JPH03266370A - Fuel cell generator device - Google Patents

Fuel cell generator device

Info

Publication number
JPH03266370A
JPH03266370A JP2065159A JP6515990A JPH03266370A JP H03266370 A JPH03266370 A JP H03266370A JP 2065159 A JP2065159 A JP 2065159A JP 6515990 A JP6515990 A JP 6515990A JP H03266370 A JPH03266370 A JP H03266370A
Authority
JP
Japan
Prior art keywords
cell
fuel
manifold
air
box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2065159A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yamauchi
康弘 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2065159A priority Critical patent/JPH03266370A/en
Publication of JPH03266370A publication Critical patent/JPH03266370A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To prevent the output increase per unit volume and the cell breakage of thermal stress, by integrating a fuel manifold with an air manifold to form a box vessel, and mounting a fuel cell vertically thereto. CONSTITUTION:A fuel manifold 35 and an air manifold 36 are integrated and formed into a box vessel. For example, cylindrical cells 31 are mounted in such a manner that their axial directions are vertical to the box vessel. As the cylindrical cells 31 are supported by the box vessel, they can be formed without any support pipe, and thus a number of miniature ones can be closely disposed, resulting in an increase in output per unit volume of cell. The fuel and air are sent in the same direction through a box manifold. Thus, the temperature during operation is changed only in the axial direction of the cell, and the thermal expansion is released in the axial direction of the cell, so that the cell breakage of thermal stress can be prevented.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、水素、−酸化炭素、メタン等の炭化水素、メ
タノール等のアルコールを使用する燃料電池発電装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a fuel cell power generation device that uses hydrogen, carbon oxide, hydrocarbons such as methane, and alcohols such as methanol.

[従来の技術] (1)従来技術例1(米国ウェスチングツ1ウス・エレ
クトリック・コーポレーション 出展: FuelCe
lls Handbook May、 1988)第5
図は、カルシア安定化ジルコニアで作られた円筒形状の
セルの断面図を示す。図中の1は、電子絶縁性の長尺な
多孔質支持管である。この支持管1の周りには、薄い(
厚さ200〜800μm)の多孔性空気極2が付着され
ている。前記空気極2は、ドーピングされたベロブスキ
ー石型構造の酸化物例えばLaMnO3,CaMn0.
、LaNiO3,LaCoO3,LaCr0i等又はこ
れらの酸化物の混合物を用いて形成される。前記空気極
2の外周面上には、イツトリア安定化ジルコニアで作ら
れた気密な固体電解質3が設けられている。この固体電
解質3は、ニッケルージルコニア・サーメットでできた
燃料極4により包囲されている。なお、図中の5はイン
クコネクタ、6はインクコネクタ接点である。前記固体
電解質3及びインクコネクタ5は、両方共セル間を直列
に接続するための電気的接続材料を組込めるように不連
続をもつ。
[Conventional technology] (1) Conventional technology example 1 (Western Electric Corporation, USA, Exhibitor: FuelCe)
lls Handbook May, 1988) No. 5
The figure shows a cross-sectional view of a cylindrical shaped cell made of calcia stabilized zirconia. 1 in the figure is an electronically insulating elongated porous support tube. There is a thin (
A porous air electrode 2 with a thickness of 200 to 800 μm is attached. The air electrode 2 is made of a doped Berovskiite-type oxide such as LaMnO3, CaMn0.
, LaNiO3, LaCoO3, LaCrOi, etc., or a mixture of these oxides. An airtight solid electrolyte 3 made of yttria-stabilized zirconia is provided on the outer peripheral surface of the air electrode 2. This solid electrolyte 3 is surrounded by a fuel electrode 4 made of nickel-zirconia cermet. Note that 5 in the figure is an ink connector, and 6 is an ink connector contact. Both the solid electrolyte 3 and the ink connector 5 have discontinuities to allow for the incorporation of electrical connection material for serially connecting cells.

上記構造のセルは、第6図に示す如く組立て発電を行う
。なお、図中の7はNiフェルト、8はNi板、9は燃
料偏集重体、10は空気側集電体である。
The cells having the above structure are assembled to generate power as shown in FIG. In the figure, 7 is a Ni felt, 8 is a Ni plate, 9 is a fuel unevenly concentrated body, and 10 is an air side current collector.

(2)従来技術例2(米国、アルゴンヌ国立研究所 出
展: ATOMJCENEI?GY OF CANAD
A LJ)IITEDJune、1987) 第7図は、平板形セルの集合体の断面図を示す。
(2) Prior art example 2 (Argonne National Laboratory, U.S.A. Source: ATOMJCENEI?GY OF CANAD
A LJ) IITED June, 1987) Figure 7 shows a cross-sectional view of an assembly of flat cells.

図中の11は、ニッケルージルコニアサーメットからな
る燃料極(アノード)である。この燃料極11には、電
解質12、空気極13が積層され、セル14が構成され
ている。ここで、電解質12はイツトリア安定化ジルコ
ニアからなる。空気極は、ドーピングされたベロブスキ
ー石型構造の酸化物、例えばLaMnO3、LaCoO
3、LaCry、等又はこれらの酸化物の混合物からな
る。
11 in the figure is a fuel electrode (anode) made of nickel-zirconia cermet. An electrolyte 12 and an air electrode 13 are stacked on the fuel electrode 11 to form a cell 14. Here, the electrolyte 12 is made of ittria-stabilized zirconia. The air electrode is made of a doped Berovskiite-type oxide, e.g. LaMnO3, LaCoO
3, LaCry, etc. or a mixture of these oxides.

前記燃料極11等は、上記材料粉末を適当な分散剤と結
合剤を用い、均一な泥しようにしてテープキャスティン
グ法により均一な膜厚の帯状の膜にすることにより作ら
れる。前記燃料極11.電解質12及び空気極13は、
約1300℃で焼結させてセルとなる。これらのセル同
士を電気的に接続し、かつ、燃料と酸化剤の混合を防ぐ
ため、セルとセルの間に接続材が挾まれている。また、
それぞれのセル14と接続材の間には、燃料極材。
The fuel electrode 11 and the like are made by turning the material powder into a uniform slurry using a suitable dispersant and binder and forming it into a band-shaped film with a uniform thickness by tape casting. The fuel electrode 11. The electrolyte 12 and the air electrode 13 are
It is sintered at about 1300°C to form cells. A connecting material is interposed between the cells in order to electrically connect these cells and prevent the fuel and oxidizer from mixing. Also,
A fuel electrode material is provided between each cell 14 and the connecting material.

空気極材で作られた波状板15か配置され、これによっ
て作られる隙間を、燃料極側を燃料が、空気極側を酸化
剤か通り反応する。燃料及び酸化剤通路は各々直交する
ようになっており、矩形のセル端部に取付けられた供給
用マニホールドより、燃料、酸化剤が供給1回収される
A corrugated plate 15 made of a cathode material is arranged, and through the gap created by this, fuel passes through the fuel electrode side and an oxidant passes through the air electrode side, causing a reaction. The fuel and oxidizer passages are orthogonal to each other, and the fuel and oxidizer are supplied and recovered from a supply manifold attached to the end of the rectangular cell.

こうしたセル集合体は、第8図に示すように燃料供給ヘ
ッダ16及び酸化剤供給へラダ17を取付けて発電を行
う。
Such a cell assembly generates electricity by attaching a ladder 17 to a fuel supply header 16 and an oxidizer supply, as shown in FIG.

[発明が解決しようとする課題] しかし、従来の技術には、以下の課題がある。[Problem to be solved by the invention] However, the conventional technology has the following problems.

(従来技術1)・・・単位体積当り出力が小さい。即ち
、セルに構造上の一体性を与えるためにカルシア安定化
ジルコニア製の多孔質支持管1を用いているため、セル
直径の大きさに制限があり、かつ重量も重く、単位体積
当りの出力が約1100k/m3と小さい。なお、この
出力値は、第8図において、セル配列ピッチ1.5 D
 (Dはセル直径)、燃料、空気マニホールドの厚さ1
cm、燃料室の厚さ1cn+の条件下で計算した値であ
る。
(Prior art 1)... Output per unit volume is small. That is, since the porous support tube 1 made of calcia-stabilized zirconia is used to provide structural integrity to the cell, the cell diameter is limited, the weight is heavy, and the output per unit volume is limited. is small at approximately 1100k/m3. In addition, this output value is calculated based on the cell arrangement pitch of 1.5 D in FIG.
(D is cell diameter), fuel and air manifold thickness 1
cm, and the value calculated under the condition that the thickness of the fuel chamber is 1 cm+.

(従来技術2)・・・熱応力によるセル破壊。即ち、平
板型のセル14を用いるため、少なくともセルの2辺を
固定して燃料と酸化剤が混合しないよう気密構造とする
必要がある。しかし、セル14で発熱した熱を燃料及び
酸化剤の顕熱で除去するため、燃料及び酸化剤の入口、
出口で温度差が150〜250℃生しる。このため、平
板内に圧縮応力が生じ、セル14が破壊する恐れがある
(Prior art 2) Cell destruction due to thermal stress. That is, since the flat cell 14 is used, it is necessary to fix at least two sides of the cell and create an airtight structure so that the fuel and oxidizer do not mix. However, in order to remove the heat generated in the cell 14 by the sensible heat of the fuel and oxidizer, the inlet of the fuel and oxidizer,
A temperature difference of 150-250°C occurs at the outlet. Therefore, compressive stress is generated within the flat plate, and there is a possibility that the cell 14 may be destroyed.

本発明は上記事情に鑑みてなされたもので、単位体積当
りの出力を大きくできるとともに、熱応力によるセル破
壊を回避しえる燃料電池発電装置を提供することを目的
とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a fuel cell power generation device that can increase the output per unit volume and avoid cell destruction due to thermal stress.

[課題を解決するための手段] 本発明では、従来5OFCセルを集合体として組み立て
た後に、燃料、空気供給マニホールドを取り付けていた
ものを、セルと一体化したマニホールドにしている。即
ち、本発明は、反応により熱が発生するセル部をマニホ
ールド面に対して垂直に配置し、セルの軸方向に燃料、
空気を流すことにより、セルの軸方向にのみ温度分布を
生じさせ、この温度上昇によるセルの熱膨脹をセルの軸
方向に逃がすことを特徴とする。より具体的には、「単
位体積当り出力の向上」は、基体管をもたずセル自身で
構造的に一体性をもったセルを用い、これを平板状のガ
スマニホールド上に垂直かつ緻密に配置することにより
行った。又、「熱応力によるセル破壊の防止」は、平板
状のガスマニホールドの上にセルを垂直に燃料と酸化剤
の流れを平行流とし、さらにセルの支持部をガスマニホ
ールド側の端部に限定することにより行った。
[Means for Solving the Problems] In the present invention, the conventional method of assembling 5OFC cells as an assembly and then attaching fuel and air supply manifolds is now made into a manifold that is integrated with the cells. That is, in the present invention, the cell part where heat is generated by reaction is arranged perpendicularly to the manifold surface, and the fuel and
By flowing air, a temperature distribution is created only in the axial direction of the cell, and thermal expansion of the cell due to this temperature rise is released in the axial direction of the cell. More specifically, ``improvement of output per unit volume'' is achieved by using a cell that has no base tube and has structural integrity by itself, and by vertically and densely mounting it on a flat gas manifold. This was done by arranging. In addition, "prevention of cell destruction due to thermal stress" is achieved by placing the cell vertically on a flat gas manifold so that the fuel and oxidizer flow in parallel, and further limiting the supporting part of the cell to the end on the gas manifold side. It was done by doing.

[作用] 本発明によれば、下記に詳述する単位体積当りの出力の
向上、熱応力によるセル破壊の防止を達成できる。
[Function] According to the present invention, it is possible to improve the output per unit volume and prevent cell destruction due to thermal stress, which will be described in detail below.

(1)単位体積当り出力の向上 セル自身に構造的な一体性を持たせたため、セルの形状
に任意性がある。このため、円筒形のセルでは直径を5
n程度まで小さくすることが可能であり、平板形のセル
では厚さを1〜2 mmにすることかできる。これらを
平板状のガスマニホールド上に密に配置することにより
、セルの単位体積当りの発電有効面積を増加させ、単位
体積当りの出力を向上させる。
(1) Improvement in output per unit volume Since the cell itself has structural integrity, the shape of the cell is arbitrary. Therefore, for a cylindrical cell, the diameter should be 5
It is possible to reduce the thickness to about n, and the thickness can be reduced to 1 to 2 mm in a flat cell. By densely arranging these on a flat gas manifold, the effective power generation area per unit volume of the cell is increased, and the output per unit volume is improved.

(2)熱応力によるセル破壊の防止 燃料と酸化剤の流れを平行流とすることにより、セルに
電流が流れる場合の内部抵抗による発熱により生じる温
度分布をセルのガス流れ方向にのみ生じるようにでき、
ガスマニホールド面内での温度分布が生じにくくなる。
(2) Prevention of cell destruction due to thermal stress By making the fuel and oxidizer flow in parallel, the temperature distribution caused by heat generation due to internal resistance when current flows through the cell is prevented from occurring only in the gas flow direction of the cell. I can do it,
Temperature distribution within the gas manifold surface is less likely to occur.

また、セルの支持部をガスマニホールド側の端部に限定
されているため、セルの発熱により生じる熱膨張による
歪が生じにくい。これらの効果により熱応力によるセル
の破壊が防止できる。
In addition, since the support portion of the cell is limited to the end portion on the gas manifold side, distortion due to thermal expansion caused by heat generation of the cell is less likely to occur. These effects can prevent cell destruction due to thermal stress.

[実施例] 以下、本発明の一実施例を第1図、第2図及び第3図を
参照して説明する。ここで、第1図は本発明に係る燃料
電池発電装置の概略斜視図、第2図は燃料及び空気マニ
ホールドとセルとの結合状態を示す部分断面図、第3図
はマニホールド接続時の電気的接続を示す部分断面図で
ある。
[Example] Hereinafter, an example of the present invention will be described with reference to FIGS. 1, 2, and 3. Here, FIG. 1 is a schematic perspective view of a fuel cell power generation device according to the present invention, FIG. 2 is a partial sectional view showing the state of connection between the fuel and air manifold and the cell, and FIG. 3 is an electrical It is a partial sectional view showing a connection.

図中の31は円筒形の固体電解質燃料電池(セル)を示
し、ここで反応が行われる。このセル31は、空気極3
2と、この外周側に順次設けられた電解質33、燃料極
34との3層構造になっている。前記セル31の内部と
外部に空気と燃料が供給され、空気極32.電解質33
及び燃料極34の3層構造部で反応が生じ電気が発生す
る。前記空気極32は、ドーピングされたベロブスキー
石型構造の酸化物例えばL a M n O3lCaM
n0.、LaNi0.、LaCo0.。
Reference numeral 31 in the figure indicates a cylindrical solid electrolyte fuel cell (cell) in which the reaction takes place. This cell 31 has an air electrode 3
2, an electrolyte 33, and a fuel electrode 34, which are sequentially provided on the outer circumferential side. Air and fuel are supplied to the inside and outside of the cell 31, and the air electrode 32. electrolyte 33
A reaction occurs in the three-layer structure of the fuel electrode 34 and electricity is generated. The air electrode 32 is made of a doped Berovskiite-type oxide, for example, L a M n O3lCaM.
n0. , LaNi0. , LaCo0. .

LaCrO3等又はこれらの酸化物の混合物を用いて形
成される。電解質33は、イツトリア安定化ジルコニア
を用いて形成される。燃料極34は、ニッケルージルコ
ニア・サーメットを用いて形成される。
It is formed using LaCrO3 or a mixture of these oxides. Electrolyte 33 is formed using yttria-stabilized zirconia. The fuel electrode 34 is formed using nickel-zirconia cermet.

前記セル31は、互いに接合された燃料マニホールド3
5と空気マニホールド36(以下、両者を総称して箱形
容器と呼ぶ)に垂直に多数取付けられている。前記燃料
マニホールド35は、片面かカルシアもしくはイツトリ
ア安定化ジルコニアで作られ、他方の面が多孔質のニッ
ケルジルコニアサーメットでできた燃料側多孔質集電体
37の平たい箱状の形状をしている。前記空気マニホー
ルド36は、燃料マニホールド35のカルシア安定化ジ
ルコニアでできた面側にあり、カルシアもしくはイツト
リア安定化ジルコニアで作られた箱状の形状をしている
。前記空気マニホールド36の内側の燃料マニホールド
側には、ドープされたベロブスキー石形酸化物のLaM
nO3゜LaCrO3でできた空気側集電体37がある
The cells 31 are fuel manifolds 3 connected to each other.
5 and an air manifold 36 (hereinafter, both are collectively referred to as a box-shaped container) in large numbers. The fuel manifold 35 has a flat box shape with a fuel side porous current collector 37 made of calcia or yttria stabilized zirconia on one side and porous nickel zirconia cermet on the other side. The air manifold 36 is located on the side of the fuel manifold 35 made of calcia-stabilized zirconia, and has a box-like shape made of calcia or yttria-stabilized zirconia. On the fuel manifold side inside the air manifold 36, doped Berovsky stone oxide LaM is added.
There is an air side current collector 37 made of nO3°LaCrO3.

前記セル31は、燃料側集電体38と空気側集電体31
で並列に接続されている。前記セル31の電解質33は
、燃料マニホールド35の安定化ジルコニア板とジルコ
ニアスラリを介して焼結接合されている。セル31の燃
料極34および空気極32は、夫々燃料極側集電体38
と前記空気側集電体37に接触しており、電気的導電性
がある。
The cell 31 includes a fuel side current collector 38 and an air side current collector 31.
are connected in parallel. The electrolyte 33 of the cell 31 is sintered and bonded to the stabilized zirconia plate of the fuel manifold 35 via zirconia slurry. The fuel electrode 34 and the air electrode 32 of the cell 31 each have a fuel electrode side current collector 38
It is in contact with the air side current collector 37 and has electrical conductivity.

なお、接触抵抗を減少させるため、燃料極側にNiOの
YSZサーメットスラリ、空気極側にL a M n 
O3スラリを介して焼結接合させても良い。
In addition, in order to reduce contact resistance, NiO YSZ cermet slurry was applied to the fuel electrode side, and L a M n was applied to the air electrode side.
Sintering and joining may be performed via O3 slurry.

前記空気マニホールド36、燃料マニホールド35の端
部は、第3図に示すように、次のマニホルドと接続され
ている。前記空気側集電体37は、空気マニホールド3
6の端部で緻密な電気的接続材39を介して次のマニホ
ールドの燃料側集電体38に接続される。このように陰
極である空気極と陽極である燃料極を接続し、各マニホ
ールドを電気的に直列に接続する。燃料ガスは、燃料マ
ニホールド隔壁40と次のマニホールドの電気的接続材
39の燃料排出孔41より、次のマニホールドと連結さ
れている。なお、図中の42は空気マニホールド隔壁、
43は空気供給孔、44は燃料供給孔を示す。
The ends of the air manifold 36 and fuel manifold 35 are connected to the next manifold, as shown in FIG. The air side current collector 37 is connected to the air manifold 3
6 is connected to the fuel side current collector 38 of the next manifold via a dense electrical connection material 39. In this way, the air electrode, which is a cathode, and the fuel electrode, which is an anode, are connected, and each manifold is electrically connected in series. The fuel gas is connected to the next manifold through the fuel manifold partition wall 40 and the fuel discharge hole 41 of the electrical connection member 39 of the next manifold. In addition, 42 in the figure is an air manifold partition,
Reference numeral 43 indicates an air supply hole, and 44 indicates a fuel supply hole.

上記実施例に係る燃料電池発電装置は、燃料マニホール
ド35と空気マニホールド36により燃料と空気を供給
する箱形容器を形成し、がっこの箱形容器主面に対し空
気極32.電解質33及び燃料極34から構成される固
体電解質燃料電池(SOFC)即ちセル31を垂直に取
付け、前記箱形容器より燃料と空気を前記セル31に供
給する構成となっている。従って、本発明によれば、単
位体積当りの出力を向上できるとともに、熱応力による
セル破壊を防止できる。
In the fuel cell power generation device according to the above embodiment, a fuel manifold 35 and an air manifold 36 form a box-shaped container that supplies fuel and air, and an air electrode 32. A solid electrolyte fuel cell (SOFC), that is, a cell 31 consisting of an electrolyte 33 and a fuel electrode 34 is mounted vertically, and fuel and air are supplied to the cell 31 from the box-shaped container. Therefore, according to the present invention, the output per unit volume can be improved, and cell destruction due to thermal stress can be prevented.

事実、本発明に係るセルについて、モジュール単位体積
当りの出力とセル長との関係を調べたところ、第4図に
示す特性図か得られた。同図は、セル31の直径を0.
5cm、電解質厚さ100μm。
In fact, when the relationship between the output per module unit volume and the cell length was investigated for the cell according to the present invention, the characteristic diagram shown in FIG. 4 was obtained. In the figure, the diameter of the cell 31 is 0.
5 cm, electrolyte thickness 100 μm.

空気極厚さ300μm1燃料極厚さ100μmとしたと
き、第1図のように配置したセルの性能を計算したもの
である。同図より、素子長1cmのときニハ、素子電圧
0.7Vて電流密度0.75A/cm2モジュール単位
体積当りの出力は0.36MW/m’と高い値が得られ
ることが明らかである。
The performance of the cell arranged as shown in FIG. 1 was calculated when the air electrode thickness was 300 μm and the fuel electrode thickness was 100 μm. From the figure, it is clear that when the element length is 1 cm, the output per module unit volume is as high as 0.36 MW/m' when the element voltage is 0.7 V and the current density is 0.75 A/cm2.

[発明の効果] 以上詳述した如く本発明によれば、単位体積当りの出力
を大きくできるとともに、反応により生じた熱で熱歪が
生じることもなく熱応力によるセル破壊を防止しえる燃
料電池発電装置を提供できる。
[Effects of the Invention] As detailed above, the present invention provides a fuel cell that can increase the output per unit volume, and can prevent cell destruction due to thermal stress without causing thermal distortion due to heat generated by reaction. We can provide power generation equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る燃料電池発電装置の概
略斜視図、第2図は燃料及び空気マニホールドとセルと
の結合状態を示す部分断面図、第3図はマニホールド接
続時の電気的接続を示す部分断面図、第4図はモジュー
ル単位体積当りの出力とセル長との関係を示す特性図、
第5図は従来の円筒形状セルの断面、第6図は第5図の
セルを組立てた状態の説明図、第7図は従来の平板形セ
ルの集合体の断面図、第8図は第7図の集合体を組立て
た状態の説明図である。 31・・・固体電解質燃料電池(セル)、32−3・空
気極、33・・・電解質、34・・・燃料極、35・・
・燃料マニホールド、36・・・空気マニホールド、3
7・・・燃料側集電体、38・・・空気側集電体、39
・・・電気的接続材、40・・・燃料マニホールド隔壁
、41・・・燃料排出孔。
Fig. 1 is a schematic perspective view of a fuel cell power generation device according to an embodiment of the present invention, Fig. 2 is a partial cross-sectional view showing the state of connection between the fuel and air manifold and the cell, and Fig. 3 is an electric power generation device when the manifold is connected. Figure 4 is a characteristic diagram showing the relationship between the output per unit volume of the module and the cell length.
FIG. 5 is a cross-sectional view of a conventional cylindrical cell, FIG. 6 is an explanatory diagram of the assembled cell of FIG. 5, FIG. 7 is a cross-sectional view of a conventional plate-shaped cell assembly, and FIG. FIG. 7 is an explanatory diagram of the assembly shown in FIG. 7 in an assembled state. 31... Solid electrolyte fuel cell (cell), 32-3... Air electrode, 33... Electrolyte, 34... Fuel electrode, 35...
・Fuel manifold, 36... Air manifold, 3
7... Fuel side current collector, 38... Air side current collector, 39
... Electrical connection material, 40 ... Fuel manifold partition, 41 ... Fuel discharge hole.

Claims (1)

【特許請求の範囲】[Claims] 燃料と空気を供給する二重構造の箱形容器と、空気極、
電解質及び燃料極より構成される固体電解質燃料電池と
を具備し、前記燃料電池が前記箱形容器に対して垂直に
取付けられ、箱形容器より燃料と空気を燃料電池に供給
することを特徴とする燃料電池発電装置。
A double-structured box-shaped container that supplies fuel and air, an air electrode,
A solid electrolyte fuel cell comprising an electrolyte and a fuel electrode, the fuel cell being mounted perpendicularly to the box-shaped container, and fuel and air being supplied from the box-shaped container to the fuel cell. A fuel cell power generation device.
JP2065159A 1990-03-15 1990-03-15 Fuel cell generator device Pending JPH03266370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2065159A JPH03266370A (en) 1990-03-15 1990-03-15 Fuel cell generator device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2065159A JPH03266370A (en) 1990-03-15 1990-03-15 Fuel cell generator device

Publications (1)

Publication Number Publication Date
JPH03266370A true JPH03266370A (en) 1991-11-27

Family

ID=13278826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2065159A Pending JPH03266370A (en) 1990-03-15 1990-03-15 Fuel cell generator device

Country Status (1)

Country Link
JP (1) JPH03266370A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194205A (en) * 2005-12-22 2007-08-02 Nok Corp Fuel cell module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194205A (en) * 2005-12-22 2007-08-02 Nok Corp Fuel cell module

Similar Documents

Publication Publication Date Title
US6589681B1 (en) Series/parallel connection of planar fuel cell stacks
US4943494A (en) Solid oxide fuel cell matrix and modules
US6936367B2 (en) Solid oxide fuel cell system
EP0505186B1 (en) Solid electrolyte type fuel cell
AU766879B2 (en) Radial planar fuel cell stack construction for solid electrolytes
CA2256730C (en) Solid oxide fuel cell generator with removable modular fuel cell stack configurations
EP0798800B1 (en) Molten carbonate fuel cell and power generation system including the same
US5336569A (en) Power generating equipment
JP2008542977A (en) Stack configuration for tubular solid oxide fuel cells
JPS63110560A (en) Electrochemical battery
US6677069B1 (en) Sealless radial solid oxide fuel cell stack design
US20070281194A1 (en) Portable fuel cell assembly
US5292599A (en) Cell units for solid oxide fuel cells and power generators using such cell units
AU2001281220A1 (en) Sealless radial solid electrolyte fuel cell stack design
US5589286A (en) Solid electrolyte fuel cell
JP2790666B2 (en) Fuel cell generator
US4824742A (en) Manifold, bus support and coupling arrangement for solid oxide fuel cells
JP5176079B2 (en) Solid oxide fuel cell sub-module and solid oxide fuel cell composite module
PL236016B1 (en) High-temperature fuel cell stack for generation of electrical energy
JP2758520B2 (en) Single cell of solid oxide fuel cell and power generator using the same
JP3346784B2 (en) Vertical stripe cylindrical solid electrolyte fuel cell
JPH04294068A (en) Power generating device
JP2698481B2 (en) Power generator
JPH03266370A (en) Fuel cell generator device
JP2793275B2 (en) Fuel cell generator