JPH03268417A - Resist applying method - Google Patents

Resist applying method

Info

Publication number
JPH03268417A
JPH03268417A JP6727890A JP6727890A JPH03268417A JP H03268417 A JPH03268417 A JP H03268417A JP 6727890 A JP6727890 A JP 6727890A JP 6727890 A JP6727890 A JP 6727890A JP H03268417 A JPH03268417 A JP H03268417A
Authority
JP
Japan
Prior art keywords
resist
temperature
resist solution
application
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6727890A
Other languages
Japanese (ja)
Inventor
Rikio Ikeda
利喜夫 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP6727890A priority Critical patent/JPH03268417A/en
Publication of JPH03268417A publication Critical patent/JPH03268417A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PURPOSE:To enable improving the in-plane uniformity of a resist film thickness by forming an application system, where no temperature difference exists, through setting of both resist solution and application atmosphere to the same temperature within the range of 24-30 deg.C and through application of the resist solution. CONSTITUTION:Both resist solution and application atmosphere are set to a same temperature within the range of 24-30 deg.C and the resist solution is applied subsequently. When a preset temperature exceeds 30 deg.C, not only a resist film thickness grows larger than required as the evaporation of a solvent is further activated but also the projection of the central part becomes too large. As a result, there is a possibility that an in-plane uniformity is impaired. Moreover, a surplus energy is required for heating. Therefore, a temperature higher than a preset one has little practical merit. Thus, it is possible to obtain an excellent in-plane uniformity, also when the resist solution and application atmosphere is set to the same temperature. In this manner, a resist application excellent in controllability and reproducibility can be performed with not improvement of the existing resist applicators.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレジスl布方法に関し、特にレジスト膜厚の面
内均一性を向上させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a resist cloth method, and particularly to a method for improving the in-plane uniformity of resist film thickness.

〔発明の概要〕[Summary of the invention]

本発明は、回転塗布法によりレジスト溶液を塗布する方
法において、レジスト溶液および塗布雰囲気を共に24
゛C以上30℃以下の範囲で同一温度に設定することに
より、回転中心付近においてワイセンヘルク効果による
レジスト溶液の液面上昇を生起せしめ、レジスト膜厚の
面内均一性を向上させようとするものである。
The present invention provides a method for applying a resist solution by a spin coating method, in which both the resist solution and the coating atmosphere are heated for 24 hours.
By setting the same temperature in the range of 20°C or more and 30°C or less, the liquid level of the resist solution increases near the center of rotation due to the Weissenherck effect, thereby improving the in-plane uniformity of the resist film thickness. be.

[従来の技術] 半導体ウェハ等の基板上にレジスト溶液を塗布する方法
としては、従来より回転塗布法が広く適用されている。
[Prior Art] As a method for applying a resist solution onto a substrate such as a semiconductor wafer, a spin coating method has conventionally been widely applied.

このようにして得られる塗膜の膜厚(以下、レジスト膜
厚と称する。)は、ウェハ面内において高精度に均一化
されていることが必要である。それは、レジスト(特に
フォトレジスト)の膜厚がウェハ面内において不均一で
あると、露光光に対する感度ムラが生じて線幅制御性が
劣化するからである。半導体装置のデザイン・ルールが
サブミクロンないしクォーターミクロンのレベルにまで
微細化されてくると、これに伴ってウェハ面内における
レジスト膜厚の変動範囲もおおよそ30〜50人以内に
抑えることが要求される。近年では、レジスト膜厚が塗
布雰囲気の温度に敏感に左右されることが明らかとなっ
たことから、レジスト溶液、基板、塗布雰囲気1回転手
段等の各温度が制御可能なレジスト塗布装置が広く使用
されている。
The thickness of the coating film thus obtained (hereinafter referred to as resist film thickness) needs to be uniform with high precision within the wafer surface. This is because if the film thickness of the resist (especially photoresist) is non-uniform within the wafer surface, sensitivity to exposure light will be uneven and line width controllability will deteriorate. As the design rules for semiconductor devices become finer to the submicron to quarter micron level, there is a need to keep the variation range of resist film thickness within the wafer surface within approximately 30 to 50 layers. Ru. In recent years, it has become clear that the resist film thickness is sensitively affected by the temperature of the coating atmosphere, so resist coating equipment that can control the temperatures of the resist solution, substrate, coating atmosphere, and other parts has become widely used. has been done.

このレジスト塗布装置は温調コーターと通称されている
ものであり、典型的には第2図に示されるように、レジ
スト塗布環境を外部環境から遮断するための囲繞手段、
該囲繞手段内に収容される回転塗布手段、吸排気手段、
温湿度制御手段、レジスト溶液供給手段等から構成され
るものである。
This resist coating device is commonly called a temperature control coater, and typically, as shown in FIG. 2, it includes surrounding means for shielding the resist coating environment from the external environment;
a spin coating means, an intake and exhaust means, which are housed within the surrounding means;
It is composed of temperature/humidity control means, resist solution supply means, and the like.

上記囲繞手段は、上方から下方に向けて温湿度制御され
た空気が流れるようになされたダウンフロー型のチャン
バ(1)から構成され、その上部には外部の温湿度コン
トローラ(2)から供給される空気を該チャンバ(1)
内へ導入するための給気ダクト(3)が開口されている
。上記給気ダクト(3)から送られる温湿度制御された
空気は、エアフィルタ(4)でさらに脱塵されてチャン
バ(1)内へ供給される。上記回転塗布手段は、モータ
ー(12)の回転軸(7)に同軸的に取り付けられ、半
導体ウェハ等の基板(5)を固定することによりこれを
回転可能に保持するチャック(8)と、該チャック(8
)の外周部を包囲するように配設され、基板(5)の回
転に伴うレジスト溶液の飛散を防止するためのカップ(
6)等から構成される。上記カップ(6)の底部には、
レジスト溶液(11)の飛沫や溶剤蒸気等をチャンバ(
1)内の空気と共に吸引除去するための排気ダクト(9
)が設けられている。基板(5)の中央部上方には、レ
ジスト溶液(11)の温度を制御しながらこれを吐出す
るレジスト溶液供給管(lO)が開口している。
The enclosing means is composed of a downflow type chamber (1) in which air whose temperature and humidity are controlled flows from above to below, and the upper part of which is supplied with temperature and humidity controlled air (2). air into the chamber (1)
An air supply duct (3) is opened for introducing the air into the interior. The temperature and humidity controlled air sent from the air supply duct (3) is further removed from dust by an air filter (4) and then supplied into the chamber (1). The rotary coating means includes a chuck (8) that is coaxially attached to the rotating shaft (7) of the motor (12) and rotatably holds the substrate (5) such as a semiconductor wafer by fixing the substrate (5). Chuck (8
) is arranged to surround the outer periphery of the substrate (5) to prevent the resist solution from scattering as the substrate (5) rotates.
6) etc. At the bottom of the cup (6),
Splashes of resist solution (11), solvent vapor, etc. are removed from the chamber (
1) Exhaust duct (9) for suctioning and removing the air inside
) is provided. A resist solution supply pipe (lO) is opened above the center of the substrate (5) to discharge the resist solution (11) while controlling its temperature.

上記レジスト溶液供給管(10)は、第3図にその先端
部を拡大して示すごとく二重構造とされており、レジス
ト溶液(11)を流通させる内管部(13)の周囲が温
調水(14)を満たしたウォータージャケット(15)
で包囲されている。ノズル(16)を含む先端部は、随
時取り外して洗浄できるように、本体と着脱可能に螺合
されている。
The resist solution supply pipe (10) has a double structure, as shown in an enlarged view of its tip in FIG. Water jacket (15) filled with water (14)
is surrounded by. The tip including the nozzle (16) is removably screwed into the main body so that it can be removed and cleaned at any time.

ところで、塗布雰囲気とレジスト溶液を同一温度に設定
し、基板の回転中心付近にレジスト膜厚を吐出して回転
塗布を行うと、レジスト膜厚は基板の中央部よりも外周
部において厚くなる傾向がある。これは、基板の中央部
よりも外周部の方が線速度が大きいために、該外周部に
おけるレジスト溶液中の溶剤の蒸発量が相対的に多くな
り、レジスト溶液の粘度が増大して流動しにくくなるか
らである。
By the way, when the coating atmosphere and the resist solution are set at the same temperature and the resist film is discharged near the center of rotation of the substrate and spin coating is performed, the resist film tends to be thicker at the outer periphery than at the center of the substrate. be. This is because the linear velocity is higher at the outer periphery than at the center of the substrate, so the amount of evaporation of the solvent in the resist solution at the outer periphery is relatively large, increasing the viscosity of the resist solution and causing it to flow. This is because it becomes difficult.

そこで従来は、温調コーターにおいてレジスト溶液の温
度と塗布雰囲気の温度とが独立に制御し得ることを利用
して、レジスト溶液の温度を塗布雰囲気の温度よりも1
〜3 ’C程度高く設定している。この方法によれば、
基板の中央部において吐出された直後のレジスト溶液の
温度は雰囲気温度よりも高くなっているので、溶剤の蒸
発が促進されて該中央部におけるレジスト膜厚が増大し
、面内均一性を向上させることができる。
Therefore, in the past, the temperature of the resist solution was adjusted to one level lower than the temperature of the coating atmosphere by taking advantage of the fact that the temperature of the resist solution and the temperature of the coating atmosphere could be controlled independently in a temperature control coater.
It is set about ~3'C higher. According to this method,
Since the temperature of the resist solution immediately after being discharged at the center of the substrate is higher than the ambient temperature, evaporation of the solvent is promoted and the resist film thickness at the center increases, improving in-plane uniformity. be able to.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、第3図からも明らかなように、レジスト?f
I液供給管(10)の先端部はウォータージャケソ) 
(15)で包囲されていないため、たとえ上述のように
レジスト溶液の温度を塗布雰囲気の温度よりも若干高め
に設定したとしても、該先端部においては徐々にレジス
ト膜厚の温度が低下してしまう。また、比較的狭い力、
プ(6)内において1〜3°Cの温度差が存在すること
は、塗布雰囲気の温度制御を困難とする。これらの理由
により、現状では高い面内均一性を達成するのは困難で
ある。
However, as is clear from Figure 3, the resist? f
The tip of the I liquid supply pipe (10) is a water jacket)
Since it is not surrounded by (15), even if the temperature of the resist solution is set slightly higher than the temperature of the coating atmosphere as described above, the temperature of the resist film thickness will gradually decrease at the tip. Put it away. Also, a relatively narrow force,
The existence of a temperature difference of 1 to 3°C within the pipe (6) makes it difficult to control the temperature of the coating atmosphere. For these reasons, it is currently difficult to achieve high in-plane uniformity.

そこで本発明は、これらの問題を解決し、温度差の存在
しない塗布系によりレジスト膜厚の面内均一性を高める
方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for solving these problems and improving the in-plane uniformity of resist film thickness using a coating system that does not have a temperature difference.

(課題を解決するための手段〕 本発明にかかるレジスト塗布方法は上述の目的を達成す
るために提案されるものであり、回転する基板上にレジ
スト溶液を塗布する方法であって、レジスト溶液および
塗布雰囲気を共に24°C以上30°C以下の範囲で同
一温度に設定してレジスト溶液を塗布することを特徴と
するものである。
(Means for Solving the Problems) A resist coating method according to the present invention is proposed in order to achieve the above-mentioned object, and is a method of coating a resist solution on a rotating substrate. This method is characterized in that the resist solution is applied while the coating atmosphere is set to the same temperature within the range of 24° C. or more and 30° C. or less.

〔作用〕[Effect]

レジスト膜厚が基板の中央部において薄(、周辺部にお
いて厚くなるような不均一性、すなわちレジストi厚の
面内分布は、一般には前述のようにレジスト溶液と塗布
雰囲気の温度バランスによって決まるものと考えられて
いる。しかし、本発明者が検討を行ったところ、これら
両者の温度が同一である場合にも、面内分布が生しる場
合があることが明らかとなった。しかも、この面内分布
は設定温度が比較的低い場合には顕著であるが、比較的
高い場合に目立たなくなることを見出した。
Non-uniformity in which the resist film thickness is thinner at the center of the substrate (and thicker at the periphery), that is, the in-plane distribution of resist i thickness, is generally determined by the temperature balance between the resist solution and the coating atmosphere, as described above. However, upon investigation by the present inventor, it became clear that in-plane distribution may occur even when these two temperatures are the same.Moreover, this It has been found that the in-plane distribution is noticeable when the set temperature is relatively low, but becomes less noticeable when the set temperature is relatively high.

これは、温度が高い場合はど、ワイセンベルグ効果の寄
与が大きくなるためであると考えられる。
This is considered to be because the contribution of the Weissenberg effect increases when the temperature is high.

ワイセンベルグ効果とは、粘弾性流体中に垂直に立てた
棒もしくは該流体中に浸漬した円盤等を回転させると、
回転に伴って回転中心付近の流体表面が盛り上がる現象
である。これは、粘弾性流体がズレ変形を起こす際に、
粘性による接線応力の他に弾性によるズレの大変形に起
因する法線応力が発生し、該法線応力が流体を法線方向
(ズレ方向に直角な方向)に締めつけるからである。回
転する基板上のレジスト溶液においても、同様の現象が
生じているものと考えられる。
The Weissenberg effect is that when a rod placed vertically in a viscoelastic fluid or a disk immersed in the fluid is rotated,
This is a phenomenon in which the fluid surface near the center of rotation bulges as it rotates. This is because when the viscoelastic fluid undergoes shear deformation,
This is because, in addition to tangential stress due to viscosity, normal stress is generated due to large deformation due to elastic displacement, and this normal stress tightens the fluid in the normal direction (direction perpendicular to the displacement direction). It is thought that a similar phenomenon occurs in the resist solution on the rotating substrate.

いま、内部エネルギーをU、エントロピーをSとし、試
料を等退的(すなわち、温度T=一定)にdiだけ伸ば
したときの応力τは、熱力学的に次式で与えられる。
Now, when the internal energy is U and the entropy is S, the stress τ when the sample is equiregressively stretched (that is, temperature T=constant) by di is given thermodynamically by the following equation.

τ−(θU/θjりy   T(θS/θff1)tこ
こで、(θU/aj2)yは分子間力や原子間力等に起
因して現れるエネルギー弾性を表し、−T(θS/θf
)yは鎖状高分子の配置に関係して現れるエントロピー
弾性を表す。レジスト材料等の線吠高分子の場合、エネ
ルギー弾性は無視し得るほど小さいので、応力τはエン
トロピー弾性の項のみで次のように表すことができる。
τ-(θU/θjriy T(θS/θff1)tHere, (θU/aj2)y represents the energy elasticity that appears due to intermolecular force, atomic force, etc., and -T(θS/θf
)y represents entropic elasticity that appears in relation to the arrangement of chain polymers. In the case of linear polymers such as resist materials, the energy elasticity is negligibly small, so the stress τ can be expressed only in terms of entropic elasticity as follows.

τ−−T(θS/θff1)t レジスト溶液の回転塗布を考える場合、上式中の(θS
/θf)tは負の埴となる。なぜなら、基板の回転に伴
って発生する応力によりレジスト分子の配向方向が揃う
ため、エントロピーSが減少するからである。つまり、
温度が高くなるほど、レジスト材料を回転中心方向に向
かって締めつける応力が大きくなり、回転中心付近の液
面が上昇するのである。
τ--T(θS/θff1)t When considering spin coating of resist solution, (θS
/θf)t is a negative value. This is because the orientation direction of the resist molecules is aligned due to the stress generated as the substrate rotates, so that the entropy S decreases. In other words,
As the temperature rises, the stress that tightens the resist material toward the center of rotation increases, causing the liquid level near the center of rotation to rise.

〔実施例〕〔Example〕

以下、本発明の好適な実施例について、実験結果にもと
づいて説明する。
Hereinafter, preferred embodiments of the present invention will be described based on experimental results.

本実施例では、第2図に示したような温調コーターとし
て東京エレクトロン社製、クリーントラックMarkm
−V型を、基板としては5インチウェハを、またレジス
トとしてはノボランク系ポジ型フォトレジスト(東京応
化工業社製:商品名TSMR−V3)をそれぞれ使用し
た。相対湿度を50%1塗布雰囲気の温度を19〜25
°Cの範囲で変化させ、定速回転時の回転速度を4oo
o r p mとして、各設定温度下におけるレジスト
膜厚の面内分布を調べた。レジスト溶液の温度は塗布雰
囲気の温度と同一とした。
In this example, the temperature control coater shown in FIG. 2 was a Clean Track Markm manufactured by Tokyo Electron.
-V type, a 5-inch wafer as the substrate, and a novolanque positive type photoresist (manufactured by Tokyo Ohka Kogyo Co., Ltd., trade name TSMR-V3) as the resist. Relative humidity: 50% 1 Application atmosphere temperature: 19-25
Change the rotation speed at constant speed by 4oo
As o r p m, the in-plane distribution of resist film thickness under each set temperature was investigated. The temperature of the resist solution was the same as the temperature of the coating atmosphere.

結果を第1図に示す。図中、N軸はレジスト膜厚く入)
、横軸はウェハの直径を所定の間隔で分割した測定点を
番号で表す。ただし、各測定点の間隔は、1番と2番5
および12番と13番の間が5mmである他はすべて1
0mmであり、7番の位置がウェハの中心である。この
図から、設定温度が比較的低い場合にはウェハの中央部
が凹となっているが、温度が上昇するにしたがって面内
均一性が次第に改善され、24°C以上において良好な
結果が得られている様子が明らかである。また、温度が
高くなると溶剤の蒸発が促進されてレジスト溶液の粘度
が増すので、得られるレジスト膜厚も全体的に大きくな
る。
The results are shown in Figure 1. In the figure, the N axis has a thick resist film)
, the horizontal axis represents measurement points obtained by dividing the diameter of the wafer at predetermined intervals using numbers. However, the distance between each measurement point is 1, 2, 5.
and 5mm between No. 12 and No. 13, all other parts are 1
0 mm, and position No. 7 is the center of the wafer. This figure shows that when the set temperature is relatively low, the center of the wafer becomes concave, but as the temperature rises, the in-plane uniformity gradually improves, and good results are obtained above 24°C. It is clear that the Furthermore, as the temperature increases, the evaporation of the solvent is promoted and the viscosity of the resist solution increases, so the overall thickness of the resulting resist film also increases.

従来の一般的なレジスト塗布は、塗布雰囲気の温度を2
2〜23°Cに設定して行われてきたが、第1図からも
明らかなように、面内均一性は不十分である。それ故、
レジスト溶液の温度を雰囲気温度に比べて若干高くする
等の工夫がなされてきたわけであるが、本発明によれば
レジスト溶液と塗布雰囲気の温度が同一であっても、ワ
イセンベルグ効果の発現により中央部が盛り上がり、面
内均一性が改善される。
In conventional general resist coating, the temperature of the coating atmosphere is set to 2.
It has been carried out at a temperature of 2 to 23°C, but as is clear from FIG. 1, the in-plane uniformity is insufficient. Therefore,
Efforts have been made to make the temperature of the resist solution slightly higher than the ambient temperature, but according to the present invention, even if the temperature of the resist solution and the coating atmosphere are the same, the Weissenberg effect occurs in the central region. is raised, and in-plane uniformity is improved.

なお、本発明においては、設定温度の上限を30゛Cと
する。設定温度が30’Cを越えると、溶剤の蒸発の一
層の活発化に伴ってレジスト膜厚が必要以上に大きくな
る他、中央部の盛り上がりが大きくなり過ぎて面内均一
性をかえって損なう虞れがあり、さらに加熱にも余分な
エネルギーを要する等、実用上のメリットが少ないから
である。
In the present invention, the upper limit of the set temperature is 30°C. If the set temperature exceeds 30'C, the resist film thickness will become larger than necessary due to more active evaporation of the solvent, and the bulge in the center may become too large, which may actually impair in-plane uniformity. This is because there are few practical advantages, such as additional energy required for heating.

〔発明の効果〕〔Effect of the invention〕

以上の説明からも明らかなように、本発明を適用すれば
、レジスト溶液および塗布雰囲気を同一に設定した場合
にも優れた面内均一性を達成することができるので、既
存のレジスト塗布装置に何ら改良を加えることなく、制
御性および再現性に優れるレジスト塗布を行うことが可
能となる。
As is clear from the above explanation, if the present invention is applied, excellent in-plane uniformity can be achieved even when the resist solution and coating atmosphere are set the same, so existing resist coating equipment can be used. It becomes possible to perform resist coating with excellent controllability and reproducibility without making any improvements.

のレジスト塗布方法に使用される温訓コーターの典型的
な構成例を示す概略断面図であり、第3図はそのレジス
Hfj液供給管の一部を示す要部拡大概略断面図である
FIG. 3 is a schematic cross-sectional view showing a typical configuration of a warm coater used in the resist coating method of FIG.

Claims (1)

【特許請求の範囲】  回転する基板上にレジスト溶液を塗布するレジスト塗
布方法において、 レジスト溶液および塗布雰囲気を共に24℃以上30℃
以下の範囲で同一温度に設定してレジスト溶液を塗布す
ることを特徴とするレジスト塗布方法。
[Claims] A resist coating method in which a resist solution is coated on a rotating substrate, wherein both the resist solution and the coating atmosphere are kept at a temperature of 24°C or higher and 30°C.
A resist coating method characterized by coating a resist solution at the same temperature within the following range.
JP6727890A 1990-03-19 1990-03-19 Resist applying method Pending JPH03268417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6727890A JPH03268417A (en) 1990-03-19 1990-03-19 Resist applying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6727890A JPH03268417A (en) 1990-03-19 1990-03-19 Resist applying method

Publications (1)

Publication Number Publication Date
JPH03268417A true JPH03268417A (en) 1991-11-29

Family

ID=13340343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6727890A Pending JPH03268417A (en) 1990-03-19 1990-03-19 Resist applying method

Country Status (1)

Country Link
JP (1) JPH03268417A (en)

Similar Documents

Publication Publication Date Title
US5127362A (en) Liquid coating device
US5580607A (en) Coating apparatus and method
JP4040697B2 (en) High efficiency photoresist coating
US4068019A (en) Spin coating process for prevention of edge buildup
US5437733A (en) Method and apparatus for treating a substrate
JP2901089B2 (en) Liquid supply device
JPS61214520A (en) Coating device
JPH03268417A (en) Resist applying method
JPH05166712A (en) Spin coating method
JP3248232B2 (en) Resist coating apparatus and spin coating method for resist
JPS62214621A (en) Coating device
TW201931492A (en) Uniformity control of metal-based photoresists
US20030003760A1 (en) Photoresist coating method and apparatus
JP2802636B2 (en) Coating device and coating method
US6383294B1 (en) Coated film forming apparatus
JP2816755B2 (en) Semiconductor processing equipment and resist processing equipment
JP3655153B2 (en) Coating film forming device
JP2922921B2 (en) Coating device and coating method
JPS6149422A (en) Resist coating device
JPH06132210A (en) Treatment device
JP2805172B2 (en) Coating device
JPS60160614A (en) Resist coating method and apparatus therefor
JPS62225268A (en) Coating device
JP2000021736A (en) Coating method of resist
JP2003093955A (en) Method and device for coating thin film