JPH0326820A - Structure of cooling piston of two-cycle engine - Google Patents

Structure of cooling piston of two-cycle engine

Info

Publication number
JPH0326820A
JPH0326820A JP16209189A JP16209189A JPH0326820A JP H0326820 A JPH0326820 A JP H0326820A JP 16209189 A JP16209189 A JP 16209189A JP 16209189 A JP16209189 A JP 16209189A JP H0326820 A JPH0326820 A JP H0326820A
Authority
JP
Japan
Prior art keywords
piston
air
cylinder
fuel mixture
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16209189A
Other languages
Japanese (ja)
Inventor
Tadayasu Suzuki
鈴木 忠康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP16209189A priority Critical patent/JPH0326820A/en
Publication of JPH0326820A publication Critical patent/JPH0326820A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To secure required amount of air-fuel mixture for cooling by a method wherein a second air scavenging passage for communicating between an inlet port and a discharge port respectively formed on a cylinder is formed on a cylinder body while a vent hole is formed on a piston skirt. CONSTITUTION:In a two-cycle engine 1, air-fuel mixture primarily compressed in a crank chamber 2c is fed from an air scavenging port 18b via a first air scavenging passage into a cylinder 18. At this time a second air scavenging passage 3b for communicating between an inlet port 18d and a discharge port 18c formed on the lower and upper sections of the cylinder 18 respectively is formed on a cylinder body 3. A vent hole 17c for communicating with the inlet port 18d at the time of air scavenging is formed on a skirt 17b of a piston 17. Thus a part of air-fuel mixture is forced to pass through inside the piston 17 and then pushed in an upper part of the piston 17 of the cylinder 18. Therefore required flow rate of air-fuel mixture for cooling can be secured while the piston 17 is securely cooled from inside to improve cooling property.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は2サイクルエンジンのピストン冷却構造に関し
、特に混合気の一部を利用してピストンを内側から冷却
するようにした場合に、冷却用混合気の流れが充分に得
られるようにした構造に関する. 〔従来の技術〕 最近の2サイクルエンジンの高出力化は目覚ましいもの
があり、この高出力化に伴うピストンの焼き付き等を防
止するために該ピストンの冷却をより確実に行う必要が
ある.ピストンの冷却性を向上させる手段には、エンジ
ンの水冷化.熱伝導率の高いAI材の使用等があるが、
これらの従来行われている方法では冷却性の向上に限界
がある.そこでクランク室で一次圧縮された混合気の一
部をピストンの内側に導入して冷却効果を上げるように
した冷却構造が提案されており、例えば特願昭62−2
7094号公報に記載された例がある.これは、クラン
ク室とシリンダの掃気ボートとを連通ずる掃気通路の途
中に、該通路とシリンダの掃気ポートより下方部分とを
連通ずる連通孔を分岐形成するとともに、ピストンのス
カート部に、掃気時に上記連通孔と連通ずる通気口を形
成した構造となっている. 〔発明が解決しようとする問題点〕 上記従来の冷却構造は、混合気の一部を、ピストンの内
側から通気口,連通孔.掃気通路の経路で流し、これに
よりピストンを内個から冷却する構造である.しかしな
がらこの従来構造の場合、上記冷却用混合気の経路にお
ける流路抵抗が正規の掃気通路における抵抗より大きい
ことから、冷却用混合気流量を充分に確保するのは困難
であり、結局充分な冷却効果が得られない. 本発明は上記従来の状況に鑑みてなされたもので、所要
の冷却用混合気流量を確保でき、ビス1・ンの冷却性を
大幅に改善できる2サイクルエンジンのピス1・ン冷却
構造を提供することを目的としている. 〔問題点を解決するための手段〕 本発明は、クランク室内で一次圧縮された混合気を第1
掃気通路を介してシリンダ内に導入する2サイクルエン
ジンにおいて、上記混合気の一部でピストンを内側から
冷却するようにしたピストン冷却構造であって、上記シ
リンダの下部9上部にそれぞれ形成された吸入口,吐出
口間を連通ずる第2掃気通路をシリンダボディに形成し
、上記吸入口と掃気時に連通ずる通気口をピストンのス
カート部に形成したことを特徴としている.ここで本発
明における第1掃気通路は、一端がクランク室に直接開
口する従来と同一の掃気通路であり、第2掃気道路は、
一端がシリンダの吸入口,及びピストンの通気口を介し
てクランク室に連通ずる、従来と異なる新規の掃気通路
である.〔作用〕 本発明に係るピストン冷却構造によれば、冷却用混合気
の流路は、クランク室からピス1−ンスカート部の通気
目,シリンダ下部の吸入口.第2掃気遣路.シリンダ上
部の吐出口を経る経路となっており、正規の掃気通路と
は独立している。従って正規の掃気通路から分岐して冷
却用混合気通路を形成した従来構造のような、冷却用混
合気通路の流路抵抗が大きいことから正規の掃気通路だ
けを混合気が流れるという問題が生じることはなく、混
合気の一部は強制的にピストンの内側を通った後シリン
ダのピストン上方部分に押し込まれることとなる。その
結墨冷却用混合気の所要流量を確保でき、ピストンを内
側から確実に冷却して冷却性を向上できる. 〔実施例〕 以下、本発明の実施例を図について説明する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a piston cooling structure for a two-stroke engine, and particularly when a part of the air-fuel mixture is used to cool the piston from the inside. It relates to a structure that allows sufficient air-fuel mixture flow. [Prior Art] The recent increase in the output of two-stroke engines has been remarkable, and it is necessary to cool the piston more reliably to prevent seizure of the piston due to this increase in output. Water-cooling the engine is a way to improve the cooling performance of the piston. There is the use of AI materials with high thermal conductivity, etc.
These conventional methods have limitations in improving cooling performance. Therefore, a cooling structure has been proposed in which a part of the air-fuel mixture that is primarily compressed in the crank chamber is introduced into the inside of the piston to increase the cooling effect.
There is an example described in Publication No. 7094. A communication hole is formed in the middle of a scavenging passage that communicates between the crank chamber and the scavenging boat of the cylinder to communicate the passage with a portion below the scavenging port of the cylinder. The structure has a vent that communicates with the communication hole above. [Problems to be Solved by the Invention] The above-mentioned conventional cooling structure supplies a portion of the air-fuel mixture from the inside of the piston to a vent or a communication hole. The structure is such that the piston is cooled from within by flowing air through the scavenging passage. However, in the case of this conventional structure, since the flow resistance in the cooling air-fuel mixture path is greater than the resistance in the regular scavenging passage, it is difficult to secure a sufficient flow rate of the cooling air-fuel mixture, and in the end, sufficient cooling is not achieved. No effect is obtained. The present invention has been made in view of the above-mentioned conventional situation, and provides a piston cooling structure for a two-stroke engine that can secure the required cooling mixture flow rate and significantly improve the cooling performance of the pistons. The purpose is to. [Means for solving the problem] The present invention provides a first
In a two-stroke engine in which air is introduced into the cylinder through a scavenging passage, the piston cooling structure cools the piston from the inside with a part of the air-fuel mixture, and the suction is formed at the upper part of the lower part 9 of the cylinder. The present invention is characterized in that a second scavenging passage that communicates between the intake port and the discharge port is formed in the cylinder body, and a vent port that communicates with the intake port during scavenging is formed in the skirt portion of the piston. Here, the first scavenging passage in the present invention is the same as the conventional scavenging passage whose one end opens directly into the crank chamber, and the second scavenging passage is
This is a new scavenging passage different from conventional ones, with one end communicating with the crank chamber via the cylinder intake port and the piston vent. [Function] According to the piston cooling structure according to the present invention, the flow path for the cooling air-fuel mixture is from the crank chamber to the ventilation hole in the piston skirt, and the suction port at the bottom of the cylinder. Second scavenging path. The path passes through the discharge port at the top of the cylinder, and is independent from the regular scavenging passage. Therefore, in the conventional structure where a cooling mixture passage is formed by branching from the regular scavenging passage, the problem arises that the mixture flows only through the regular scavenging passage due to the large flow resistance of the cooling mixture passage. Instead, part of the air-fuel mixture is forced to pass through the inside of the piston and then into the upper part of the piston in the cylinder. The required flow rate of the air-fuel mixture for cooling the knot can be secured, and the piston can be reliably cooled from the inside to improve cooling performance. [Example] Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図ないし第4図は本発明の一実施例による2サイク
ルエンジンのピストン冷却構造を説明するための図であ
る。
1 to 4 are diagrams for explaining a piston cooling structure for a two-stroke engine according to an embodiment of the present invention.

図において、1は本実施例構造が通用された自動二輪車
用2サイクルエンジンであり、該エンジンlは、クラン
ク軸収容部2aと変速機収容部2bとを一体形成してな
るクランクケース2の前壁土にシリンダボディ3をスタ
ンドボルト(図示せず)で固着し、該シリンダボディ3
上にシリンダヘノド4をヘソドボルト5で結合した構戒
になっている.−h4c!変速機収容部2b内にはメイ
ン軸6ドライブ軸7が平行に配置されており、それぞれ
の変速歯車6a,7aが噛合している.また軸方向に摺
動可能に配設された各変速歯車にはシフトフォーク8,
9が係合しており、このシフトフオ一ク8.9はシフ1
・カムlOを回動させることによって軸方向に駆動され
る。
In the figure, reference numeral 1 denotes a two-cycle motorcycle engine to which the structure of this embodiment is applied, and the engine 1 is located at the front of a crankcase 2 which is formed by integrally forming a crankshaft housing part 2a and a transmission housing part 2b. Fix the cylinder body 3 to the wall soil with stand bolts (not shown), and
The cylinder head 4 is connected to the top with a head bolt 5. -h4c! A main shaft 6 and a drive shaft 7 are arranged parallel to each other in the transmission accommodating portion 2b, and respective transmission gears 6a and 7a are meshed with each other. In addition, a shift fork 8,
9 is engaged, and this shift fork 8.9 is shift 1.
- Driven in the axial direction by rotating the cam lO.

上記クランク軸収容部2a内にはクランク軸11,及び
バランサ軸l2が上記メイン軸6等と平行に配置されて
いる.このクランク軸1lとバランサ軸12は図示しな
い伝動ギヤで連結されており、バランサ軸l2はクラン
ク軸l1と逆回転する.このバランサ軸l2は鉄製のも
ので、両端の回転軸12aと、該回転軸12aと偏心し
たバランサ部12bとからなり、該バランサ部12b内
には例えば砲金.なまり等の鉄より比重の大なる金属か
らなる重錘l3が埋設されている。この重1113は、
第4図tel, fdlに示すように、鋳造,!2造に
よって本体13aから脚部13bが突出したものを形成
し、これを上記バランサ部12bに形成された凹部12
C内に配設し、鍛造時に上記脚部13bをかしめること
によって上記バランサ部12bに埋設固定されている. なお、上記重錘13は、第5図(Ill. fblに示
すように、本体13aに結合孔13cを有するものを準
備し、上記バランサ部12aにボルト締めによって固定
してもよい.また第6図(al. [blに示すように
、上記バランサ部12aの凹部12cを軸心側に開口す
る形状とし、重!!13の脚部13bを外方に突出させ
、これをかしめることによって固定してもよい. また、上記クランク軸l1のクランクウエブl4同士は
クランクピンl5で連結されており、このクランクウエ
プl4部分は、上記クランク軸収容部2aに形成された
クランク室2C内に位置している.そしてこのクランク
軸収容部2aには上記クランク室2Cに連通ずる吸気口
2dが形成されており、この吸気口2d内にはリードバ
ルブ19が配設されている。このリードバルブ19は横
断面三角形の筒体であるベース部材19aの開口の外側
にガイド板19bを配設するとともに、両者間に薄板か
らなる弁板19Cを介在させてなり、上記クランク室2
C内が負圧になると開き、正圧になると閉じるようにな
っている. また上記クランクビン15にはコンロッドl6(D大f
ta 1 6 aが連結されており、該コンロンド16
の小端16bにはピストンl7が連結されている.この
ピストンl7は上記シリンダボディ3内に圧入嵌合され
たシリンダライチ18内に摺動自在に挿入されている.
このシリンダライナ18には排気ポー}18a,掃気ボ
ート18bが形成されており、該排気ボート18aはシ
リンダボディ3に形成された排気通路3aに連通してお
り、また上記掃気ポートl 8bは上記シリンダボディ
3に形成された第1掃気通路(図示せず)を介して上記
クランク室2cに連通している. そして上記シリンダライナ18には、上記掃気ボート】
8bと同じ高さ位置に吐出口18cが形成されており、
また該シリンダライナl8の吐出口下方位置には吸入口
18dが形成されている.この吸入口18dと上記吐出
口18cとは、シリンダボディ3に形成された第2掃気
通路3bで連通されている.また、上記ピストンl7の
スカート部17bには、通気口17cが形成されており
、この通気口17cは該ピストン17の天壁1 7 a
が上記吐出口18cの下縁に位置したとき上記吸入口1
8dと完全に連通ずる位置,及び形状に形成されている
. 次に本実施例の作用効果について説明する.本実施例エ
ンジンにおいては、燃焼室内での混合気の爆発によりピ
ストンl7が下降を開始すると、クランク室2C内の混
合気が圧縮開始されるとともに、まず排気ボート18a
が開き始め、排気ガスが排気通路3aから排出され始め
る.次に掃気ポート18bが開き始めてクランク室2C
内の圧縮された混合気(新気〉が第1掃気通路を介して
該掃気ポート18bからシリンダ内に吹き出し、燃焼室
内で反転して残留排気ガスを押し出す.このとき、掃気
ボート18bの開時期に同調して吐出口18cが開くと
ともに、ピストン17の通気口17cが吸入口18dと
連通し、これによりクランク室2cが、ピストンl7の
内側から第2掃気通路3bを介してシリンダのピストン
上方部分と連通ずる.その結果、燃焼室2c内の混合気
の一部は、ピストンl7の内側から上記通気口l7c,
吸入口18d.第2掃気通路3b,吐出口18Cを経て
シリンダ内に吹き出し、その後上記第1掃気通路からの
混合気と同様に動作する。この際に混合気の一部がピス
トンl7内を通ることにより、該ピストン17を効率よ
く冷却することとなる。
A crankshaft 11 and a balancer shaft l2 are arranged in parallel to the main shaft 6 and the like within the crankshaft housing portion 2a. The crankshaft 1l and the balancer shaft 12 are connected by a transmission gear (not shown), and the balancer shaft 12 rotates in the opposite direction to the crankshaft 11. This balancer shaft l2 is made of iron and consists of a rotating shaft 12a at both ends and a balancer portion 12b eccentric to the rotating shaft 12a. A weight l3 made of a metal with a higher specific gravity than iron such as iron is buried. This weight 1113 is
As shown in Figure 4 tel, fdl, casting,! The leg portion 13b protrudes from the main body 13a by two structures, and this is inserted into the recess 12 formed in the balancer portion 12b.
C, and is embedded and fixed in the balancer part 12b by caulking the leg part 13b during forging. The weight 13 may have a connecting hole 13c in the main body 13a, as shown in FIG. As shown in Figure (al. Further, the crank webs l4 of the crankshaft l1 are connected to each other by a crank pin l5, and this crank web l4 portion is located in the crank chamber 2C formed in the crankshaft housing portion 2a. An intake port 2d communicating with the crank chamber 2C is formed in this crankshaft housing portion 2a, and a reed valve 19 is disposed within this intake port 2d. A guide plate 19b is disposed outside the opening of the base member 19a, which is a cylindrical body with a triangular surface, and a valve plate 19C made of a thin plate is interposed between the two.
It opens when the pressure inside C becomes negative and closes when the pressure becomes positive. In addition, the crank bin 15 has a connecting rod l6 (D large f
ta 1 6 a are connected, and the conrond 16
A piston l7 is connected to the small end 16b of the piston. This piston 17 is slidably inserted into a cylinder litchi 18 which is press-fitted into the cylinder body 3.
This cylinder liner 18 is formed with an exhaust port 18a and a scavenging boat 18b, and the exhaust boat 18a communicates with an exhaust passage 3a formed in the cylinder body 3, and the scavenging port 18b is connected to the cylinder It communicates with the crank chamber 2c via a first scavenging passage (not shown) formed in the body 3. The scavenging boat is attached to the cylinder liner 18.
A discharge port 18c is formed at the same height position as 8b,
Further, a suction port 18d is formed below the discharge port of the cylinder liner l8. The suction port 18d and the discharge port 18c communicate with each other through a second scavenging passage 3b formed in the cylinder body 3. Further, a vent hole 17c is formed in the skirt portion 17b of the piston l7, and this vent hole 17c is connected to the top wall 17a of the piston 17.
is located at the lower edge of the discharge port 18c, the suction port 1
It is formed in a position and shape that completely communicates with 8d. Next, the effects of this embodiment will be explained. In the engine of this embodiment, when the piston 17 starts descending due to the explosion of the air-fuel mixture in the combustion chamber, the air-fuel mixture in the crank chamber 2C starts to be compressed, and first, the exhaust boat 18a
begins to open, and exhaust gas begins to be discharged from the exhaust passage 3a. Next, the scavenging port 18b begins to open and the crank chamber 2C
The compressed air-fuel mixture (fresh air) is blown into the cylinder from the scavenging port 18b via the first scavenging passage, reverses itself in the combustion chamber, and pushes out the residual exhaust gas.At this time, the opening timing of the scavenging boat 18b The discharge port 18c opens in synchronization with the above, and the vent port 17c of the piston 17 communicates with the suction port 18d, thereby allowing the crank chamber 2c to flow from the inside of the piston l7 through the second scavenging passage 3b to the upper portion of the piston of the cylinder. As a result, a part of the air-fuel mixture in the combustion chamber 2c flows from the inside of the piston l7 to the vent l7c,
Inlet 18d. The air-fuel mixture is blown into the cylinder through the second scavenging passage 3b and the discharge port 18C, and then operates in the same manner as the air-fuel mixture from the first scavenging passage. At this time, a portion of the air-fuel mixture passes through the piston 17, thereby efficiently cooling the piston 17.

このように本実施例では、ピストンl7の内側を経由す
る冷却兼用掃気通路を正規の掃気通路と独立に形成した
ので、混合気の一部は、7ピストンl7の内側を確実に
流れることとなり、冷却効果を高めることができる.従
来の、正規の掃気通路を分岐した構造の場合、分岐側め
流路抵抗が大きいことから、所要流量の確保が困難であ
ったが、本実施例ではこのような問題が生しることはな
い.また本実施例では、バランサ軸l2のバランサ部1
2bに、比重の大なる金属からなる重錘l3を埋設した
ので、バランサ部12bの偏心量をあまり大きくするこ
となく所要のアンバランス量を確保でき、そのためバラ
ンサ軸12の小型化、ひいてはエンジン全体の小型化を
図ることができる.また、排気置の増加等によってアン
バランス量を変える場合にも、塩錘の大きさ.比重を変
えることによってバランサ軸の外径寸法を変えなくても
済む効果もある. なお、上記実施例ではクランクケースリー・ドバルブ方
式のエンジンに冷却兼用掃気通路を形成IJた場合を説
明したが、本発明はピストンバルブ方式,あるいはビス
1・ンバルブ.リードバルブ組合せ方式等何れの2ザイ
クルエンジンにも適用できる。
In this way, in this embodiment, the cooling and scavenging passage passing through the inside of the piston l7 is formed independently of the regular scavenging passage, so that a part of the air-fuel mixture reliably flows inside the seven piston l7. The cooling effect can be enhanced. In the case of the conventional structure in which the regular scavenging passage was branched, it was difficult to secure the required flow rate due to the large flow passage resistance on the branch side, but this example eliminates this problem. do not have. Further, in this embodiment, the balancer portion 1 of the balancer shaft l2
Since the weight l3 made of a metal with a large specific gravity is embedded in 2b, the required amount of unbalance can be ensured without increasing the amount of eccentricity of the balancer part 12b too much, thereby reducing the size of the balancer shaft 12 and, by extension, the entire engine. It is possible to reduce the size of the Also, when changing the unbalance amount by increasing the exhaust position, etc., the size of the salt weight should be changed. Changing the specific gravity also has the effect of eliminating the need to change the outer diameter of the balancer shaft. In the above embodiment, a case was explained in which a cooling and scavenging passage was formed in a crankcase reed-valve type engine, but the present invention is applicable to a piston valve type or a screw-in valve type engine. It can be applied to any two-cycle engine such as a reed valve combination system.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明に係る2サイクルエンジンのピスト
ン冷却構造によれば、シリンダに形成した吸入口、吐出
1コを正規の掃気通路と別個の冷却兼用掃気通路で連通
させるとともに、下部の吸入口と連通ずる通気口をピス
トンスカート部に形成したので、混合気の一部を確実に
ピストン内側を遣って流すことができ、所要の冷却用混
合気流量を確保してピストンの冷却性を大幅に向上でき
る効果がある.
As described above, according to the piston cooling structure for a two-stroke engine according to the present invention, the suction port and the discharge port formed in the cylinder are communicated with a regular scavenging passage and a separate cooling-duty scavenging passage, and the lower suction port Since a vent is formed in the piston skirt that communicates with the piston, a portion of the air-fuel mixture can be reliably flowed through the inside of the piston, ensuring the required cooling air-fuel mixture flow rate and greatly improving piston cooling performance. There is an effect that can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図は本発明の一実施例による2サイク
ルエンジンのピストン冷却構造を説明するための図であ
り、第1図はその断面側面図、第2図はピストンの断面
側面図、第3図は該実施例構造が適用された2サイクル
エンジンの断面側面図、第4図(alはハランサ軸の正
面図、第4図(blは第4図fatのIVh−IVb線
断面図、第4図(C).第4図+d+はそれぞれ重錘の
正面図.側面図、第5図(a),第5図fb+はそれぞ
れ重錘の変形例を示す正面図,断面側面図、第6図ta
+はバランサ軸の変形例を示す正面図、第6図(blは
第6図ta+のv+b−■b線断面図である.
1 to 4 are diagrams for explaining a piston cooling structure of a two-stroke engine according to an embodiment of the present invention, in which FIG. 1 is a cross-sectional side view thereof, FIG. 2 is a cross-sectional side view of a piston, 3 is a cross-sectional side view of a two-stroke engine to which the structure of the embodiment is applied, FIG. 4 (al is a front view of the harness shaft, FIG. 4 (bl is a sectional view taken along the IVh-IVb line of FIG. 4 fat, Fig. 4 (C). Fig. 4 +d+ is a front view of the weight. Side view, Fig. 5 (a), and Fig. 5 fb+ are a front view, cross-sectional side view, and Fig. 5 fb+ respectively showing modified examples of the weight. Figure 6 ta
+ is a front view showing a modified example of the balancer shaft; FIG. 6 is a sectional view taken along the line v+b--b of FIG.

Claims (1)

【特許請求の範囲】[Claims] (1)クランク室内で一次圧縮された混合気を第1掃気
通路を介してシリンダ内に導入する2サイクルエンジン
において、上記混合気の一部でピストンを内側から冷却
するようにしたピストン冷却構造であって、上記シリン
ダの下部、上部にそれぞれ形成された吸入口、吐出口間
を連通する第2掃気通路をシリンダボディに形成し、上
記吸入口と掃気時に連通する通気口をピストンのスカー
ト部に形成したことを特徴とする2サイクルエンジンの
ピストン冷却構造。
(1) In a two-stroke engine in which the air-fuel mixture that is primarily compressed in the crank chamber is introduced into the cylinder through the first scavenging passage, a piston cooling structure is used in which the piston is cooled from the inside with a portion of the air-fuel mixture. A second scavenging passage is formed in the cylinder body to communicate between the suction port and the discharge port formed at the bottom and top of the cylinder, respectively, and a vent that communicates with the suction port during scavenging is provided in the skirt portion of the piston. A piston cooling structure for a two-stroke engine, characterized by the following:
JP16209189A 1989-06-23 1989-06-23 Structure of cooling piston of two-cycle engine Pending JPH0326820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16209189A JPH0326820A (en) 1989-06-23 1989-06-23 Structure of cooling piston of two-cycle engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16209189A JPH0326820A (en) 1989-06-23 1989-06-23 Structure of cooling piston of two-cycle engine

Publications (1)

Publication Number Publication Date
JPH0326820A true JPH0326820A (en) 1991-02-05

Family

ID=15747907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16209189A Pending JPH0326820A (en) 1989-06-23 1989-06-23 Structure of cooling piston of two-cycle engine

Country Status (1)

Country Link
JP (1) JPH0326820A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117573A (en) * 2005-10-31 2007-05-17 Kiyo:Kk Safety hook
US9546632B2 (en) 2013-12-26 2017-01-17 Honda Motor Co., Ltd. Two-stroke engine with fuel injection
US10352349B2 (en) 2016-02-18 2019-07-16 Nagaki Seiki Co., Ltd. Safety hook

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117573A (en) * 2005-10-31 2007-05-17 Kiyo:Kk Safety hook
US9546632B2 (en) 2013-12-26 2017-01-17 Honda Motor Co., Ltd. Two-stroke engine with fuel injection
US10352349B2 (en) 2016-02-18 2019-07-16 Nagaki Seiki Co., Ltd. Safety hook

Similar Documents

Publication Publication Date Title
US5069192A (en) Internal combustion engine with crankcase ventilation system
US7096834B2 (en) Two-cycle combustion engine
US4945864A (en) Two cycle engine piston lubrication
US4261305A (en) Two cycle internal combustion engine
US5174257A (en) Balancer shaft for two cycle engine
KR100262232B1 (en) Multi-cylinder two stroke engine crankcase sealing
US4831979A (en) Wrist pin lubrication system for two-cycle engines
US2865341A (en) Engine frame construction
JPH0326820A (en) Structure of cooling piston of two-cycle engine
WO2006049888A1 (en) Internal boost system for engines
JPH1122443A (en) Oil separator structure of internal combustion engine
US5870980A (en) Stepped piston internal combustion engine
US3753425A (en) Two stroke internal combustion engines
US3621758A (en) Reciprocating piston machine
JPH07145717A (en) Crank case ventilator for internal combustion engine
US6755173B1 (en) Vertical engine
JPH11117807A (en) Engine with balancer shaft
JP2572502B2 (en) Balancer mechanism for two-cycle engine
JPH0148390B2 (en)
JPH0748966Y2 (en) Crankcase ventilation system for internal combustion engine
JP2833680B2 (en) Cooling structure of engine gear made of synthetic resin
JPH0123652B2 (en)
JPH0123646B2 (en)
JP2841038B2 (en) Two-cycle engine crank bearing lubrication system
CA2492872C (en) Vertical engine