en) Fuel assembly for water-moderated water-cooled reactor
JP2006194588A (en) Atomic nuclear fuel assembly for short half-life nuclide combustion
JP2519686B2 (en) Fuel assembly
JPH0660948B2 (en) Fuel assembly
JPH0816711B2 (en) Fuel assembly