JPH03267739A - Method for measuring effective gap rate of aquifer by water permeability test using tracer - Google Patents
Method for measuring effective gap rate of aquifer by water permeability test using tracerInfo
- Publication number
- JPH03267739A JPH03267739A JP6443890A JP6443890A JPH03267739A JP H03267739 A JPH03267739 A JP H03267739A JP 6443890 A JP6443890 A JP 6443890A JP 6443890 A JP6443890 A JP 6443890A JP H03267739 A JPH03267739 A JP H03267739A
- Authority
- JP
- Japan
- Prior art keywords
- tracer
- liquid
- permeated
- specimen
- aquifer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000700 radioactive tracer Substances 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims description 14
- 238000011041 water permeability test Methods 0.000 title claims description 10
- 239000007788 liquid Substances 0.000 claims abstract description 51
- 239000012466 permeate Substances 0.000 claims abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 230000035699 permeability Effects 0.000 claims description 15
- 238000012360 testing method Methods 0.000 claims description 12
- 239000002689 soil Substances 0.000 claims description 6
- 150000001450 anions Chemical class 0.000 claims description 4
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 claims description 3
- -1 chlorine ions Chemical class 0.000 claims description 3
- 229910052805 deuterium Inorganic materials 0.000 claims description 3
- 229910052801 chlorine Inorganic materials 0.000 claims description 2
- 239000000460 chlorine Substances 0.000 claims description 2
- 229910000278 bentonite Inorganic materials 0.000 abstract description 4
- 239000000440 bentonite Substances 0.000 abstract description 4
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 2
- 230000005855 radiation Effects 0.000 abstract description 2
- 239000004576 sand Substances 0.000 abstract description 2
- 238000002835 absorbance Methods 0.000 abstract 1
- 239000011148 porous material Substances 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000003673 groundwater Substances 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005325 percolation Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052722 tritium Inorganic materials 0.000 description 1
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、コンクリートや土壌を用いて有害物質を隔離
するとき、その透過移動速度を評価する場合に必要なパ
ラメータである帯水層の有効間隙率の測定方法に関し、
更に詳しくはトレーサを用いた透水試験による帯水層の
有効間隙率の高精度な測定法に関する。Detailed Description of the Invention (Industrial Field of Application) The present invention is designed to improve the effectiveness of an aquifer, which is a necessary parameter when evaluating the permeation rate of harmful substances when separating harmful substances using concrete or soil. Regarding the method of measuring porosity,
More specifically, the present invention relates to a highly accurate method for measuring the effective porosity of an aquifer through a water permeability test using a tracer.
(従来の技術)
透水係数は、JISで1層流状態における浸透流の動水
勾配に対する浸透流速の比をいう」と定義づけられてい
る。(Prior Art) The hydraulic conductivity is defined in JIS as "the ratio of the percolation flow velocity to the hydraulic gradient of the permeation flow in a single-layer flow state."
通常行なわれる透水試験においては、第3図(a)に示
すように、供試体を透過する液体の単位時間当たりの流
量Qを測定し、供試体の断面積Sで割って流速Vを求め
、更に動水勾配置で割って透水係数Kを算出し、透過性
の尺度としていた。In a commonly performed water permeability test, as shown in Figure 3 (a), the flow rate Q of the liquid permeating the specimen per unit time is measured and divided by the cross-sectional area S of the specimen to obtain the flow velocity V. Furthermore, the hydraulic permeability coefficient K was calculated by dividing by the hydraulic gradient position, and was used as a measure of permeability.
しかし、上記の流速Vは供試体の断面積Sで割っている
ため全断面の平均的な流速であり、見かけの流速となっ
ている。供試体には第3図(b)に示すように、水みち
となる間隙が分布しているので、透過液体の実流速はこ
れら水みちとなっている間隙部における透過液体の流速
であるべきである。However, since the above-mentioned flow velocity V is divided by the cross-sectional area S of the specimen, it is an average flow velocity over the entire cross section, and is an apparent flow velocity. As shown in Figure 3 (b), the specimen has gaps that serve as water channels, so the actual flow rate of the permeated liquid should be the flow rate of the permeated liquid in these gaps that serve as water channels. It is.
ここに供試体の有効間隙率をnとすれば、間隙部の断面
積は第3図(C)にしめすようにS′^nでになる。If the effective porosity of the specimen is n, then the cross-sectional area of the gap will be S'^n, as shown in FIG. 3(C).
従って、土などの多孔質物体中を透過する液体の透過性
(水では透水性)を実流速で評価する場合には、有効間
隙率nが必要なパラメータとなっている。Therefore, when evaluating the permeability of a liquid (water permeability in the case of water) through a porous object such as soil using the actual flow rate, the effective porosity n is a necessary parameter.
(発明が解決しようとする課題)
有効間隙率nは、従来より概念的には存在が認められな
がら測定が困難であるとされてきた。従来の間隙率の割
合の測定方法として、一般的な乾燥状態と飽和湿潤状態
との重量比から求める方法があるが、供試体の固相部分
のベントナイトは吸水膨張して体積変化をおこすため適
用できない。(Problems to be Solved by the Invention) Although the effective porosity n has been conceptually acknowledged to exist, it has been considered difficult to measure. The conventional method for measuring the porosity ratio is to calculate it from the weight ratio of the dry state and the saturated wet state, but this method is applicable because bentonite, which is the solid phase part of the specimen, expands by absorbing water and causes a volume change. Can not.
また、仮りに求められたとしても、これが有効間隙率と
一致するとも限らない、さらに、従来方法は、多孔質物
体の間隙の大きさを平均的にとらえた測定方法であるた
め、実態と合わない点があった。すなわち、多孔質物体
の間隙は大きさかまちまちであるため、平均的な透過性
で求めた従来の流速よりも実際のべ速は早いことが判っ
てきた。Furthermore, even if it were determined, it does not necessarily match the effective porosity.Furthermore, the conventional method is a measurement method that captures the average pore size of porous objects, so it does not match the actual situation. There was something missing. In other words, since the gaps in porous objects vary in size, it has been found that the actual flow velocity is faster than the conventional flow velocity determined based on average permeability.
このため、従来の方法から求めた数値は、最近の有害物
質の遮蔽構造物の設計などに用いる場合には、危険側の
結果を与える恐れが十分にある。地下水の浸透、有害物
質の遮蔽効果などを検討する場合は実流速を精度よく求
めることが必要とされ、そのためには有効間隙率nを精
度よく求めることがどうしても必要とされる。For this reason, there is a strong possibility that numerical values obtained using conventional methods may give dangerous results when used in the design of recent hazardous substance shielding structures. When examining groundwater penetration, harmful substance shielding effects, etc., it is necessary to accurately determine the actual flow velocity, and for this purpose, it is absolutely necessary to accurately determine the effective porosity n.
このように、有効間隙率nは実流速を求めるのに必要不
可欠のパラメータであるが、実流速はその時の水圧によ
って大きく変化し、不変のパラメータではない、一方、
有効間隙率は飽和状態であれば、はぼ一定値と考えられ
るなどの測定上の特異点を有する。In this way, the effective porosity n is an essential parameter for determining the actual flow rate, but the actual flow rate varies greatly depending on the water pressure at that time and is not an unchanging parameter.
If the effective porosity is in a saturated state, it has a peculiar point in measurement, such as being considered to be an approximately constant value.
(課題を解決するための手段及び作用)本発明は、前記
の課題の解決を目的とし、供試体中に1〜レーサを含む
液体を単位時間当たり一定量透過させておけば、トレー
サ濃度の経時変化から平均間隙流速を容易に解析できる
こと、並びに単位時間当たりの透過液量との関係から帯
水層の有効間隙率nを容易に算出できることに着目した
ものであって、土の透水試験装置を用い、供試体にトレ
ーサを含む液体を単位時間に一定量透過させ、そのとき
の透過液体中のトレーサ濃度の経時変化からトレーサの
移動速度を求め、そのときの透過液量との関係から有効
間隙率nを算出することを特徴とした新規なトレーサを
用いた透水試験による帯水層の有効間隔率測定法を提供
するものである。(Means and Effects for Solving the Problems) The present invention aims to solve the above-mentioned problems.If a fixed amount of liquid containing 1 to 1 to 100% of the laser per unit time is allowed to permeate into the specimen, the concentration of the tracer changes over time. This study focuses on the fact that the average pore flow velocity can be easily analyzed from changes in the average pore flow velocity, and that the effective porosity n of an aquifer can be easily calculated from the relationship with the amount of permeated liquid per unit time. A fixed amount of liquid containing the tracer permeates through the specimen per unit time, and the moving speed of the tracer is determined from the change in tracer concentration in the permeated liquid over time, and the effective gap is determined from the relationship with the amount of permeated liquid at that time. The present invention provides a method for measuring the effective spacing ratio of an aquifer by a water permeability test using a novel tracer, which is characterized by calculating the ratio n.
また本発明は、供試体にトレーサを含む液体を単位時間
に一定量透過させるための透過装置を取り付け、供試体
中を透過した液体のサンプルを経時的に採取するために
フラクションコレクタなどを設置し、採取した透過液体
中のトレーサ濃度の変化を経時的に化学分析してトレー
サの移動速度を求め、単位時間当たりの透過液量との関
係から有効間隙率nを算出することを特徴とした、新規
なトレーサを用いた透水試験による帯水層の有効間隔率
測定法を提供しようとするものである。 さらに本発明
は、供試体にトレーサを含む液体を単位時間に一定量透
過させるための透過装置として、低圧領域ではマリオッ
トタンク、高圧領域ではガス圧を利用した加圧装置を取
り付けることを特徴とする。また本発明は、透過させる
液体が水の場合、トレーサとして供試体に吸着されにく
い重水素や陰イオン、たとえば塩素イオン(CI−)等
を使用することを特徴とする。In addition, the present invention installs a permeation device to allow a fixed amount of liquid containing a tracer to pass through the specimen per unit time, and installs a fraction collector or the like to collect samples of the liquid that has permeated through the specimen over time. , characterized by chemically analyzing changes in the tracer concentration in the collected permeated liquid over time to determine the movement speed of the tracer, and calculating the effective porosity n from the relationship with the amount of permeated liquid per unit time, This paper attempts to provide a method for measuring the effective spacing of an aquifer using a permeability test using a new tracer. Furthermore, the present invention is characterized in that a Marriott tank is installed in the low pressure region and a pressurization device using gas pressure is installed in the high pressure region as a permeation device for permeating a fixed amount of liquid containing the tracer into the specimen per unit time. . Further, the present invention is characterized in that when the liquid to be permeated is water, deuterium or anions, such as chlorine ions (CI-), which are difficult to adsorb to the specimen, are used as tracers.
(実施例)
以下に、添付図面により本発明に係る実施例を具体的に
説明する。(Example) Examples of the present invention will be specifically described below with reference to the accompanying drawings.
第1図は本発明の有効間隔率測定法におけるトレーサを
用いた透水試験の工程説明図、第2図は本発明の有効間
隔率測定法における解析により求められた透過液体のト
レーサ濃度(C/Co)の経時変化曲線図、第3図は従
来の透水試験により求められた見かけの流速と実流速の
関係を示す説明図で、(a)見かけの流速、(b)供試
体の間隙の分布、(e)実流速(間隙部流速)である。Figure 1 is an explanatory diagram of the process of a water permeability test using a tracer in the method of measuring effective spacing ratio of the present invention, and Figure 2 is a diagram showing the tracer concentration (C/ Fig. 3 is an explanatory diagram showing the relationship between the apparent flow velocity and the actual flow velocity determined by a conventional water permeability test, and shows (a) the apparent flow velocity, and (b) the pore distribution of the specimen. , (e) Actual flow velocity (gap flow velocity).
第1図において、1は本発明のトレーサを用いた土の透
水試験装置であって、トレーサを含む透過用液体3を収
容するマリオットタンク2と、該マリオフ1〜タンク2
の下方にバイブ5を介して連結され、供試体5を装入可
能な試料容器4と、供試体5を透過した透過液体7を吐
出するために試料容器4の下方に設けられた吐出口6と
、透過液体7のサンプルを経時的に採取するために吐出
口6の下方に配設されたフラクションコレクタ8とから
なっている。In FIG. 1, reference numeral 1 denotes a soil permeability test apparatus using the tracer of the present invention, which includes a Marriott tank 2 containing a permeation liquid 3 containing a tracer, and the Marriott tanks 1 to 2.
A sample container 4 is connected to the lower part of the sample container 4 via a vibrator 5 and into which the specimen 5 can be inserted, and a discharge port 6 is provided below the sample container 4 to discharge the permeated liquid 7 that has passed through the specimen 5. and a fraction collector 8 disposed below the discharge port 6 to collect samples of the permeated liquid 7 over time.
試料容器4の内部は円形であって、底部にはステンレス
フィルタ11が取り付けられ、その上部にベーパフィル
タ12を重ねて、その上部に供試体5を装入し、更にそ
の上部にステンレスフィルタ13を取り付けて、間隙部
を透過するときの目づまりを防止する。The inside of the sample container 4 is circular, and a stainless steel filter 11 is attached to the bottom, a vapor filter 12 is placed on top of the vapor filter 12, a specimen 5 is placed on top of the vapor filter 12, and a stainless steel filter 13 is placed on top of the vapor filter 12. Attach it to prevent clogging when passing through the gap.
供試体5に対しトレーサ分含む透過用液体3を単位時間
に一定量透過させるためには、該液体3に透過圧力を付
加して調整しなければならないが、低圧の透過圧力で間
に合うときはマリオットタンク2を使用して、位1水頭
により液体3を自然落下させ透過させる。また高圧の透
過圧力を必要とするときは、液体3の上面をガス圧で加
圧するガス圧付加装置(図示せず)を設け、液体3を強
圧的に透過させる。In order to allow a certain amount of the permeation liquid 3 containing the tracer to permeate through the specimen 5 per unit time, it is necessary to add and adjust the permeation pressure to the liquid 3, but if a low permeation pressure is sufficient, Marriott Using the tank 2, the liquid 3 is allowed to fall and permeate by gravity with a water head of about 1. Further, when a high permeation pressure is required, a gas pressure applying device (not shown) is provided to pressurize the upper surface of the liquid 3 with gas pressure, and the liquid 3 is forcibly permeated.
供試体5はベントナイト(クニゲルVl)と砂(透水性
の増加のため〉を混合したもので、アクリル製の円筒カ
ラム(5C)+−φ)で成型し充分に通水させてから試
料容器4に装入する。なお液体3が装入の隙間から漏れ
ないように、供試体5の外形は試料容器4の円形内面に
適合されている。Specimen 5 is a mixture of bentonite (Kunigel Vl) and sand (to increase water permeability), and is molded in an acrylic cylindrical column (5C) + - φ), and after passing sufficient water through it, it is placed in sample container 4. Charge to. Note that the outer shape of the specimen 5 is adapted to the circular inner surface of the sample container 4 so that the liquid 3 does not leak from the charging gap.
マリオットタンク2内の透過用液体3にはトレーサが一
定量注入される。トレーサとしては、安定同位体元素(
重水素など)、放射性同位体元素(トリチウムなど)、
陰イオンなどが用いられるが、透過させる液体が水の場
合、トレーサとして供試体に吸着されに<<、測定の容
易な塩化イオン(CI)の使用が望ましい。 供試体5
を透過した透過液体7に対して、吐出口10に至る途中
に透過液量測定装置10が設けられ、経時的に透過液量
を測定する。A fixed amount of tracer is injected into the permeation liquid 3 in the Marriott tank 2. As tracers, stable isotope elements (
deuterium, etc.), radioactive isotope elements (tritium, etc.),
Although anion or the like is used, if the liquid to be permeated is water, it is preferable to use chloride ion (CI), which is easily measured as it is adsorbed to the specimen as a tracer. Specimen 5
A permeated liquid amount measuring device 10 is provided on the way to the ejection port 10 for the permeated liquid 7 that has passed through, and measures the amount of permeated liquid over time.
またフラクションコしフタ8に一定時I?′1毎に採取
された透過液体7はトレーサ濃度測定装置9に送られ、
化学分析されてトレーサ濃度(CCO)の経時変化が測
定される。なおトレーサ濃度測定装置9にはトレーサに
合わせて原子吸光分析、イオンクロマト(陰イオン)、
質量分析計(安定同位体元素)放射線検出器などが使用
される。Also, the fraction is poured into the lid 8 for a certain period of time. The permeated liquid 7 collected every '1 is sent to the tracer concentration measuring device 9,
A chemical analysis is performed to measure the tracer concentration (CCO) over time. The tracer concentration measuring device 9 has atomic absorption spectrometry, ion chromatography (anion),
Mass spectrometers (stable isotope elements), radiation detectors, etc. are used.
本発明の試験例では、透過用液体3としてトレーサ(C
ト)を含む水溶液を用い、供試体5を透過させた。本試
験例では透水溶液のトし−サ濃度(C、’Co)の実測
値は、第2図に示すように経時変化した。そのときの透
水量は下記の第1表に示すように、5X】0−″C細’
/secである。また供試体5は5cmφ中の円柱状で
ある。In the test example of the present invention, tracer (C
Specimen 5 was permeated using an aqueous solution containing (g). In this test example, the measured values of the torsion concentration (C, 'Co) of the permeable solution changed over time as shown in FIG. At that time, the water permeability is as shown in Table 1 below.
/sec. Further, the specimen 5 has a cylindrical shape with a diameter of 5 cm.
本試験例では透水量が一定で、透水前のトレーサ濃度(
Co)が常に一定なので、解析には一次元の移流、分散
を考慮した下記の(1)式が適用され、下記の初期条件
及び境界条件により解かれる。In this test example, the water permeation rate was constant, and the tracer concentration before water permeation (
Since Co) is always constant, the following equation (1) that takes into account one-dimensional advection and dispersion is applied to the analysis, and is solved using the following initial conditions and boundary conditions.
初期条件
境界条件
C=0 : t=0. x≧0C=Co:
x=0. t≧0
C=O: X→ω、t〉0
に示すが、実測値とほぼ一致している。Initial condition boundary condition C=0: t=0. x≧0C=Co:
x=0. t≧0 C=O: X→ω, t>0, which is almost in agreement with the measured value.
第1表
解析条件 結果
ただし、co=初期濃度、erf : 誤差関数C:
間隙水中トレーサ濃度 t:時間
D・分散係数 X:座標 ■:平均間隙流速この解析
により、未知数である平均間隙流速と分散係数を決定す
る2ここで、流速が小さいと分子拡散(2X 10−’
c難2./5ec)の影響が大きくなり、平均間隙流速
の信頼性が小さくなる。本試験例の解析条件及び結果を
第1表に示し、解析結果のトレーサ濃度(C/’Co)
の経時変化を第2表の曲線本発明の実流速に相当する平
均間隙流速は1.IX 10−’am/ sec で
あって、分子拡散に比べ十分に大きい。Table 1 Analysis conditions Results where co=initial concentration, erf: error function C:
Tracer concentration in pore water t: Time D/dispersion coefficient
Difficulty 2. /5ec) increases, and the reliability of the average pore flow velocity decreases. The analysis conditions and results of this test example are shown in Table 1, and the tracer concentration (C/'Co) of the analysis results is shown in Table 1.
The average pore flow velocity corresponding to the actual flow velocity of the present invention is 1. IX 10-'am/sec, which is sufficiently large compared to molecular diffusion.
次に第1表に示す本試験例の単位時間当たり透水量(Q
cm”/ 5ec)、試供体の断面1(Sea’)、
求められた平均間隙流速(V cva/ 5ec)から
下記の(2)式により有効間隙率nを求める。Next, water permeability per unit time (Q
cm”/5ec), cross section 1 (Sea’) of the specimen,
From the obtained average pore flow velocity (V cva/5ec), the effective porosity n is determined by the following equation (2).
・・・・・・(わ ■×S すなわち、 であった。······(circle ■×S That is, Met.
本試験例で求められた有効間隙率はベントナイトが吸水
膨張しないと仮定した時の間隙率の半分程に相当し、飽
和度は100%に達している。The effective porosity determined in this test example corresponds to about half of the porosity assuming that bentonite does not expand upon water absorption, and the degree of saturation reaches 100%.
この結果は今までに報告されている泥粘土質層(間隙率
45〜50%)の有効間隙率15〜20%とほぼ一致す
る。(水理公式集昭46年)(発明の効果)
本発明によれば土のような多孔質物体帯水層の有効間隙
率並びに実流速をトレーサを含む透過液体を用いた透水
試験と解析により精度よく求めることができるから、地
下水の浸透、有害物質の遮蔽効果などを検討する場合に
極めて有効である。This result almost agrees with the effective porosity of 15 to 20% for muddy clay layers (porosity of 45 to 50%) that have been reported so far. (Hydraulic Official Collection, 1972) (Effects of the Invention) According to the present invention, the effective porosity and actual flow rate of an aquifer of a porous material such as soil can be determined by conducting a permeability test and analysis using a permeated liquid containing a tracer. Since it can be determined with high accuracy, it is extremely effective when examining groundwater penetration, the effect of shielding harmful substances, etc.
また、砂漠における塩害の発生などに見られるような土
あるいは多孔質な岩石中を水によって運ばれる物質の移
動速度を解析する場合にも、本発明の測定方法が有効で
ある。The measurement method of the present invention is also effective when analyzing the movement speed of substances carried by water in soil or porous rocks, such as when salt damage occurs in deserts.
そしてまた本発明は、環境汚染防止、砂漠化防止に対応
する要素技術であり、時代の要請に適合した発明である
。Furthermore, the present invention is an elemental technology for preventing environmental pollution and desertification, and is an invention that meets the needs of the times.
第1図は本発明の有効間隔率測定法におけるトレーサを
用いた透水試験の工程説明図、第2図は本発明の有効間
隔率測定法における解析により求められた透過液体のト
レーサ濃度(C/Co)の経時変化曲線図、第3図は従
来の透水試験により求められた見かけの流速と実流速の
関係を示す説明図で、(a)見かけの流速、(b)供試
体の間隙の分布、(c)実流速(間隙部流速)である。
図中。
1・・・透水試験装置 2・・マリオッ1へタンク3
・・・透過用液体 4・・試料容器5・・・供試体
8・・フラクションコレクタ9・・・トレーサ
濃度測定装置
10・・・透過液量測定装置
11.13・・・ステンレスフィルタ
12・・・ペーパフィルタFigure 1 is an explanatory diagram of the process of a water permeability test using a tracer in the method of measuring effective spacing ratio of the present invention, and Figure 2 is a diagram showing the tracer concentration (C/ Fig. 3 is an explanatory diagram showing the relationship between the apparent flow velocity and the actual flow velocity determined by a conventional water permeability test, and shows (a) the apparent flow velocity, and (b) the pore distribution of the specimen. , (c) Actual flow velocity (gap flow velocity). In the figure. 1... Water permeability test device 2... Tank 3 to Marriott 1
...Permeate liquid 4...Sample container 5...Specimen 8...Fraction collector 9...Tracer concentration measuring device 10...Permeate liquid amount measuring device 11.13...Stainless steel filter 12...・Paper filter
Claims (4)
む液体を単位時間に一定量透過させ、そのときの透過液
体中のトレーサ濃度の経時変化からトレーサの移動速度
を求め、そのときの透過液量との関係から有効間隙率n
を算出することを特徴としたトレーサを用いた透水試験
による帯水層の有効間隙率測定法。(1) Using a soil permeability test device, a fixed amount of liquid containing a tracer is permeated through the specimen per unit time, and the movement speed of the tracer is determined from the change in tracer concentration in the permeated liquid over time. From the relationship with the amount of permeated liquid, the effective porosity n
A method for measuring the effective porosity of an aquifer using a permeability test using a tracer, which is characterized by calculating the porosity of an aquifer.
透過させるための透過装置を取り付け、供試体中を透過
した液体のサンプルを経時的に採取するためにフラクシ
ョンコレクタなどを設置し、採取した透過液体中のトレ
ーサ濃度の変化を経時的に化学分析してトレーサの移動
速度を求め、単位時間当たりの透過液量との関係から有
効間隙率nを算出することを特徴とした請求項1記載の
トレーサを用いた透水試験による帯水層の有効間隔率測
定法。(2) Attach a permeation device to allow a fixed amount of liquid containing the tracer to permeate through the specimen per unit time, and install a fraction collector etc. to collect samples of the liquid that permeated through the specimen over time. Claim 1 characterized in that the movement speed of the tracer is determined by chemically analyzing changes in tracer concentration in the permeated liquid over time, and the effective porosity n is calculated from the relationship with the amount of permeated liquid per unit time. A method for measuring the effective spacing of an aquifer using a permeability test using the described tracer.
透過させるための透過装置として、低圧領域ではマリオ
ットタンク、高圧領域ではガス圧を利用した加圧装置を
取り付けたことを特徴とする請求項1及び2記載のトレ
ーサを用いた透水試験による帯水層の有効間隙率測定法
。(3) A claim characterized in that a Marriott tank is installed in the low pressure region and a pressurization device using gas pressure is installed in the high pressure region as a permeation device for permeating a fixed amount of liquid containing a tracer into the specimen per unit time. A method for measuring the effective porosity of an aquifer by a water permeability test using the tracer described in Items 1 and 2.
体に吸着されにくい重水素や陰イオン、たとえば塩素イ
オン(Cl^−)等を使用することを特徴とする請求項
1ないし3記載のトレーサを用いた透水試験による帯水
層の有効間隔率測定法。(4) When the liquid to be permeated is water, the tracer according to any one of claims 1 to 3, characterized in that deuterium or anions that are difficult to adsorb to the specimen, such as chlorine ions (Cl^-), are used as the tracer. A method for measuring the effective spacing of an aquifer using a permeability test.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6443890A JPH03267739A (en) | 1990-03-16 | 1990-03-16 | Method for measuring effective gap rate of aquifer by water permeability test using tracer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6443890A JPH03267739A (en) | 1990-03-16 | 1990-03-16 | Method for measuring effective gap rate of aquifer by water permeability test using tracer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03267739A true JPH03267739A (en) | 1991-11-28 |
Family
ID=13258285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6443890A Pending JPH03267739A (en) | 1990-03-16 | 1990-03-16 | Method for measuring effective gap rate of aquifer by water permeability test using tracer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03267739A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006064394A (en) * | 2004-08-24 | 2006-03-09 | Taisei Corp | Tracer testing machine |
JP2007064721A (en) * | 2005-08-30 | 2007-03-15 | Railway Technical Res Inst | Gas sampling device, gas sampling cell and gas sampling method |
CN102359929A (en) * | 2011-09-07 | 2012-02-22 | 福建工程学院 | Test method for permeation coefficient of permeable concrete |
JP2012127673A (en) * | 2010-12-13 | 2012-07-05 | Yonden Gijutsu Consultant:Kk | Permeability testing device |
CN103344540A (en) * | 2013-06-28 | 2013-10-09 | 武汉理工大学 | Device for continuously characterizing compactness of set cement and testing method |
CN104749083A (en) * | 2015-03-31 | 2015-07-01 | 西安理工大学 | Constant head saturated infiltration instrument capable of automatically supplementing water |
CN108226006A (en) * | 2017-12-28 | 2018-06-29 | 哈尔滨工业大学 | The test method of cement-based material fluid permeability |
CN109187213A (en) * | 2018-09-21 | 2019-01-11 | 同济大学 | Concrete-high-pressure solid bentonite combined system condition simulation experiment method and device |
CN109342286A (en) * | 2018-09-17 | 2019-02-15 | 北京市水科学技术研究院 | A kind of permeable pavement ground water permeability on-the-spot test method and device |
-
1990
- 1990-03-16 JP JP6443890A patent/JPH03267739A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006064394A (en) * | 2004-08-24 | 2006-03-09 | Taisei Corp | Tracer testing machine |
JP4564306B2 (en) * | 2004-08-24 | 2010-10-20 | 大成建設株式会社 | Tracer test apparatus and tracer test method |
JP2007064721A (en) * | 2005-08-30 | 2007-03-15 | Railway Technical Res Inst | Gas sampling device, gas sampling cell and gas sampling method |
JP4555751B2 (en) * | 2005-08-30 | 2010-10-06 | 財団法人鉄道総合技術研究所 | Gas sampling device, gas sampling cell and gas sampling method |
JP2012127673A (en) * | 2010-12-13 | 2012-07-05 | Yonden Gijutsu Consultant:Kk | Permeability testing device |
CN102359929A (en) * | 2011-09-07 | 2012-02-22 | 福建工程学院 | Test method for permeation coefficient of permeable concrete |
CN103344540A (en) * | 2013-06-28 | 2013-10-09 | 武汉理工大学 | Device for continuously characterizing compactness of set cement and testing method |
CN103344540B (en) * | 2013-06-28 | 2016-02-03 | 武汉理工大学 | A kind of method of testing of continuous sign Behavior of Hardened Cement Paste packing |
CN104749083A (en) * | 2015-03-31 | 2015-07-01 | 西安理工大学 | Constant head saturated infiltration instrument capable of automatically supplementing water |
CN108226006A (en) * | 2017-12-28 | 2018-06-29 | 哈尔滨工业大学 | The test method of cement-based material fluid permeability |
CN108226006B (en) * | 2017-12-28 | 2020-07-07 | 哈尔滨工业大学 | Method for testing fluid permeability of cement-based material |
CN109342286A (en) * | 2018-09-17 | 2019-02-15 | 北京市水科学技术研究院 | A kind of permeable pavement ground water permeability on-the-spot test method and device |
CN109187213A (en) * | 2018-09-21 | 2019-01-11 | 同济大学 | Concrete-high-pressure solid bentonite combined system condition simulation experiment method and device |
CN109187213B (en) * | 2018-09-21 | 2021-07-02 | 同济大学 | Performance simulation test method and device for concrete-high compaction bentonite combined system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sanford et al. | Dissolved gas tracers in groundwater: Simplified injection, sampling, and analysis | |
Jury et al. | Field study of napropamide movement through unsaturated soil | |
JP2003513263A (en) | Apparatus and method for measuring liquid and solute flux in flow system | |
Verreydt et al. | Passive samplers for monitoring VOCs in groundwater and the prospects related to mass flux measurements | |
JPH03267739A (en) | Method for measuring effective gap rate of aquifer by water permeability test using tracer | |
Carter et al. | Helium as a ground‐water tracer | |
Chin et al. | Estimating soil/sediment partition coefficients for organic compounds by high performance reverse phase liquid chromatography | |
Larson et al. | Adsorption isotope effects for carbon dioxide from illite-and quartz-packed column experiments | |
Hahn | Improved gas chromatographic method for field measurement of nitrous oxide in air and water using a 5A molecular sieve trap | |
Skoczylas | Analyzing the parameters of the coal—Gas system using a low-cost device based on a flowmeter | |
Korom | An adsorption isotherm for bromide | |
Namiesnik | Permeation devices for the preparation of standard gaseous mixtures | |
Joos et al. | Calibration of peroxyacetyl nitrate measurements with an NOx [nitrogen oxides] analyzer | |
Liang et al. | Passive membrane sampler for assessing VOCs contamination in unsaturated and saturated media | |
JP6872780B2 (en) | Radioactive cesium dynamics monitoring device and its method | |
Carlo et al. | Testing the radon-in-water probe set-up for the measurement of radon in water bodies | |
Van Der Straeten et al. | Comparison between theoretical and experimental sampling efficiencies on Tenax GC | |
Zhong et al. | Transport of perfluorocarbon tracers and carbon dioxide in sediment columns–Evaluating the application of PFC tracers for CO2 leakage detection | |
Wang et al. | Water and ion diffusion in partially-water saturated compacted kaolinite: Role played by vapor-phase diffusion in water mobility | |
SEVERS et al. | Dynamic U-tube system for solid sorbent air sampling method development | |
Ma et al. | Determination of VOCs in groundwater at an industrial contamination site using a homemade low-density polyethylene passive diffusion sampler | |
Farrell et al. | 4.2 Gas Sampling and Analysis | |
Schlüter et al. | Mercury translocation in and evaporation from soil. I. soil lysimeter experiments with 203Hg‐radiolabeled compounds | |
Sobotkova et al. | Method of in-line bromide breakthrough curve measurements for column leaching experiments | |
Verreydt et al. | Lab and field screening of 5 selected passive samplers for the measurement of VOC fluxes in groundwater. |