JPH0326815A - Valve timing control device of dohc engine - Google Patents

Valve timing control device of dohc engine

Info

Publication number
JPH0326815A
JPH0326815A JP16209589A JP16209589A JPH0326815A JP H0326815 A JPH0326815 A JP H0326815A JP 16209589 A JP16209589 A JP 16209589A JP 16209589 A JP16209589 A JP 16209589A JP H0326815 A JPH0326815 A JP H0326815A
Authority
JP
Japan
Prior art keywords
camshaft
timing control
intake
exhaust
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16209589A
Other languages
Japanese (ja)
Other versions
JP2738745B2 (en
Inventor
Yoshikazu Takane
義和 高根
Shigeo Yamamoto
茂雄 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP16209589A priority Critical patent/JP2738745B2/en
Publication of JPH0326815A publication Critical patent/JPH0326815A/en
Application granted granted Critical
Publication of JP2738745B2 publication Critical patent/JP2738745B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L1/053Camshafts overhead type
    • F01L2001/0537Double overhead camshafts [DOHC]

Landscapes

  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

PURPOSE:To improve balance in weight and a space by a method wherein a timing control mechanism for varying opening/closing timing at low speed and high speed is mounted on one end of one of cam shafts driven by a crank shaft. CONSTITUTION:In a valve gear of a V-type six cylinder engine 1, an end of each inlet cam shaft 6 is driven by a crank shaft 25. On one end 6a of each inlet cam shaft 6, an intake timing control mechanism 8 for varying opening/ closing timing by the inlet cam shaft 6 at low speed and high speed is mounted. On the other end 6b of each inlet cam shaft 6, an exhaust timing control mechanism for varying opening/closing timing by an exhaust cam shaft 7 at low speed and high speed and a hydraulic control device 30 are mounted. Further the respective inlet cam shafts 6 and respective exhaust cam shafts 7 are connected by transmission chains 18. Thus the timing control devices 8, 9 are placed separately on both ends of the inlet cam shaft 6 so that relatively heavy weight and a space can be separately positioned on both sides thereby realizing good balance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、エンジンのバルブタイミング制i2g装置に
関し、特に吸気カム軸及び排気カム軸を備えたDot!
Cエンジンにおいて、吸気タイミング,排気タイミング
の両方とも変化させるようにした場合の、タイミング制
?lIl機構の配置位置の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a valve timing control i2g device for an engine, and particularly to a Dot!
Timing system when both intake timing and exhaust timing are changed in C engine? This invention relates to improving the arrangement position of the III mechanism.

〔従来の技術〕[Conventional technology]

Dot{Cエンジンのバルブタイaング制御装W乙して
、従来、例えば以下の構造のものがある.吸気カム軸.
及び排気カム軸の一端を1本の伝動部材を介してクラン
ク軸で同時に駆動するようにtiI4戒するとともに、
上記吸気カム軸の一端に、吸気バルブの開閉タイミング
を低速時は高速時より早くする吸気タイミング制御機構
を装着するとともに、上記排気カム軸の一端に、排気バ
ルブの開閉タイミングを低速時は高速時より遅くする排
気タイミング制I!機構を装着したものがある.〔発明
が解決しようとする問題点〕 しかしながら上記従来のバルブタイ逅ング制御装置は、
その構造上、上記吸気.排気タイミング制御機構のそれ
ぞれを、吸気カム軸,及び排気カム軸の同じ側でかつ伝
動部材が設けられた側に配役する必要がある.そのため
比較的大きな配置スペース及び大きな重量を有するタイ
ミング制m機横がカム軸方向の一方に偏ることとなり、
その結果この従来装置では、配置スペース及び重量のバ
ランス上改良の余地がある. また、吸気,排気タイミング制御機構をそれぞれ吸気、
排気カム軸に別々に配設しているから、それぞれのカム
軸に、コン1・ロールバルブとソレノイドからなる油圧
制御装置を設ける必要があり、つまり油圧制?21装置
が2&I1必要であり、それだけコスト高になるととも
に、配置位置が28所必要となる。
Conventional valve timing control systems for Dot{C engines have the following structure, for example. Intake camshaft.
and one end of the exhaust camshaft is simultaneously driven by the crankshaft via one transmission member, and
At one end of the intake camshaft, an intake timing control mechanism is installed that makes the opening and closing timing of the intake valve earlier at low speeds than at high speeds, and at the same time, at one end of the exhaust camshaft, the opening and closing timing of the exhaust valves is installed at low speeds and at high speeds. Slower exhaust timing system I! Some are equipped with a mechanism. [Problems to be solved by the invention] However, the above-mentioned conventional valve tying control device has the following problems:
Due to its structure, the above-mentioned intake. Each of the exhaust timing control mechanisms must be placed on the same side of the intake camshaft and exhaust camshaft, and on the side where the transmission member is provided. As a result, the side of the timing control machine, which has a relatively large installation space and a large weight, is biased to one side in the camshaft direction.
As a result, there is room for improvement in the balance of installation space and weight with this conventional device. In addition, the intake and exhaust timing control mechanisms are
Since they are installed separately on the exhaust camshafts, each camshaft must be equipped with a hydraulic control device consisting of a control valve and a solenoid.In other words, hydraulic control? 21 devices are required, which increases the cost accordingly and requires 28 locations.

また、タイミング制御機構を設けるとそれだけカム軸の
回転質量が増加するため、パルブを開閉しながらカム軸
が回転する際V、カム軸を駆動する伝動部材、例えばタ
イミングヘルトに加わる張力の変動が大きくなる。特に
各カム軸にタイミング制御機構を設け、1本のヘルトで
同時に駆動する場合は上記変動がさらに大きくなり、ベ
ルトの耐久性が低下する問題がある。
In addition, when a timing control mechanism is provided, the rotating mass of the camshaft increases accordingly, so when the camshaft rotates while opening and closing the valve, the tension applied to the transmission member that drives the camshaft, such as the timing helt, fluctuates greatly. Become. In particular, when a timing control mechanism is provided for each camshaft and the camshafts are simultaneously driven by a single helt, the above-mentioned fluctuation becomes even larger, and there is a problem that the durability of the belt decreases.

本発明は上記従来の問題点に鑑みてなされたもので、重
量.及び配置スペース上のバランスが良好なDOHCエ
ンジンのバルブタイミング制?lII装置を提供するこ
とを目的としており、さらに第1項の発明は油圧制′4
’a装置が1紐で済むとともに、配置箇所も1箇所で良
く、コスト及び配置スペース上有利であり、また第2項
の発明では伝動部材の耐久性を向上できるバルブタイミ
ング制?I 装Wを提供することを目的としている. 〔問題点を解決するための手段〕 そこで第1項の発明は、吸気カム軸及び排気カム軸を備
えたDOHCエンジンのバルブタイもング制m装置にお
いて、上記何れか一方のカム軸の一端をクランク軸で駆
動するとともに、咳一方のカム軸による開閉タイ果ング
を低速時と高速時とで変化させる第1クー(−Eンゲ制
御機構を該一・方のカム軸の一端に設け、該一力のカム
軸の他端で他方のカム軸の他端を駆動するとともに、該
一方のカム軸の他端に、上記他方のカム軸による開閉タ
イミングを低速時と高速時とで変化させる第2タイ巳ン
グ制御機構を設け、上記一方のカム軸に上記両タイミン
グ制御機構に作動油を供給する油圧通路を形威し、該通
路を開閉する油圧制御装置を上配一方のカム軸の端部に
設けたことを特徴としている. また第2項の発明は、第1項の発明において、一方のカ
ム軸をクランク軸で第1伝動部材を介して駆動し、該一
方のカム軸で第2伝動部材を介して他方のカム軸を駆動
するとともに、第2バルブタイミング制御機構を、他方
のカム軸の他端に装着したことを特徴としている。
The present invention has been made in view of the above-mentioned problems of the conventional art. And valve timing system for DOHC engine with good balance in terms of installation space? The object of the invention is to provide a hydraulic control '4.
'A' device requires only one string and can be placed in one location, which is advantageous in terms of cost and placement space.In addition, in the invention of item 2, there is a valve timing system that can improve the durability of the transmission member. The purpose is to provide I-equipment W. [Means for solving the problem] Therefore, the invention of item 1 provides a valve timing control device for a DOHC engine equipped with an intake camshaft and an exhaust camshaft. A first camshaft is driven by the camshaft, and a first camshaft is provided with a control mechanism at one end of the camshaft to change the opening/closing movement of the camshaft between low speed and high speed. The other end of the power camshaft drives the other end of the other camshaft, and a second camshaft is provided at the other end of the one camshaft that changes the opening/closing timing of the other camshaft between low speed and high speed. A timing control mechanism is provided, a hydraulic passage is provided on one of the camshafts for supplying hydraulic oil to both of the timing control mechanisms, and a hydraulic control device for opening and closing the passage is provided at the end of the one of the camshafts. The invention set forth in item 2 is characterized in that, in the invention set forth in item 1, one camshaft is driven by the crankshaft via the first transmission member, and the second camshaft is driven by the one camshaft through the first transmission member. It is characterized in that the other camshaft is driven via a transmission member, and a second valve timing control mechanism is attached to the other end of the other camshaft.

ここで本願発明における低速時.高速時とはエンジン回
転速度が低い時,高い時の意味である.また第l,第2
伝動部材には、伝動ベルト、チェン,歯車が含まれる. また本願発明には、クランク軸で吸気カム軸を駆動する
場合、及びクランク軸で排気カム軸を駆動する場合の両
方が含まれる.吸気カム軸の一端をクランク軸で駆動す
る場合は、吸気タイミング制御機構は吸気カム軸の一端
に設け、排気タイ果ング制御機構は吸気カム軸の他端又
は排気カム軸の他端に設けることとなる.また排気カム
軸の一端をクランク軸で駆動する場合は、排気タイミン
グ制御機構は排気カム軸の一端に設け、吸気タイミング
制御機構は排気カム軸の他端又は吸気カム軸の他端に設
けることとなる. 〔作用〕 本願発明では、吸気,排気カム軸の何れか一方のカム軸
の一端をクランク軸で駆動するとともに、該一方のカム
軸の他端で他方のカム軸の他端を駆動するように構成し
たので、上記一方のカム軸の一端に第lタイミング制御
機構を、何れかのカム軸の他端に第2タイミング制御機
構を配設することができ、つまり第l.第2タイミング
制御機構をカム軸方向の両端に分けて配置でき、その結
果、それだけ重量及び配置スペース上のバランスが良好
となる. マタ、第1項の発明では、一方のカム軸の一端./th
端に第1.第2タイミング制御機構を配設し、該一方の
カム軸内に両タイミング制御機構に連通ずるよう形威さ
れた油圧通路を油圧制御装置で開閉するように構成した
ので、油圧制m装置が1組で済む. また、第2項の発明では、2つのタイミング制御機構を
、第2伝動部材を介して連動された一方のカム軸と他方
のカム軸とに振り分けて設けたので、2つのタイミング
制御機構の設置により伝動部材に生じる負荷の変動は、
第1,第2伝動部材にそれぞれ振り分けられて加わるこ
とになり、第1伝動部材の耐久性が向上する。
Here, at low speed in the present invention. High speed means when the engine speed is low or high. Also, the first and second
Transmission members include transmission belts, chains, and gears. Further, the present invention includes both a case where the intake camshaft is driven by the crankshaft and a case where the exhaust camshaft is driven by the crankshaft. When one end of the intake camshaft is driven by the crankshaft, the intake timing control mechanism must be installed at one end of the intake camshaft, and the exhaust tie control mechanism must be installed at the other end of the intake camshaft or the other end of the exhaust camshaft. becomes. In addition, when one end of the exhaust camshaft is driven by the crankshaft, the exhaust timing control mechanism is provided at one end of the exhaust camshaft, and the intake timing control mechanism is provided at the other end of the exhaust camshaft or the other end of the intake camshaft. Become. [Operation] In the present invention, one end of either the intake or exhaust camshaft is driven by the crankshaft, and the other end of the one camshaft drives the other end of the other camshaft. With this structure, the l-th timing control mechanism can be disposed at one end of the one camshaft, and the second timing control mechanism can be disposed at the other end of either of the camshafts. The second timing control mechanism can be placed separately at both ends in the camshaft direction, resulting in a better balance in terms of weight and placement space. In the invention of item 1, one end of one camshaft. /th
No. 1 at the end. A second timing control mechanism is provided, and a hydraulic passage formed in one of the camshafts so as to communicate with both timing control mechanisms is opened and closed by the hydraulic control device. A group is enough. Furthermore, in the invention of item 2, since the two timing control mechanisms are provided separately for one camshaft and the other camshaft that are interlocked via the second transmission member, the two timing control mechanisms are installed separately. The variation in load that occurs on the transmission member due to
It is distributed and applied to the first and second transmission members, respectively, and the durability of the first transmission member is improved.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図ないし第8図は第1項の発明の一実施例によるD
o}ICエンジンのバルブタイミング制御装置を説明す
るための図である。
1 to 8 are D according to an embodiment of the invention of item 1.
o} FIG. 2 is a diagram for explaining a valve timing control device for an IC engine.

図において、lは本発明が通用された■型6気筒エンジ
ンであり、該エンジン1は、6つの気筒が所定のバンク
角をなすように形威されたシリンダボディ2の下面にオ
イルパン3を取り付け、上面に一対のシリンダヘッド4
.4を配設してヘッドボルトで固定し、該各シリンダヘ
ンド4,4の上面をヘンドカバー5.5で覆った構戒と
なっている。
In the figure, l is a type 6 six-cylinder engine to which the present invention is applied, and the engine 1 has an oil pan 3 on the lower surface of a cylinder body 2 shaped so that six cylinders form a predetermined bank angle. Installation, a pair of cylinder heads 4 on the top surface
.. 4 are arranged and fixed with head bolts, and the upper surface of each cylinder hend 4, 4 is covered with a hend cover 5.5.

上記各シリンダへソド4のハンク内側には吸気マニホー
ルドが接続される吸気口4aが形威され、外側には排気
マニホールドが接続される排気口4bが形戒されている
。また上記各シリンダヘッド4の各ヘッド力バー5との
合面には、バンク内側に吸気カム軸6が、バンク外側に
排気カム軸7が平行に、かつ回転自在に配設されている
An intake port 4a to which an intake manifold is connected is formed on the inside of the hunk of the cylinder 4 to each cylinder, and an exhaust port 4b to which an exhaust manifold is connected is formed on the outside. Further, on the surfaces of the cylinder heads 4 that meet the respective head force bars 5, an intake camshaft 6 is disposed on the inside of the bank, and an exhaust camshaft 7 is disposed parallel to and rotatable on the outside of the bank.

上記各吸気カム軸6b一端6aには吸気タイミング制御
機構8が装着されている。この吸気タイミング制御機構
8は、吸気カム軸6の一端6aに固着されたインナシ中
フト1)と、該シャフト1)の外方に装着された吸気プ
ーリl2と、該プ−リ12と上記インナンヤフトl1と
の間に挿入されたスライドピストン13とから構成され
ている。
An intake timing control mechanism 8 is attached to one end 6a of each intake camshaft 6b. This intake timing control mechanism 8 includes an inner inner shaft 1) fixed to one end 6a of the intake camshaft 6, an intake pulley l2 mounted on the outside of the shaft 1), the pulley 12, and the inner shaft 1). The slide piston 13 is inserted between the piston 11 and the slide piston 13.

上記各吸気カム軸6,6の吸気プーIJ l 2及びク
ランク軸25の駆動プーり25aとの間には第1伝動部
材としての駆動ベルト17が巻回されている。なお、第
1伝動部材はチェン,歯車でもよく、また26はテンシ
ョンプーりである。
A drive belt 17 serving as a first transmission member is wound between the intake pulley IJ l 2 of each of the intake camshafts 6, 6 and the drive pulley 25a of the crankshaft 25. Note that the first transmission member may be a chain or a gear, and 26 is a tension pulley.

上記インナシャフト1)は、その接続穴1)aを上記吸
気カム軸6の一端6aに嵌合装着し、両者間に回り止め
ピン14を挿入するとともに、連結ボルト15をワフシ
ャ15bを介して上記一端6aに螺挿することによって
該吸気カム軸6に固定されている.また上記連結ボルト
15には油圧通路15aが貫通形威されており、該通路
]. 5 aの一端は、吸気カム軸6に全長に渡って貫
通形威された油圧通路6cに連通し、他端はインナシャ
フト1)の凹部1lbに開口している。なお、6dは、
油圧導入通路であり、これは図示していないがシリンダ
ヘンド4に形威された油圧通路を介して、このエンジン
1に設けられた潤滑用油圧ボンブに連通している。
The connection hole 1)a of the inner shaft 1) is fitted into one end 6a of the intake camshaft 6, and the locking pin 14 is inserted between the two, and the connecting bolt 15 is inserted through the waffle 15b. It is fixed to the intake camshaft 6 by screwing into one end 6a. Further, a hydraulic passage 15a is formed through the connecting bolt 15, and the passage]. One end of the inner shaft 5a communicates with a hydraulic passage 6c extending through the entire length of the intake camshaft 6, and the other end opens into a recess 1lb of the inner shaft 1). In addition, 6d is
This is a hydraulic pressure introduction passage, which communicates with a lubricating hydraulic bomb provided in the engine 1 via a hydraulic passage formed in the cylinder head 4 (not shown).

上記スライドピストン13は主ピストン13a副ピスト
ン13bをボルト136で接続するεεもに両者を付勢
ばねで圧接してなる円筒状のものであり、付勢ばね16
によってカム軸方向外方に付勢されている.そしてこの
スライドピストン13の外周面,内周面には、ねしれ方
向が逆のヘリカルスプライン13C,13dが形威され
ており、それぞれ吸気プーり12の内周面,インナシャ
フト1)の外周面に形威されたヘリカルスプライン12
b,IICに噛合している.これにより上記吸気タイミ
ング制御機fJI8は、上記スライドピストン13を、
油圧でカム軸方向内方に前進させることによって、上記
吸気カム軸6を吸気ブーり12に対して開閉タイミング
を早める方向(第L図右側から見て時計回り)に、所定
の位相角度(例えばIO度〉だけ相対的に回転させる.
上記吸気カム軸6の他端6bには排気タイミング制御機
構9が装着されている.これはインナシャフト1)の外
周にスライドピストンl3を配置し、これの外周に駆動
スブロケット19を装着し、スライドピストン13の外
周,内周のヘリカリスプラインを駆動スブロケソト1)
の内周面,インナシャフ1・1)の外周面のヘリカルス
プラインに噛合させてなり、基本的には上記吸気タイミ
ング制御機構8と同一構成である.但し、この俳気タイ
ミング制御機構9は、上記スライドピストン13を、油
圧でカム軸方向内方に前進させることによって、上記駆
動スブロケント19を吸気カム軸6に対して所定の位相
角度(例えば6度}だけ、第1図右側から見て反時計回
りに、つまり排気カム軸7の開閉タイミングが遅くなる
方向に相対的に回転させる. 上記駆動スプロケット19の端部に装着されたカバー2
0には、油圧制御!a置30を構成するコントロールバ
ルプ2lが装着されており、該バルブ21の外方にはこ
れを開閉するソレノイド22が配設されている.上記コ
ントロールバルブ21は、油圧流入口23aを有するハ
ウジング23内に、油圧流出口24aを有するプランジ
ャ24を進退可能に、かつ後退方向に付勢して挿入して
なり、ブランジャ24を前進させると閉、後退させると
開になる.また上記ソレノイド22は、ハウジング22
a内にコイル22bを配置し、該コイル22b内にアー
マチャロソド22cを挿入してなり、ソレノイド22を
オンにして該コイル22bに通電するとアーマチャロッ
ド22Cが前進して上記ブランジャ24を前進させて油
圧通路6Cを閉しるように構成されている。
The slide piston 13 has a cylindrical shape, and is formed by connecting the main piston 13a and the sub-piston 13b with a bolt 136 and pressing the two together with a biasing spring.
is forced outward in the camshaft direction. Helical splines 13C and 13d with opposite helical directions are formed on the outer and inner circumferential surfaces of the slide piston 13, and the inner circumferential surface of the intake pulley 12 and the outer circumferential surface of the inner shaft 1), respectively. Helical spline 12 shaped like
b. It meshes with IIC. As a result, the intake timing controller fJI8 causes the slide piston 13 to
By moving the intake camshaft 6 inward in the camshaft direction using hydraulic pressure, the intake camshaft 6 is moved at a predetermined phase angle (for example, clockwise when viewed from the right side of Figure L) in the direction of advancing the opening/closing timing with respect to the intake boob 12. Rotate relatively by IO degrees.
An exhaust timing control mechanism 9 is attached to the other end 6b of the intake camshaft 6. This is done by placing a slide piston l3 on the outer periphery of the inner shaft 1), mounting a driving sprocket 19 on the outer periphery of this, and driving the helical splines on the outer and inner peripheries of the slide piston 13.
The inner circumferential surface of the inner shaft 1 and the helical spline of the outer circumferential surface of the inner shaft 1) are engaged with helical splines, and the structure is basically the same as that of the intake timing control mechanism 8 described above. However, this intake timing control mechanism 9 moves the driving shaft 19 at a predetermined phase angle (for example, 6 degrees) with respect to the intake camshaft 6 by advancing the slide piston 13 inward in the camshaft direction with hydraulic pressure. } counterclockwise when viewed from the right side in FIG. 1, that is, in a direction that delays the opening/closing timing of the exhaust camshaft 7.
Hydraulic control for 0! A control valve 2l constituting the a position 30 is installed, and a solenoid 22 for opening and closing the valve 21 is provided outside the valve 21. The control valve 21 is constructed by inserting a plunger 24 having a hydraulic pressure outlet 24a into a housing 23 having a hydraulic pressure inlet 23a so as to be able to move forward and backward and biased in the backward direction, and close when the plunger 24 is advanced. , it opens when you move it backwards. Further, the solenoid 22 is connected to the housing 22.
A coil 22b is placed in the coil 22b, and an armature rod 22c is inserted into the coil 22b. When the solenoid 22 is turned on and the coil 22b is energized, the armature rod 22C moves forward to move the plunger 24 forward and open the hydraulic passage. 6C.

また上記駆動スプロケット19は、排気カム軸7の他端
に固着された排気スブロケソト10に駆動チェンl8で
連結されている.この各スプロケット19,10,駆動
チェン18,及び上記コントロールバルブ21は、シリ
ンダヘソド4の他端側に形成されたチェン室4C内に位
置している.次に本実施例の作用効果について説明する
.本実施例装置では、油圧ポンプからの作動油は、吸気
カム軸6の油圧導入通路6dから油圧通路6C内に導入
されるが、このときソレノイド22をオフにすれば、コ
ントロールバルブ21のプランジャ24が後退して該バ
ルブ21が開となる.そのため上記作動油はそのまま上
記ナエン室4C内に流出し、従って上記吸気タイ逅ング
制御機横8.排気タイミング制御機構9の何れにも油圧
が作用することはなく、その結果上記両タイミング制御
機構8.9ともオフとなる.一方、ソレノイド22をオ
ンにすると、コントロールバルブ21のブランジ中24
が前進して該バルブ21が閉になり、油圧が上記両タイ
ミング制ffj機横8,9のスライドピストン13に作
用する。
Further, the drive sprocket 19 is connected to an exhaust sprocket 10 fixed to the other end of the exhaust camshaft 7 by a drive chain l8. The sprockets 19, 10, the drive chain 18, and the control valve 21 are located in a chain chamber 4C formed at the other end of the cylinder head 4. Next, the effects of this embodiment will be explained. In this embodiment, the hydraulic oil from the hydraulic pump is introduced into the hydraulic passage 6C from the hydraulic pressure introducing passage 6d of the intake camshaft 6. At this time, if the solenoid 22 is turned off, the plunger 24 of the control valve moves backward and the valve 21 opens. Therefore, the hydraulic oil flows out into the nain chamber 4C as it is, and therefore, the hydraulic oil flows out into the nain chamber 4C, and therefore, the hydraulic oil flows out into the nain chamber 4C. Hydraulic pressure does not act on any of the exhaust timing control mechanisms 9, and as a result both of the timing control mechanisms 8 and 9 are turned off. On the other hand, when the solenoid 22 is turned on, the flange 24 of the control valve 21 is turned on.
advances, the valve 21 closes, and hydraulic pressure acts on the slide pistons 13 on the sides 8 and 9 of both timing control ffj machines.

そのため吸気タイミング制御機構8においては、スライ
ドピストン13の前進によって吸気カム軸6が、吸気プ
ーリ12に対して時計回り(開閉タイミングを早める方
向)に10度相対的に回転する.ここで本実施例では排
気カム軸7は吸気カム軸6にチェン1Bで連結されてい
るから、そのままではと記吸気カム軸6の進角と同一角
度だけ進角することとなる。しかし上述のように、排気
タイミング制ms横9が、スライドピストンl3の前進
によって駆動スブロケット19を吸気カム軸6に対して
反時計回りに相対的に回転させ、その分だけ吸気カム軸
6の進角の排気カム軸7への影響を削減する. 上記吸気カム軸6,排気カム軸7の進角.遅角について
、第5図及び第8図に基づいてさらに詳述する.第5図
18+は吸気バルブ(IN).排気バルプ(EX)の開
角度をクランク角度で示し、図中実線は上記各タイミン
グ機構がオフの場合、一点鎖線はオンの場合を示す.ま
た第5図(blは、吸気カム軸(IN).排気カム軸(
EX)の位相角度をカム角度で示し、図中時計回り矢印
,反時計回り矢印はそれぞれ開閉タイミングの進角.遅
角を示す.また第8図は、上記各タイミング機構8.9
のオン,オフ条件を示す図であり、図中、エンジン回転
速度一負荷(発生トルク)特性曲線と、細線とで区画さ
れた領域A,Bにおいて上記両タイごング機構8.9を
それぞれ同時にオン又はオフする.本実施例装直では、
上述のように、吸気タイミング制御機構8.排気タイミ
ング制御機構9は同時にオン.又はオフするように構或
されており、両機構8.9が共にオフの場合(第8図の
領域B)は、吸気バルブは上死点a120度で、排気バ
ルプは上死点前108度でそれぞれ最大開度となり、ま
た両バルブが同時に開いているラップ角度は4度である
. そして上記両機構オンの場合(第8図の領域A)は、吸
気バルプの開閉タイミングは吸気タイミング制御機構8
により20度(カム軸の角度で10度)早くなる.一方
、排気タイくング制御機構が12度(カム軸の角度で6
度)遅くなることがら、上記排気バルブの開閉タイミン
グは上記20度と12度の差、つまり8度(カム軸の角
度で4度)だけ早くなる.これによりバルブラップ角度
を4度から16度と大きくできる. 上記吸気バルプ,排気バルブの開閉タイミングは、上記
吸気タイミング制御機構8.排気タイミング制御機構9
の進角,遅角量を適宜設定することによって所望のタイ
ミングを実現できる.例えば、第6図に示すように、両
者の進角,遅角量を同一(カム軸の角度で10度)にす
れば、吸気バルブの開閉タイミングをクランク角で20
度進めながら、排気バルブの開閉タイミングは変化させ
ないようにすることができる.これによりラ,プ角度を
4度から24度に大きくできる.また第7図に示すよう
に、排気タイミング機構9の遅角量を吸気タイミング機
fjl8の進角量より大きくすれば、吸気バルプの開タ
イミングを20度進めながら、排気バルブの開タイミン
グを10度遅らせることもできる.これによりランプ負
度を4度から34度とさらに大きくできる.このように
本実施例では、吸気カム軸6をクランク軸25で駆動し
、該吸気カム軸6で排気カム軸7を駆動するように構或
するとともに、吸気カム軸6の一端に吸気タイミング制
御機構8を、他端に排気タイミング制御機構9を配設し
たので、各制御機構の進角.遅角量の設定により、吸気
バルプの開閉タイミング.及び排気バルプの開閉タイミ
ングを任意に設定することができる.そしてこの場合、
吸気,排気タイミング制御機構8.9をカム軸の両端に
分けて配置したので、比較的大きな重量,及び配置スペ
ースを両方に分けることができ、li!,及び配置スペ
ース上のバランスが良好となる。
Therefore, in the intake timing control mechanism 8, the advance of the slide piston 13 causes the intake camshaft 6 to rotate 10 degrees clockwise (to advance the opening/closing timing) with respect to the intake pulley 12. Here, in this embodiment, the exhaust camshaft 7 is connected to the intake camshaft 6 by the chain 1B, so if it is left as is, it will advance by the same angle as the advance angle of the intake camshaft 6. However, as described above, the exhaust timing control ms lateral 9 causes the drive subrocket 19 to rotate counterclockwise relative to the intake camshaft 6 due to the advance of the slide piston l3, and the intake camshaft 6 advances by that amount. Reduces the influence of corners on the exhaust camshaft 7. Advance angle of the intake camshaft 6 and exhaust camshaft 7. The retard angle will be explained in more detail based on FIGS. 5 and 8. Figure 5 18+ shows the intake valve (IN). The opening angle of the exhaust valve (EX) is shown by the crank angle, and the solid line in the figure shows when each of the above timing mechanisms is off, and the dashed-dotted line shows when it is on. In addition, Fig. 5 (bl is the intake camshaft (IN).Exhaust camshaft (
The phase angle of EX) is shown as a cam angle, and the clockwise and counterclockwise arrows in the figure represent the advance angle of the opening/closing timing, respectively. Indicates a retard angle. FIG. 8 also shows each timing mechanism 8.9 mentioned above.
In the figure, both of the above-mentioned tying mechanisms 8.9 are simultaneously operated in regions A and B defined by the engine speed-load (generated torque) characteristic curve and thin lines. Turn on or off. In this example refit,
As mentioned above, the intake timing control mechanism 8. The exhaust timing control mechanism 9 is turned on at the same time. or off, and when both mechanisms 8.9 are off (area B in Figure 8), the intake valve is at 120 degrees top dead center, and the exhaust valve is 108 degrees before top dead center. The maximum opening is reached at , and the wrap angle at which both valves are open at the same time is 4 degrees. When both of the above mechanisms are on (area A in FIG. 8), the opening/closing timing of the intake valve is controlled by the intake timing control mechanism 8.
This increases the speed by 20 degrees (10 degrees in terms of the camshaft angle). On the other hand, the exhaust timing control mechanism is 12 degrees (camshaft angle is 6 degrees).
degree), the opening/closing timing of the exhaust valve will be earlier by the difference between the above 20 degrees and 12 degrees, that is, 8 degrees (4 degrees in terms of the camshaft angle). This allows the valve wrap angle to be increased from 4 degrees to 16 degrees. The opening/closing timing of the intake valve and exhaust valve is controlled by the intake timing control mechanism 8. Exhaust timing control mechanism 9
The desired timing can be achieved by appropriately setting the advance and retard amounts. For example, as shown in Figure 6, if the advance and retard amounts for both are the same (10 degrees in camshaft angle), the opening and closing timing of the intake valve will be 20 degrees in crank angle.
It is possible to keep the opening and closing timing of the exhaust valve unchanged while advancing the exhaust valve. This allows the lap angle to be increased from 4 degrees to 24 degrees. Furthermore, as shown in FIG. 7, if the retardation amount of the exhaust timing mechanism 9 is made larger than the advance amount of the intake timing device fjl8, the opening timing of the exhaust valve can be advanced by 10 degrees while advancing the opening timing of the intake valve by 20 degrees. You can also delay it. This allows the lamp negative degree to be further increased from 4 degrees to 34 degrees. As described above, in this embodiment, the intake camshaft 6 is driven by the crankshaft 25, and the exhaust camshaft 7 is driven by the intake camshaft 6, and an intake timing control device is provided at one end of the intake camshaft 6. Since the mechanism 8 is provided with the exhaust timing control mechanism 9 at the other end, the advance angle of each control mechanism can be adjusted. The opening and closing timing of the intake valve is determined by setting the retard amount. And the opening/closing timing of the exhaust valve can be set arbitrarily. And in this case,
Since the intake and exhaust timing control mechanisms 8 and 9 are placed separately on both ends of the camshaft, the relatively large weight and installation space can be divided between the two, allowing li! , and a good balance in terms of placement space.

また上記吸気.排気タイミング制御機構8.9を吸気カ
ム軸6の両端に設けたので、油圧制御装置30が1組で
済み、コスト上.及び配置箇所が1箇所で済む点で有利
である. 第9図ないし第1)図は本願第2項の発明の一実施例を
説明するための図であり、第1図と同一符合は同一又は
相当部分を示す. 本実施例では、排気カム軸7の他端7bに排気タイミン
グ制御機構9が配設されており、該機構9の駆動スプロ
ケット19と吸気カム軸6の他端に固定された吸気スプ
ロケット10とは第2伝動部材としての駆動チェン18
で連結されている。
Also, the above intake. Since the exhaust timing control mechanism 8.9 is provided at both ends of the intake camshaft 6, only one set of hydraulic control device 30 is required, which reduces cost. It is also advantageous in that it only needs to be placed in one location. Figures 9 to 1) are diagrams for explaining an embodiment of the invention of Section 2 of the present application, and the same reference numerals as in Figure 1 indicate the same or equivalent parts. In this embodiment, an exhaust timing control mechanism 9 is disposed at the other end 7b of the exhaust camshaft 7, and the drive sprocket 19 of the mechanism 9 and the intake sprocket 10 fixed to the other end of the intake camshaft 6 are different from each other. Drive chain 18 as a second transmission member
are connected.

なお、この第2伝動部材は、伝動ヘルト.歯車でもよい
. そして本実施例では、吸気カム軸6の他端6b側にも油
圧制御装置30が配設されている.該装230のコント
ロールバルブ21は上記他端6bに挿入固定されており
、これのク{力に配置されたソレノイド22はシリンダ
ヘノド4のチェン室4C部分に固定されている. ここで本実施例の吸気,排気タイ3ング制御機横8.9
は、それぞれクランク角で例えば20度進角,20度遅
角させるように構戒されている。
Note that this second transmission member is a transmission belt. It can also be a gear. In this embodiment, a hydraulic control device 30 is also provided on the other end 6b side of the intake camshaft 6. The control valve 21 of the device 230 is inserted and fixed to the other end 6b, and the solenoid 22 disposed under the pressure of the control valve 21 is fixed to the chain chamber 4C of the cylinder head 4. Here, the intake and exhaust tie control machine horizontal 8.9 of this embodiment
are arranged to advance and retard the crank angle by, for example, 20 degrees, respectively.

本実施例では、吸気,排気タイミング制御機横8.9を
それぞれ吸気.排気カム軸6,7の一端他端に装着し、
各カム軸6,7の他端に油圧制御4A置30を設1』た
ので、上記第1実施例と同様に上記各タイ竃ング制御機
横8.9を同時にオン又はオフできるとともに、咳各タ
イミング制71)機構8.9を個別にオン.オフさ−1
iることもできる.例えば第1)図(alに示すように
、領域A,Bで(よ両機構を共にオン.又はオフさせ、
領域Cでは吸気側はオフ,排気側はオンさせることがで
きる.あるいはさらに同図山)に示すように、上記領域
B部分をD,  Hに分割し,、領域Dでは吸気側はオ
ン排気側はオフとし、領域Eでは両方ともオフとするこ
ともできる. そして例えば吸気側はオフ,排気側はオンとし・た場合
(領域C)は、第10図に示すように、吸気側のオフに
より吸気バルブの開閉タイミングはそのままで、排気側
のオンにより排気バルブの開閉タイミングのみクランク
角で20度遅らせることができ、ラップ角度は両方とも
オフの場合の4度から24度となる.図中、実線はオフ
時,一点鎖線はオン時の状態を示す。
In this embodiment, the intake and exhaust timing controllers horizontal 8.9 are set to the intake and exhaust timing controllers, respectively. Attached to one end of the exhaust camshaft 6, 7 and the other end,
Since a hydraulic control 4A position 30 is provided at the other end of each camshaft 6, 7, it is possible to simultaneously turn on or off the horizontal tie control devices 8 and 9 as in the first embodiment, and Turn on each timing system 71) mechanism 8.9 individually. Off-1
You can also do it. For example, as shown in Figure 1), both mechanisms are turned on or off in areas A and B,
In region C, the intake side can be turned off and the exhaust side can be turned on. Alternatively, as shown in Figure 1), the above region B can be divided into D and H, and in region D, the intake side is on and the exhaust side is off, and in region E, both are off. For example, if the intake side is turned off and the exhaust side is turned on (region C), as shown in Figure 10, the intake valve opening/closing timing remains the same due to the intake side being turned off, and the exhaust valve opening and closing timing is unchanged when the exhaust side is turned on. Only the opening and closing timing can be delayed by 20 degrees using the crank angle, and the wrap angle becomes 24 degrees from 4 degrees when both are off. In the figure, the solid line indicates the off state, and the dashed line indicates the on state.

また、本実施例では吸気タイミング制御機構8を吸気カ
ム軸6に、uP気タイミング制御機横゛3を排気カム軸
7にそれぞれ装着したので、オンの際におけるカム軸と
ブーリとの相対的な回転方向が同しになり、また両タイ
もング制御機横の進角量.遅角量を同一にしたので、該
両タイミング制御機構8.9を共通化することができる
.さらにまた、各制御機構を別個のカム軸に設け、伝動
チェン18で連結したので、タイミング制御機構8.9
の設置により生じる張力の変動は駆動ベルト17,伝動
チェン18に振り分けて作用することになり、特に駆動
ベルト17に過大な負荷変動が生じるこどはな<、該ヘ
ルトl7の耐久性を大きく向上できる. なお、上記実施例では、特に第8図fatに示すように
、低速回転時に各タイミング制御機亭薄をオンさせるよ
うにしたが、これとは逆に高速回転時にオンさせるよう
に構戒することもでき、このようにすれば高速回転時は
発生油圧が高し)点で有利である。この場合は勿論、吸
気タイミ(/グ制御機構はオン時開閉タイミングを遅ら
せるようGこ、排気タイミング制御機構はオン時進ませ
るよう6こ+i戒する必要がある. また上記実施例では、進角量.遅角盪はそれぞれ−・定
であったが、タイミング制御機構の構造.油圧の大きさ
等を可変にすることCこより、例−t[j第1)図(a
lにおける碩域AとCとで遅角量を変イヒさせるように
することもできる. 例えば領域Aでは第5図talに示す遅角量とし、領域
Cでは第10図fatに示す遅角量とする・二とGこよ
り、領域Aにおけるオーバーラップ量(16度)より領
域Cにおけるオーバーラノフ1(24度)が大きくなり
、高回転高負萄域C,こおし)で{jト気の脈動効果を
有効に利用でき、性能が向上ずる。
Furthermore, in this embodiment, the intake timing control mechanism 8 is installed on the intake camshaft 6, and the uP timing control mechanism 3 is installed on the exhaust camshaft 7, so that the relative relationship between the camshaft and the boolean when turned on is The direction of rotation is now the same, and the amount of advance angle of both timing controllers is now the same. Since the amount of retardation is made the same, both timing control mechanisms 8 and 9 can be used in common. Furthermore, since each control mechanism is provided on a separate camshaft and connected by a transmission chain 18, the timing control mechanism 8.9
Tension fluctuations caused by the installation of the belt will be distributed to the drive belt 17 and the transmission chain 18 and act on it, and in particular, there will be no excessive load fluctuations on the drive belt 17, greatly improving the durability of the belt 17. can. In the above embodiment, as shown in FIG. 8, each timing control mechanism was turned on during low-speed rotation, but on the contrary, it may be arranged to turn on during high-speed rotation. This is advantageous in that the hydraulic pressure generated is high during high-speed rotation. In this case, of course, it is necessary to set the intake timing control mechanism to delay the opening/closing timing when it is on, and to advance the exhaust timing control mechanism when it is on. The amount and retardation angle were respectively constant, but by making the structure of the timing control mechanism and the magnitude of oil pressure variable, example-t [j 1st) Fig. (a
It is also possible to vary the amount of retardation in the subregions A and C at l. For example, in area A, the retardation amount is set as shown in figure 5 tal, and in area C, the retardation amount is set as shown in figure 10 fat. 1 (24 degrees) becomes larger, and the pulsation effect of the air can be effectively utilized in the high rotation and high load range (C, Kooshi), improving performance.

また、領域Aにおいては第7図{δ}に示す遅角量を採
用することにより、領域Aにおけるオーメクーラノブ量
(34度)が領域Cにおけるオーノ\−ラノブ置より大
きくなり、燃費が向上する.また上記実施例では、吸気
カム軸6をクランク軸25で駆動する場合を説明したが
、本発明はυ[気カム軸をクランク軸で駆動する場合に
も勿論適用できる.また上記実施例では、V型エンジン
について説明したが、本発明は勿論他の直列型エンジン
にも通用できる。
Furthermore, by adopting the retardation amount shown in FIG. 7 {δ} in region A, the ohme cooler knob amount (34 degrees) in region A becomes larger than the Ohno/Ranob position in region C, improving fuel efficiency. Further, in the above embodiment, the case where the intake camshaft 6 is driven by the crankshaft 25 has been explained, but the present invention can of course be applied to the case where the intake camshaft 6 is driven by the crankshaft. Further, in the above embodiment, a V-type engine has been described, but the present invention can of course be applied to other in-line engines.

〔発明の効果〕〔Effect of the invention〕

以七のように本発明に係るDOHCエンジンのバルブタ
イミング制W機構によれば、吸気,排気タイミング制御
機構をカム軸方向両端に分けて配置したので、重量上,
及び配置スペース上のバランスが良好となる効果があり
、また第1項の発明では、同一カム軸の両端に上記各タ
イミング制御機構を配設したので、油圧制?In’J置
が1組で済み、従うて配置箇所も1箇所で済むから、上
記効果に加えてコスト上.配置箇所数上有利となる効果
もある.
As described above, according to the valve timing control W mechanism for a DOHC engine according to the present invention, since the intake and exhaust timing control mechanisms are arranged separately at both ends in the camshaft direction, the weight is reduced.
In addition, in the invention of item 1, each of the above-mentioned timing control mechanisms is arranged at both ends of the same camshaft, so that the hydraulic control system is not controlled. Since only one set of In'J locations is required, and therefore only one location is required, in addition to the above-mentioned effects, cost savings can be achieved. It also has an advantageous effect in terms of the number of placement locations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第8図は第1項の発明の一実施例によるバ
ルブタイ3ング制御装置を説明するための図であり、第
1図はヘソドカバーを外した状態の一部断面平面図、第
2図はタイ逅ング制御機構部分の断面平面図、第3図は
油圧制御装置部分の一部断面平面図、第4図は該実施例
装置が採用されたエンジンの側面図、第5図(a).第
6図(a),第7図(alはそれぞれ開閉タイ柔ングを
クランク角で示す図、第5図(b),第6図山),第7
図(blはそれぞれカム軸の進角,遅角量を示す図、第
8図(a),第8図+1)lはそれぞれタイミング制御
機構のオン,オフ領域をエンジン回転速度一負荷特性曲
線で示す図、第9図ないし第1)図は第2項の発明の一
実施例を説明するための図であり、第9図はヘンドカバ
ーを外した状態の一部断面平面図、第lO図(5)は開
閉タイミングをクランク角で示す図、第lO図fblは
カム軸の進角.遅角量を示す図、第1)ジン回転速度一
負荷特性曲線で示す図である.図において、lはDOH
Cエンジン、6.7は吸気8排気カム軸(一方.他方の
カム軸)、6a  6bは吸気カム軸の一端,他端、7
bは排気カム軸の他端、8は吸気タイミング制御機構(
第1タイミング制御機構)、9は排気タイミング制御機
構(第2タイミング制御機構)、25はクランク軸、で
ある.
1 to 8 are diagrams for explaining a valve tying control device according to an embodiment of the invention set forth in item 1. 3 is a partially sectional plan view of the hydraulic control device, FIG. 4 is a side view of the engine in which the embodiment device is adopted, and FIG. ). Figure 6 (a), Figure 7 (al is a diagram showing opening/closing tie bending in crank angle, Figure 5 (b), Figure 6 mountain), Figure 7
Figures (bl are diagrams showing the amount of advance and retardation of the camshaft, respectively, Figure 8 (a), Figure 8 + 1) l are the engine rotation speed vs. load characteristic curves that represent the on and off regions of the timing control mechanism, respectively. 9 to 1) are diagrams for explaining an embodiment of the invention of item 2, and FIG. 9 is a partially sectional plan view with the hand cover removed, and FIG. 5) is a diagram showing the opening/closing timing in terms of crank angle, and Figure 1O fbl shows the advance angle of the camshaft. 1) A diagram showing the amount of retardation; 1) A diagram showing the engine rotation speed vs. load characteristic curve. In the figure, l is DOH
C engine, 6.7 is the intake 8 exhaust camshaft (one side, the other camshaft), 6a 6b is one end of the intake camshaft, the other end, 7
b is the other end of the exhaust camshaft, 8 is the intake timing control mechanism (
9 is an exhaust timing control mechanism (second timing control mechanism), and 25 is a crankshaft.

Claims (3)

【特許請求の範囲】[Claims] (1)吸気カム軸及び排気カム軸を備えたDOHCエン
ジンのバルブタイミング制御装置において、上記何れか
一方のカム軸の一端をクランク軸で駆動するとともに、
該一方のカム軸の一端に、該一方のカム軸による開閉タ
イミングを低速時と高速時とで変化させる第1タイミン
グ制御機構を設け、該一方のカム軸の他端で他方のカム
軸を駆動するとともに、該一方のカム軸の他端に、上記
他方のカム軸による開閉タイミングを低速時と高速時と
で変化させる第2タイミング制御機構を設け、上記一方
のカム軸に上記両タイミング制御装置機構に作動油を供
給する油圧通路を形成し、該油圧通路を開閉する油圧制
御装置を上記一方のカム軸の端部に配設したことを特徴
とするDOHCエンジンのバルブタイミング制御装置。
(1) In a valve timing control device for a DOHC engine equipped with an intake camshaft and an exhaust camshaft, one end of one of the camshafts is driven by a crankshaft, and
A first timing control mechanism is provided at one end of the one camshaft to change the opening/closing timing of the one camshaft between low speed and high speed, and the other end of the one camshaft drives the other camshaft. At the same time, a second timing control mechanism is provided at the other end of the one camshaft to change the opening/closing timing by the other camshaft between low speed and high speed, and both timing control devices are provided at the one camshaft. A valve timing control device for a DOHC engine, characterized in that a hydraulic passage for supplying hydraulic oil to the mechanism is formed, and a hydraulic control device for opening and closing the hydraulic passage is disposed at an end of the one camshaft.
(2)吸気カム軸及び排気カム軸を備えたDOHCエン
ジンのバルブタイミング制御装置において、上記何れか
一方のカム軸の一端を第1伝動部材を介してクランク軸
で駆動するとともに、該一方のカム軸の一端に、該一方
のカム軸による開閉タイミングを低速時と高速時とで変
化させる第1タイミング制御機構を設け、該一方のカム
軸の他端で第2伝動部材を介して上記他方のカム軸の他
端を駆動するとともに、該他方のカム軸の他端に、該他
方のカム軸による開閉タイミングを低速時と高速時とで
変化させる第2タイミング制御機構を設けたことを特徴
とするDOHCエンジンのバルブタイミング制御装置。
(2) In a valve timing control device for a DOHC engine equipped with an intake camshaft and an exhaust camshaft, one end of one of the camshafts is driven by a crankshaft via a first transmission member, and A first timing control mechanism is provided at one end of the shaft to change the opening/closing timing of the one camshaft between low speed and high speed. A second timing control mechanism that drives the other end of the camshaft and changes the opening/closing timing of the other camshaft between low speed and high speed is provided at the other end of the other camshaft. Valve timing control device for DOHC engine.
(3)上記一方、他方のカム軸がそれぞれ吸気、排気カ
ム軸であり、上記第1タイミング制御機構が、吸気カム
軸による開閉タイミングを低速時は高速時より早くする
ように構成されており、第2タイミング制御機構が排気
カム軸による開閉タイミングを低速時は高速時と同一又
は高速時より遅くするように構成されていることを特徴
とする特許請求の範囲第1項又は第2項記載のDOHC
エンジンのバルブタイミング制御装置。
(3) The one and the other camshafts are intake and exhaust camshafts, respectively, and the first timing control mechanism is configured to make the opening/closing timing of the intake camshaft earlier at low speeds than at high speeds, Claim 1 or 2, wherein the second timing control mechanism is configured to make the opening/closing timing of the exhaust camshaft the same or slower at low speeds than at high speeds. DOHC
Engine valve timing control device.
JP16209589A 1989-06-23 1989-06-23 Valve timing control device for DOHC engine Expired - Fee Related JP2738745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16209589A JP2738745B2 (en) 1989-06-23 1989-06-23 Valve timing control device for DOHC engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16209589A JP2738745B2 (en) 1989-06-23 1989-06-23 Valve timing control device for DOHC engine

Publications (2)

Publication Number Publication Date
JPH0326815A true JPH0326815A (en) 1991-02-05
JP2738745B2 JP2738745B2 (en) 1998-04-08

Family

ID=15747978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16209589A Expired - Fee Related JP2738745B2 (en) 1989-06-23 1989-06-23 Valve timing control device for DOHC engine

Country Status (1)

Country Link
JP (1) JP2738745B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4205505A1 (en) * 1992-02-22 1993-08-26 Teves Gmbh Alfred Adjustable camshaft drive for IC engine - has identical angular adjustment, dependent upon engine load for identical camshafts
AU651925B2 (en) * 1992-03-11 1994-08-04 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Multi-cylinder internal combustion engine
DE19514786A1 (en) * 1995-04-21 1996-10-24 Audi Ag Automotive camshaft phase angle modifier
JP2009144521A (en) * 2007-12-11 2009-07-02 Honda Motor Co Ltd Valve gear equipped with phase control means
JP2009144522A (en) * 2007-12-11 2009-07-02 Honda Motor Co Ltd Valve gear equipped with phase control means
WO2014071927A1 (en) * 2012-11-12 2014-05-15 Schaeffler Technologies AG & Co. KG Camshaft adjustment device
CN104696034A (en) * 2013-12-05 2015-06-10 三菱自动车工业株式会社 Engine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4205505A1 (en) * 1992-02-22 1993-08-26 Teves Gmbh Alfred Adjustable camshaft drive for IC engine - has identical angular adjustment, dependent upon engine load for identical camshafts
AU651925B2 (en) * 1992-03-11 1994-08-04 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Multi-cylinder internal combustion engine
US5370090A (en) * 1992-03-11 1994-12-06 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Multi-cylinder internal combustion engine
US5423295A (en) * 1992-03-11 1995-06-13 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Multi-cylinder internal combustion engine
DE19514786A1 (en) * 1995-04-21 1996-10-24 Audi Ag Automotive camshaft phase angle modifier
DE19514786C2 (en) * 1995-04-21 2002-08-14 Audi Ag Device for discrete adjustment of the phase position of at least two camshafts
JP2009144521A (en) * 2007-12-11 2009-07-02 Honda Motor Co Ltd Valve gear equipped with phase control means
JP2009144522A (en) * 2007-12-11 2009-07-02 Honda Motor Co Ltd Valve gear equipped with phase control means
WO2014071927A1 (en) * 2012-11-12 2014-05-15 Schaeffler Technologies AG & Co. KG Camshaft adjustment device
CN104696034A (en) * 2013-12-05 2015-06-10 三菱自动车工业株式会社 Engine
US9587529B2 (en) 2013-12-05 2017-03-07 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Engine

Also Published As

Publication number Publication date
JP2738745B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
US5184581A (en) Valve timing retarding system
US6250266B1 (en) Variable valve timing mechanism for engine
KR940001313B1 (en) Valve driving mechanism for double overhead
KR101169856B1 (en) Internal combustion engine with variable valve gear
US5205251A (en) Rotary valve for internal combustion engine
DE60206808T2 (en) Combustion control system of spark ignition internal combustion engine with variable piston stroke and variable valve control device
EP1643086B1 (en) Multi-cylinder internal combustion engine
JPH10176508A (en) Valve system for internal combustion engine
US5085199A (en) V-type engine equipped with a supercharging device
US5216989A (en) Apparatus for driving various devices by internal combustion engine
JPH05503561A (en) Mutual conversion device between rotational motion and reciprocating motion
JP2021501846A (en) Variable valve timing system for engines
US20060027208A1 (en) Internal combustion engine control
US5351663A (en) V-type engine
US6189498B1 (en) Cam shaft drive for engine
JPH0326815A (en) Valve timing control device of dohc engine
JPH0333408A (en) Cam shaft bearing structure of dohc engine
US5297508A (en) Variable camshaft drive system for internal combustion engine
EP0854273A1 (en) Variable valve timing and valve events mechanism for an internal combustion engine
EP1384859B1 (en) Engine
JPH0326814A (en) Valve system of dohc engine
US5598630A (en) Method of designing family of DOHC cylinder heads
JP2638927B2 (en) Valve train for V-type engine
JPH0666111A (en) Power transfer device for engine
JPH0617617A (en) Camshaft drive for multicylinder type internal combustion engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees