JPH03268740A - Processing method for electrocardiogram waveform - Google Patents

Processing method for electrocardiogram waveform

Info

Publication number
JPH03268740A
JPH03268740A JP2069992A JP6999290A JPH03268740A JP H03268740 A JPH03268740 A JP H03268740A JP 2069992 A JP2069992 A JP 2069992A JP 6999290 A JP6999290 A JP 6999290A JP H03268740 A JPH03268740 A JP H03268740A
Authority
JP
Japan
Prior art keywords
waveform
electrocardiogram
electrocardiographic
waveforms
similarity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2069992A
Other languages
Japanese (ja)
Inventor
Hirokazu Kimura
木村 宏和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2069992A priority Critical patent/JPH03268740A/en
Priority to US07/666,021 priority patent/US5251076A/en
Publication of JPH03268740A publication Critical patent/JPH03268740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Medical Treatment And Welfare Office Work (AREA)

Abstract

PURPOSE:To classify the form of an electrocardiogram waveform by an accurate reference and to improve the accuracy of the classification by classifying a waveform of an electrocardiogram, based on a multi-dimensional vector of N dimensions. CONSTITUTION:A tape cassette 1 in which an electrocardiogram is recorded magnetically by a digital modulating signal is loaded to a data reproducing device 2 and reproduced. In the data reproducing device 2, a DSP is provided, and from the reproduced digital modulating signal, an original digital signal is demodulated, and thereafter, signal processings such as filtering, error connection, de-interleave, etc., are performed. This digital data is supplied to an analysis computer 3, and the form of an electrocardiogram waveform is classified by a similarity SI. The similarity is calculated, based on an expression 1. In said expression, (xi) denotes a value at the time of sampling a QRS waveform QRS of one electrocardiogram waveform in the electrocardiogram waveform which is decided to be form abnormality and registered at every 500ms. Also, (yi) denotes a value at the time of sampling the QRS waveform QRS detected as form abnormality newly at every 500ms, and N denotes the number of sampling points.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、心電波形の処理方法、特に心電波形の自動
的な形態分類に好適な心電波形の処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrocardiographic waveform processing method, and particularly to an electrocardiographic waveform processing method suitable for automatic morphological classification of electrocardiographic waveforms.

[従来の技術] 心電波形を採取し解析する技術の一つとして、ホルタ−
心電図法がある。
[Conventional technology] As one of the techniques for collecting and analyzing electrocardiogram waveforms, Holter
There is an electrocardiogram method.

このホルタ−心電図法は、ポータプルレコーダ(テープ
レコーダ)を用い、24時間以上の長時間にわたって日
常生活に於ける心電波形を記録し、得られた心電波形を
解析システムによって自動的に解析する方法である。
This Holter electrocardiography method uses a portable recorder (tape recorder) to record electrocardiogram waveforms in daily life over a long period of 24 hours or more, and automatically analyzes the obtained electrocardiogram waveforms using an analysis system. It's a method.

この心電波形の解析項目の一つに不整脈の検出・判定が
ある。この不整脈の診断では、心拍のリズム異常と共に
、心電波形の形態異常が観察される。
One of the analysis items of this electrocardiogram waveform is the detection and determination of arrhythmia. In diagnosing this arrhythmia, not only abnormal heart rhythm but also morphological abnormalities in electrocardiographic waveforms are observed.

〔発明の概要〕[Summary of the invention]

この発明は、心電波形の処理方法に於いて、心電図の波
形を、N次元の多次元ベクトルに基づいてクラス分けす
ることにより、明確な基準によって心電波形の形態分類
を行え、分類の精度を向上させることができるようにし
たものである。
In an electrocardiogram waveform processing method, this invention classifies electrocardiogram waveforms based on N-dimensional multidimensional vectors, thereby making it possible to perform morphological classification of electrocardiogram waveforms based on clear criteria, thereby improving the accuracy of classification. It is designed to improve the

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述の心電波形の形態異常は、正常な心電波形との比較
によって判断され、形態分類される。そして、分類され
た形態側の心電波形と、各形態毎の心電波形の出現頻度
が、上述の心拍のリズム異常と共に、医学的診断のため
の資料とされるものであるが、心電波形の形態分類方法
としては、未だ確立された基準がないという問題点があ
った。
The above-mentioned morphological abnormality of the electrocardiographic waveform is determined by comparison with a normal electrocardiographic waveform, and is classified into morphology. The electrocardiographic waveforms of the classified forms and the frequency of appearance of the electrocardiographic waveforms for each form, along with the above-mentioned heart rhythm abnormalities, are used as materials for medical diagnosis. As a method for classifying shapes, there is a problem in that there are still no established standards.

ところで、特開昭57−96638号公報には、心電波
形の発汁周期にローレンツプロットと称される分析手法
を適用して心電波形を定置的に分析する技術が提案され
ている。しかしながら、上述の従来技術では、主に心電
波形の発生周期に着目して各種分析がなされているもの
で、心電波形の形態分類については開示されていない。
By the way, Japanese Unexamined Patent Publication No. 57-96638 proposes a technique for stationary analysis of an electrocardiographic waveform by applying an analysis method called a Lorentz plot to the ejaculation cycle of the electrocardiographic waveform. However, in the above-mentioned conventional techniques, various analyzes are performed mainly focusing on the generation cycle of electrocardiographic waveforms, and the morphological classification of electrocardiographic waveforms is not disclosed.

従って、この発明の目的は、明確な基準によって心電波
形の形態分類を行い得る心電波形の処理方法を提供する
ことにある。
Therefore, an object of the present invention is to provide a method for processing electrocardiographic waveforms that can perform morphological classification of electrocardiographic waveforms based on clear criteria.

〔課題を解決するだめの手段〕[Failure to solve the problem]

Jの発明は、心電図の波形を、N次元の多次元ベクトル
M1ついてクラス分けする構成としている。
J's invention has a configuration in which electrocardiogram waveforms are classified into classes based on N-dimensional multidimensional vectors M1.

〔作用〕[Effect]

時系列的に得られる心電波形の間で、類似度計算がなさ
れ、求められた類似度によってクラス分けがなされる。
Similarity is calculated between electrocardiographic waveforms obtained in time series, and classification is performed based on the calculated similarity.

類似度とい・う明確な基準によって波形の形態分類を行
え、これによって波形分類の精度が向上する。
Waveform morphology can be classified based on a clear criterion called similarity, which improves the accuracy of waveform classification.

そして、異常と判断された心電波形の形態と、各心電波
形の形態毎の出現傾度とを求めることができ、医学的診
断に有益な情報を提供できる。
Then, it is possible to determine the forms of electrocardiographic waveforms that are determined to be abnormal and the appearance gradient of each form of electrocardiographic waveforms, thereby providing information useful for medical diagnosis.

〔実施例〕〔Example〕

以下、この発明の−・実施例について第1図乃至第6図
を参照して説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 6.

第1図には、この発明が適用される心電図波形の自動解
析装置の要部のブロック図を示す。
FIG. 1 shows a block diagram of the main parts of an automatic electrocardiogram waveform analysis device to which the present invention is applied.

心電波形がデジタル変調信号で磁気記録されている超小
型のテープカセット1を、データ再生装置2に装填する
と、図示せぬ磁気テープに記録されている心電波形のデ
ジタル変調信号が磁気ヘッドによって再生される。
When an ultra-small tape cassette 1 in which an electrocardiogram waveform is magnetically recorded as a digital modulation signal is loaded into the data reproducing device 2, the digital modulation signal of the electrocardiogram waveform recorded on the magnetic tape (not shown) is read by the magnetic head. will be played.

そして、このデータ再生装置2にはDSPが設けられて
おり、このDSPでは、再生されたデジタル変調信号か
ら原デジタル信号を復調した後、この原デジタル信号に
対して、フィルタリング、。
The data reproducing device 2 is provided with a DSP, and after demodulating the original digital signal from the reproduced digital modulation signal, the DSP performs filtering on the original digital signal.

エラー訂正、デインターリーブ等の信号処理が施される
Signal processing such as error correction and deinterleaving is performed.

これによって、心電波形のデジタルデータが再生され、
このデジタルデータが解析用のコンピュータ3に供給さ
れる。
This reproduces the digital data of the electrocardiogram waveform,
This digital data is supplied to the computer 3 for analysis.

解析用のコンピュータ3では、第2図に示されるフロー
チャートに基づいて、心電波形の形態分類がなされる。
The analysis computer 3 performs morphological classification of the electrocardiogram waveform based on the flowchart shown in FIG.

第2図には、不整脈の心電波形の形態分類に関するフロ
ーチャートが示されている。
FIG. 2 shows a flowchart regarding morphological classification of electrocardiographic waveforms of arrhythmia.

ステップ101では、ノイズ除去がなされる。これは1
、心電波形が長時間にわたって記録されるため、歩行、
横臥等の日常生活に於ける運動に起因するノイズが混入
してしまい、そのままでは自動解析が困難となるからで
ある。次いで、ステップ102に移る。
In step 101, noise removal is performed. This is 1
, since electrocardiogram waveforms are recorded over a long period of time, walking,
This is because noise caused by movements in daily life, such as lying down, is mixed in, making automatic analysis difficult. Next, the process moves to step 102.

ステップi02では、ピーク検出によって、QR8波形
が抽出される。第3図には、P波P、Q波QとR波Rと
S波SとからなるQ RS波形gR5、T波Tからなる
一拍の心電図波形がボされている。
In step i02, the QR8 waveform is extracted by peak detection. In FIG. 3, a QRS waveform gR5 consisting of a P wave P, a Q wave Q, an R wave R, and an S wave S, and a one-beat electrocardiogram waveform consisting of a T wave T are omitted.

ピーク検出によって1、図中、QR8波形波形5が抽出
される。次いで、ステップ103に移る。
By peak detection, waveform 1 and QR8 waveform 5 in the figure are extracted. Next, the process moves to step 103.

ステップ103では、抽出されたQR3波形波形5の特
徴、例えば、幅、高さ等が抽出される。そして、正常な
QR3波形の特徴と比較されることによって、異常の有
無、即ち、不整脈か否かが判断される。もし不整脈と判
断された場合には、ステップ104に進み、不整脈でな
いと判断された場合には、終了する6 ステップ104では、不整脈が、QR3波形QI’iS
の形態異常或いはリズム異常に該当するのか、それとも
リズム異常のみに該当するのかについて判断がなされる
In step 103, characteristics of the extracted QR3 waveform 5, such as width and height, are extracted. By comparing the characteristics with the normal QR3 waveform, it is determined whether there is an abnormality, that is, whether or not it is an arrhythmia. If it is determined that the arrhythmia is an arrhythmia, the process proceeds to step 104; if it is determined that it is not an arrhythmia, the process ends.6 In step 104, the arrhythmia is
A determination is made as to whether this corresponds to a morphological abnormality, a rhythm abnormality, or only a rhythm abnormality.

例えば、第4図に示されるような心電波形が時系列的に
得られたとした場合、波形W1〜W8では、路間−形状
の波形が得られているが1.波形W1〜W8の頂点の周
期TI−T7間には変動が見られるため、リズム異常と
判断される。
For example, when electrocardiographic waveforms as shown in FIG. 4 are obtained in time series, waveforms W1 to W8 have a path-shaped waveform, but 1. Since fluctuations are observed between the cycles TI-T7 of the apexes of the waveforms W1 to W8, it is determined that the rhythm is abnormal.

また、波形W9は、他の波形W1〜・W8と振幅、形状
カ大キく異なっているため、形態異常と判断される。尚
、図示せぬもののリズム異常と形M異常の重複する型も
ある。
Further, since the waveform W9 is significantly different in amplitude and shape from the other waveforms W1 to W8, it is determined that the waveform W9 has a morphological abnormality. Note that there is also a type (not shown) in which the rhythm abnormality and the M-type abnormality overlap.

リズム異常のみの場合に、ステップ105に移って、リ
ズム異常の解析がなされる。このリズム異常の解析は、
第4図に示される波形W1〜W8のように、QR3波形
QRSのR波Rの頂点の周期に異常があるか否か、また
、もし異常があった場合にR波Rの頂点の周期の異常の
程度が求められて終了する。
If there is only a rhythm abnormality, the process moves to step 105 and the rhythm abnormality is analyzed. Analysis of this rhythm abnormality is
As shown in waveforms W1 to W8 shown in FIG. The degree of abnormality is determined and the process ends.

また、他の2つの場合、即ち、形M異常の場合、或いは
、形態異常とリズム異常が重複している場合にはステッ
プ106に移る。尚、この場合のリズム異常については
、無視される。
Further, in the other two cases, that is, in the case of a shape M abnormality, or in the case that a shape abnormality and a rhythm abnormality overlap, the process moves to step 106. Note that the rhythm abnormality in this case is ignored.

ステップ106では、時系列的に得られる心電波形間で
類似度計算がなされる。この類似度計算は、以ドの式に
基づいて行なわれ、これによって、類似度Slが求めら
れる。
In step 106, similarity is calculated between electrocardiographic waveforms obtained in time series. This similarity calculation is performed based on the following equation, and thereby the similarity Sl is determined.

Σxi yi −1 上式に於いて、xiは、形態異常と判定され登録された
心電波形の内の一つの心電波形のQR3波形QRSを第
5図に示されるように500m5毎にサンプリングした
時の値であり、Nはサンプリングポイントの数(例えば
、N=]、60)を表している。
Σxi yi −1 In the above equation, xi is the QR3 waveform QRS of one of the registered electrocardiographic waveforms determined to be abnormal in shape, sampled every 500 m5 as shown in Fig. 5. N represents the number of sampling points (for example, N=], 60).

また、yiは、新たに形態異常として検出されたQR3
波形波形5を、第5図に示されるように、500m9毎
にサンプリングした時の値であり、NUサンプリングポ
イントの数(例えば、N=160)を表している。
In addition, yi is QR3 newly detected as a morphological abnormality.
As shown in FIG. 5, this is the value when waveform 5 is sampled every 500 m9, and represents the number of NU sampling points (for example, N=160).

尚、上述の類1g、度計算に際しては、7ノイズ、基線
動揺等の影響を防止するため、心電波形に対し2、平滑
化微分を施している。類似度別を求めた後、ステップ1
07に移る。
In addition, in the above-mentioned class 1g calculation, in order to prevent the effects of noise, baseline fluctuation, etc., smoothing differentiation is applied to the electrocardiogram waveform. After determining the degree of similarity, step 1
Move to 07.

ステップ107でば、類似度Srと所定の基準値(例え
ば、0.9)との大小関係が判断される9即ち、(0,
9≦Sl)ならば、上述の類似度計算によって既に形態
異常として判定され登録されている心電波形のいずれか
と同一と判断され、ステップ108にて、登録されてい
る心電波形の内のいずれかの類似する心電波形に分類さ
れ、分類された心電波形の出現頻度がカウントされる。
In step 107, the magnitude relationship between the similarity Sr and a predetermined reference value (for example, 0.9) is determined.
9≦Sl), the similarity calculation described above determines that the electrocardiogram waveform is the same as one of the registered electrocardiogram waveforms that have already been determined to have a morphological abnormality, and in step 108, one of the registered electrocardiogram waveforms is The electrocardiographic waveforms are classified into similar electrocardiographic waveforms, and the frequency of appearance of the classified electrocardiographic waveforms is counted.

また、(0,9>Sr)ならば、ステップ109にて、
新たな形態異常のQR3波形波形5として新規に登録さ
れる。
Also, if (0,9>Sr), in step 109,
The QR3 waveform of a new morphological abnormality is newly registered as waveform 5.

例えば、第6図に示される心電波形Wllが形態異常と
して登録されているとした場合、次いで、得られた心電
波形W12は、既に登録されている心電波形Wllと形
態的に大きく異なるため、類似度SN<0.9と判定さ
れ、形態異常の心電波形として新規に登録される0次の
心電波形W13は、上述の心電波形W1.1に形態的に
類似しており、心電波形Wllに対し類似度SI≧0.
9と判定されるのに対し、上述の心電波形W12とは形
態的に大きく異なり、心電波形W12に対しては類似度
SI<0.9と判定される。従って、心電波形Wllと
同一形態と判断され、心電波形Wllの出現頻度のカウ
ントアツプがなされる。
For example, if the electrocardiographic waveform Wll shown in FIG. 6 is registered as a morphological abnormality, the obtained electrocardiographic waveform W12 is morphologically significantly different from the already registered electrocardiographic waveform Wll. Therefore, the 0th-order electrocardiographic waveform W13, which is determined to have a degree of similarity SN<0.9 and is newly registered as an abnormal electrocardiographic waveform, is morphologically similar to the electrocardiographic waveform W1.1 described above. , the degree of similarity SI≧0.
9, whereas it is morphologically significantly different from the electrocardiographic waveform W12 described above, and it is determined that the degree of similarity SI<0.9 with respect to the electrocardiographic waveform W12. Therefore, it is determined that it has the same form as the electrocardiographic waveform Wll, and the frequency of appearance of the electrocardiographic waveform Wll is counted up.

このステップ109にて処理が終了する。向、−上述の
処理の過程は全ての心電波形に対して反復される。
The process ends at step 109. - The above-described processing steps are repeated for all electrocardiogram waveforms.

この一実施例では、類似度Slによって心電波形の形態
分類を行なうので、明確な基準によって波形の形態分類
を行え、また、異常と判断されたQR3波形波形5の形
態と、各形態毎の心電波形の出現頻度及び周期を求める
ことができるので、心電波形の分類精度を向上させるこ
とができる。
In this embodiment, the morphology of the electrocardiogram waveform is classified based on the degree of similarity Sl, so that the morphology of the waveform can be classified based on clear criteria. Since the appearance frequency and cycle of electrocardiographic waveforms can be determined, the classification accuracy of electrocardiographic waveforms can be improved.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、心電波形をN次元の多次元ベクトル
に基づいてクラス分けしているので、明確な基準によっ
て心電波形の形態分類を行えるという効果があり、また
、分類の精度を向上させることができるという効果があ
る。
According to this invention, since electrocardiographic waveforms are classified into classes based on N-dimensional multidimensional vectors, it is possible to classify the morphology of electrocardiographic waveforms based on clear criteria, and the accuracy of classification is improved. It has the effect of being able to

実施例によれば、類似度という明確な基準によって心電
波形の形態分類を行え波形分類の精度を向上させること
ができるので、心電波形に基づく診断の積用、を向上さ
()゛ることかでさる11−いう効果がある。
According to the embodiment, it is possible to perform morphological classification of electrocardiographic waveforms using a clear standard of similarity, and improve the accuracy of waveform classification, thereby improving the efficiency of diagnosis based on electrocardiographic waveforms. There is an effect called 11-.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に使用できる自動解析装置の要部のグ
ロ・ツク図、第2図はこの発明の一実施例を示す7 D
−チャート、第3図は1拍の周期に於ける心電波形を示
す波形図、第4図乃至第6図は類似度肝p′を説明する
ための図である。 図面における主要な符号の説明 W1ヘーW9、 Wllへ・W2B:波形1、 S■:
類似度、R: R@、 Q、 : Q波、 SO3波、
 T:T波4、QR8HQR8波、 PDP波。
Fig. 1 is a diagram of the main parts of an automatic analysis device that can be used in this invention, and Fig. 2 shows an embodiment of this invention.
-Chart, FIG. 3 is a waveform diagram showing an electrocardiographic waveform in a cycle of one beat, and FIGS. 4 to 6 are diagrams for explaining the degree of similarity p'. Explanation of main symbols in the drawings W1 to W9, Wll to W2B: Waveform 1, S■:
Similarity, R: R@, Q, : Q wave, SO3 wave,
T: 4 T waves, 8 QR8HQR waves, PDP waves.

Claims (1)

【特許請求の範囲】[Claims] 心電図の波形を、N次元の多次元ベクトルに基づいてク
ラス分けすることを特徴とする心電波形の処理方法。
An electrocardiogram waveform processing method characterized by classifying an electrocardiogram waveform into classes based on an N-dimensional multidimensional vector.
JP2069992A 1990-03-07 1990-03-20 Processing method for electrocardiogram waveform Pending JPH03268740A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2069992A JPH03268740A (en) 1990-03-20 1990-03-20 Processing method for electrocardiogram waveform
US07/666,021 US5251076A (en) 1990-03-07 1991-03-07 Recording apparatus for electrocardiographs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2069992A JPH03268740A (en) 1990-03-20 1990-03-20 Processing method for electrocardiogram waveform

Publications (1)

Publication Number Publication Date
JPH03268740A true JPH03268740A (en) 1991-11-29

Family

ID=13418681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2069992A Pending JPH03268740A (en) 1990-03-07 1990-03-20 Processing method for electrocardiogram waveform

Country Status (1)

Country Link
JP (1) JPH03268740A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004159888A (en) * 2002-11-13 2004-06-10 Teijin Ltd Therapeutic effect prediction method for oxygen therapy, and execution supporting method for oxygen therapy
JP2009225976A (en) * 2008-03-21 2009-10-08 Oita Univ Waveform analyzer, waveform analyzing method, and waveform analyzing program
JP2017023541A (en) * 2015-07-24 2017-02-02 日本光電工業株式会社 Measurement point automatic correction method, measurement point automatic correction device, measurement point automatic correction program, and computer readable storage medium with measurement point automatic correction program stored therein
JP2018114244A (en) * 2017-01-20 2018-07-26 花王株式会社 Skin condition evaluation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004159888A (en) * 2002-11-13 2004-06-10 Teijin Ltd Therapeutic effect prediction method for oxygen therapy, and execution supporting method for oxygen therapy
JP2009225976A (en) * 2008-03-21 2009-10-08 Oita Univ Waveform analyzer, waveform analyzing method, and waveform analyzing program
JP2017023541A (en) * 2015-07-24 2017-02-02 日本光電工業株式会社 Measurement point automatic correction method, measurement point automatic correction device, measurement point automatic correction program, and computer readable storage medium with measurement point automatic correction program stored therein
US10772575B2 (en) 2015-07-24 2020-09-15 Nihon Kohden Corporation Automatic measurement point correction method, automatic measurement point correction apparatus and computer readable medium storing automatic measurement point correction program
JP2018114244A (en) * 2017-01-20 2018-07-26 花王株式会社 Skin condition evaluation method

Similar Documents

Publication Publication Date Title
Hamilton et al. Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database
Gupta et al. Detection of R-peaks using fractional Fourier transform and principal component analysis
Kadambe et al. Wavelet transform-based QRS complex detector
US7239988B2 (en) Apparatus and method for efficient representation of periodic and nearly periodic signals for analysis
US5090418A (en) Method and apparatus for screening electrocardiographic (ECG) data
JP4768095B2 (en) A system for determining the characteristics of signals representing cardiac function
US8137283B2 (en) Method and apparatus for retrieval of similar heart sounds from a database
Taddei et al. A system for the detection of ischemic episodes in ambulatory ECG
Dotsinsky et al. Ventricular beat detection in single channel electrocardiograms
Bono et al. Development of an automated updated selvester QRS scoring system using SWT-based QRS fractionation detection and classification
Last et al. Multi-component based cross correlation beat detection in electrocardiogram analysis
JP2004160237A (en) Device for analyzing signal, in particular physiological signal such as electrocardiogram signal
CN107622259B (en) T wave detection method, electrocardiogram data analysis method and device
US8750973B2 (en) Method and system for detecting P-waves in the surface ECG signal
Plesinger et al. Robust multichannel QRS detection
El Bouny et al. A wavelet denoising and Teager energy operator-based method for automatic QRS complex detection in ECG signal
US20230309899A1 (en) Determination method and determination apparatus for beginning of t-wave, storage medium and computer program product
Vuksanovic et al. ECG based system for arrhythmia detection and patient identification
JPH03268740A (en) Processing method for electrocardiogram waveform
Wang et al. Finding disease similarity by combining ECG with heart auscultation sound
Shahram et al. ECG beat classification based on a cross-distance analysis
Lee et al. ECG waveform analysis by significant point extraction: I. Data reduction
Gusev et al. Pattern recognition of a digital ECG
CN113100778B (en) R peak positioning method of electrocardiosignal
JP3224569B2 (en) Cardiac arrhythmia detection device based on ECG signal