JPH03266358A - Manufacture of carbon electrode and nonaqueous secondary battery - Google Patents
Manufacture of carbon electrode and nonaqueous secondary batteryInfo
- Publication number
- JPH03266358A JPH03266358A JP2065968A JP6596890A JPH03266358A JP H03266358 A JPH03266358 A JP H03266358A JP 2065968 A JP2065968 A JP 2065968A JP 6596890 A JP6596890 A JP 6596890A JP H03266358 A JPH03266358 A JP H03266358A
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- electrode
- substrate
- hydrocarbon
- base plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 12
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 7
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 5
- 239000000758 substrate Substances 0.000 claims description 29
- 239000002296 pyrolytic carbon Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 7
- 239000007789 gas Substances 0.000 abstract description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 abstract description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052736 halogen Inorganic materials 0.000 abstract description 2
- 150000002367 halogens Chemical class 0.000 abstract description 2
- 229910052760 oxygen Inorganic materials 0.000 abstract description 2
- 239000001301 oxygen Substances 0.000 abstract description 2
- 229910052717 sulfur Inorganic materials 0.000 abstract description 2
- 239000011593 sulfur Substances 0.000 abstract description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract 2
- 229910052757 nitrogen Inorganic materials 0.000 abstract 1
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 229910052744 lithium Inorganic materials 0.000 description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- 239000002019 doping agent Substances 0.000 description 4
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- 208000005156 Dehydration Diseases 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 238000005495 investment casting Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002641 lithium Chemical group 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000011403 purification operation Methods 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、高容量かつ長サイクル寿命を有し、大電流放
電が可能な炭素電極の製造方法及びこれによって−造さ
れる炭素電極を用いた非水二次電池に関するものである
。Detailed Description of the Invention <Industrial Application Field> The present invention provides a method for manufacturing a carbon electrode that has a high capacity, a long cycle life, and is capable of discharging a large current, and a method for using the carbon electrode manufactured thereby. This relates to non-aqueous secondary batteries.
〈従来の技術〉
法化水素類の気相熱分解により導電性基板上に熱分解炭
素が堆積されてなる炭素電極ば、リチウム等のアルカリ
金属等を利用した二次電池の負極活物質として優れた特
性を有している(例えば特開昭63−102167)。<Prior art> Carbon electrodes, in which pyrolyzed carbon is deposited on a conductive substrate by vapor-phase pyrolysis of legalized hydrogen, are excellent as negative electrode active materials for secondary batteries using alkali metals such as lithium. (For example, Japanese Patent Laid-Open No. 63-102167).
例えば、リチウム二次電池の場合には、金属リチウム単
体を電極に用いると、表面の不動態膜による充放電サイ
クル特性の低下や充電時におけるデンドライト成長によ
る内部短絡といった問題が生じるが、上記炭素電極では
このような問題は生じない。さらに、上記炭素電極を用
いると負極支配の電池(特開昭63−13282)を作
製することができる。このようなことから、上記炭素電
極を用いると、サイクル特性劣化が少なく、過放電に強
い二次電池を作製できる。For example, in the case of lithium secondary batteries, if metallic lithium alone is used as an electrode, problems such as a reduction in charge/discharge cycle characteristics due to a passive film on the surface and internal short circuits due to dendrite growth during charging occur. Then such a problem will not occur. Furthermore, by using the above carbon electrode, a negative electrode-dominated battery (Japanese Patent Laid-Open No. 63-13282) can be produced. For this reason, when the above carbon electrode is used, a secondary battery with little deterioration in cycle characteristics and strong resistance to overdischarge can be produced.
従来、上記炭素電極は平面状基板に熱分解炭素を堆積し
て作製していた。Conventionally, the carbon electrode described above has been produced by depositing pyrolytic carbon on a planar substrate.
〈発明が解決しようとする課題〉
しかしながら、従来の炭素電極では、容量密度及び電流
特性、さらにはサイクlv寿命の点で十分満足の行くも
のではなかった。<Problems to be Solved by the Invention> However, conventional carbon electrodes are not fully satisfactory in terms of capacity density, current characteristics, and cycle life.
これは、基板面に対して垂直方向に強いC軸配向性を有
する炭素膜が堆積されるためである。すなわち、上記熱
分解炭素は黒鉛構造を有しておシ、活物質を構成するリ
チウム原子等のドーパントハその層間に挿入される。し
たがって、基板面に対してC軸が垂直になっている炭素
膜の場合、上記ドーパントの層間への入り口がなく、ド
ーパントの挿入が起こシにくくなる。これが原因となシ
、大電流での充放電特性等の諸特性の低下を起こすので
ある。This is because a carbon film having strong C-axis orientation is deposited in the direction perpendicular to the substrate surface. That is, the pyrolytic carbon has a graphite structure, and a dopant such as a lithium atom constituting the active material is inserted between its layers. Therefore, in the case of a carbon film in which the C axis is perpendicular to the substrate surface, there is no entrance of the dopant into the interlayer, and insertion of the dopant is less likely to occur. This causes deterioration of various characteristics such as charging and discharging characteristics at large currents.
また、上記炭素電極において、炭素膜と基板との密着性
が十分でないことを、上記十分な特性が得られない原因
となっている。これは、不十分な密着性が集電効率の低
下、サイクル中の炭素膜の基板からの脱落等を引き起こ
すためである。Furthermore, in the carbon electrode, the insufficient adhesion between the carbon film and the substrate is a cause of the inability to obtain the above-mentioned sufficient characteristics. This is because insufficient adhesion causes a decrease in current collection efficiency, and the carbon film falls off from the substrate during cycling.
以上に鑑み本発明は、基板面に対してC軸が平行となる
ように熱分解炭素を基板上に堆積することと、炭素膜と
基板との密着性を良くすることを課題としている。In view of the above, the present invention aims to deposit pyrolytic carbon on a substrate so that the C axis is parallel to the substrate surface, and to improve the adhesion between the carbon film and the substrate.
1だ、上記課題を解決して得られる炭素電極を用いた二
次電池を提供することを目的とする。1. The purpose of the present invention is to provide a secondary battery using a carbon electrode obtained by solving the above problems.
〈課題を解決するための手段〉
上記課題を解決するために本発明では、平面上基板の表
裏少なくとも片面に複数の突起部を有してなる導電性基
板上に、広化水素又に炭化水素化合物を気相で熱分解し
て熱分解炭素を堆積することを特徴とする炭素電極の製
造方法を提供する。<Means for Solving the Problems> In order to solve the above problems, in the present invention, hydrogen hydroxide or hydrocarbon A method for manufacturing a carbon electrode is provided, which comprises depositing pyrolytic carbon by thermally decomposing a compound in a gas phase.
上記突起部の形状は、繊維状、針状、円柱状、直方体状
等、いかなる形状のものでも良い。また、突起部の長さ
は、0.05〜0.5fl、好ましくは、0.1〜0.
21111が望ましい。突起部の密集度は多いほうが望
ましいが、通常1dあたり10〜100個、好ましくは
、30〜80個程度が良い。炭化水素化合物としては、
炭化水素の一部に酸素、窯素、硫黄又はハロゲンより選
択された少なくとも1つ以上の元素を含む特性基を付加
又は置換したものを用いる。尚、上記導電性基板として
は、鉄、コバルト、ニッケル等の熱分解炭素の生成に関
して触媒作用を有する金属を含有するものがより好まし
い。ここで触媒作用とは、基板に堆積する熱分解炭素の
黒鉛構造に関する結晶性を高める作用または熱分解炭素
の堆積速度を上げる作用をいう。The shape of the protrusion may be any shape, such as fibrous, acicular, cylindrical, or rectangular parallelepiped. Further, the length of the protrusion is 0.05 to 0.5 fl, preferably 0.1 to 0.
21111 is desirable. It is desirable that the density of the protrusions be high, but it is usually about 10 to 100, preferably about 30 to 80 per 1 d. As a hydrocarbon compound,
Hydrocarbons to which a characteristic group containing at least one element selected from oxygen, silicon, sulfur, or halogen is added or substituted are used. The conductive substrate is more preferably one containing a metal, such as iron, cobalt, or nickel, that has a catalytic effect on the production of pyrolytic carbon. Here, the catalytic action refers to the action of increasing the crystallinity of the graphite structure of the pyrolytic carbon deposited on the substrate or the action of increasing the deposition rate of the pyrolytic carbon.
また、本発明は、上記製造方法により得られる炭素電極
を用い、上記突起部の設けられた面をセパレータを挾ん
で正極と向かい合うように正極体とセパレータと負極体
とを積層したことを特徴とする非水二次電池を提供する
。Further, the present invention is characterized in that, using the carbon electrode obtained by the above manufacturing method, a positive electrode body, a separator, and a negative electrode body are laminated so that the surface provided with the protrusion portion faces the positive electrode with a separator in between. We provide non-aqueous secondary batteries.
〈作 用〉
本発明によれば、炭化水素等の熱分解により基板表面に
対して垂直方向に強いC軸配向性を有する炭素膜が堆積
されても、突起部が基板面に対して一定の角度を有して
いるので、突起部側面に堆積した炭素膜は層間のすき間
を電極表面に現わすようになり、さらに、突起部の上記
角度が適当な角度を有しておれば、基板面に対して平行
方向のC軸配向性を有するようになシ、リチウム等のド
ーパントの挿入が容易になる。また、突起部の存在によ
り、炭素膜の基板への密着性が向上する。<Function> According to the present invention, even if a carbon film having strong C-axis orientation is deposited in the direction perpendicular to the substrate surface due to thermal decomposition of hydrocarbons, the protrusions remain at a constant level with respect to the substrate surface. Because of the angle, the carbon film deposited on the side surface of the protrusion will cause interlayer gaps to appear on the electrode surface.Furthermore, if the angle of the protrusion has an appropriate angle, the carbon film deposited on the side surface of the protrusion will appear on the electrode surface. When the C-axis orientation is parallel to the C-axis, insertion of a dopant such as lithium becomes easier. Furthermore, the presence of the protrusions improves the adhesion of the carbon film to the substrate.
一方、本発明の電池では、突起部の設けられた面が正極
体と向い合っているので、炭素電極を構成している層状
の熱分解炭素の層面と層面のすき間が正極体の方向を向
くことになって、アルカリ金属等の可逆的なインターカ
レート及びデインターカレートが円滑に効率良く進行す
るようになる。On the other hand, in the battery of the present invention, since the surface provided with the protrusion faces the positive electrode body, the gap between the layer surfaces of the layered pyrolytic carbon that constitutes the carbon electrode faces toward the positive electrode body. As a result, reversible intercalation and deintercalation of alkali metals, etc. proceed smoothly and efficiently.
〈実施例〉 本発明を実施例により更に詳細に説明する。<Example> The present invention will be explained in more detail with reference to Examples.
実施例
厚さ0.1 flの平面状基板2となるニッケル箔に0
.3fl径、高さ0.2flのニッケル線を突起部3と
して片面に1平方センチ当た930本突起させた基板1
を精密鋳造で仕上げた。第1図はこの基板の概略構造図
である。ここで、負極である炭素質材料は、第2図に示
す反応装置を用いて作製した。Example: A nickel foil serving as a planar substrate 2 with a thickness of 0.1 fl was coated with 0.
.. A substrate 1 on which 930 nickel wires with a diameter of 3 fl and a height of 0.2 fl are protruded per square centimeter on one side as protrusions 3.
Finished with precision casting. FIG. 1 is a schematic structural diagram of this substrate. Here, the carbonaceous material serving as the negative electrode was produced using a reaction apparatus shown in FIG.
即ち、−旦脱水処理を施しさらに真空移送による蒸留精
製操作を行ったベンゼンを収納した容器11内にアルゴ
ンガス供給器12よりアルゴンガスを供給し、ベンゼン
のバブルを行った後パイレックヌ製ガヲス管13を介し
て石英製反応管14ヘベンゼンを給送する。この際、容
器11をベンゼンの蒸発による吸熱量の分だけ加熱する
ことにより温度を一定に保持し、またニードル弁15.
16を操作することによりベンゼン量を最適化した。That is, - Argon gas is supplied from an argon gas supply device 12 into a container 11 containing benzene that has been subjected to a dehydration treatment and further subjected to a distillation purification operation by vacuum transfer. The hebenzene is fed through the quartz reaction tube 14. At this time, the temperature is kept constant by heating the container 11 by the amount of heat absorbed by the evaporation of benzene, and the needle valve 15.
The amount of benzene was optimized by operating No. 16.
反応管14Kに、2σ×1αの基板1の載置されたホル
ダー17が設置されており、反応管14の外周囲には加
熱炉18が設けられている。この加熱炉18によりホル
ダー17及び電極基板1を約1000℃に約1時間保持
し、パイレックスス製ガラス管13よシ供給されるベン
ゼンを熱分解し、電極基板に10.8mgの熱分解炭素
を堆積させた。A holder 17 on which a 2σ×1α substrate 1 is mounted is installed in the reaction tube 14K, and a heating furnace 18 is provided around the outer periphery of the reaction tube 14. The holder 17 and the electrode substrate 1 are held at about 1000° C. for about 1 hour in the heating furnace 18, and the benzene supplied through the Pyrex glass tube 13 is thermally decomposed, and 10.8 mg of pyrolyzed carbon is added to the electrode substrate. deposited.
熱分解反応後の反応管14内に残留するガスは排気設備
19.20を通して除去する。このようにして炭素を堆
積させた電(至)基板を本実施例の電極とした。この電
極を試験極、リチウムを参照極及び対樺とする3極法で
、IMの過塩素酸リチウムを含むプロピレンカーボネー
ト溶液を電解液として、充放電試験を行った。尚、基板
の突起部3が対極に向くように配置した。The gas remaining in the reaction tube 14 after the pyrolysis reaction is removed through exhaust equipment 19,20. The electrical substrate on which carbon was deposited in this manner was used as the electrode of this example. A charge/discharge test was conducted using a three-electrode method using this electrode as a test electrode, lithium as a reference electrode, and counter birch using a propylene carbonate solution containing IM lithium perchlorate as an electrolyte. Note that the substrate was arranged so that the protrusion 3 faced the opposite electrode.
第3図は放電容量と放電時間率の関係を示す図である。FIG. 3 is a diagram showing the relationship between discharge capacity and discharge time rate.
第3図中のAで示す曲線にこの電極についてのデータを
示す。第3図中のBで示す曲線に比較電極についてのデ
ータを示す。この比較電極に、基板に厚さ0.111+
11.2anX1c+nの従来のニッケル箔を用いた以
外は、上記実施例と同様にして作成し、9.6mgの熱
分解炭素が堆積されている。The curve labeled A in FIG. 3 shows data for this electrode. The curve labeled B in FIG. 3 shows data for the reference electrode. This reference electrode has a thickness of 0.111+ on the substrate.
It was made in the same manner as in the above example except that a conventional nickel foil of 11.2 an x 1 c + n was used, and 9.6 mg of pyrolytic carbon was deposited.
尚、測定は上記実施例の電極と同様な方法で行った。Note that the measurements were performed in the same manner as for the electrodes in the above examples.
第3図に示すデータより、本実施例による電極は、従来
のものと同じ比較電極に比べて、大電流放電特性に優れ
ておシ、大電流での放電に対して実質的に大きな容量を
有していることがわかる。From the data shown in Figure 3, the electrode according to this example has superior large current discharge characteristics compared to the conventional comparative electrode, and has a substantially larger capacity for discharge at large current. It can be seen that it has.
また、比較電極に比べて本実施例の電極に炭素膜の密着
性が良く、サイクル特性についても優れていた。さらに
、集電効率も良く、電極の抵抗成分も小さくなっている
ことがわかった。Furthermore, compared to the comparative electrode, the carbon film had better adhesion to the electrode of this example, and its cycle characteristics were also excellent. Furthermore, it was found that the current collection efficiency was good and the resistance component of the electrode was small.
次に本実施例の炭素電極を用いて、本発明の非水二次電
池の1例であるペーパー型りに二次電池を作製した。第
4図は本ペーパー型りに二次電池の概略構造図である。Next, using the carbon electrode of this example, a secondary battery was produced in a paper mold, which is an example of the non-aqueous secondary battery of the present invention. FIG. 4 is a schematic structural diagram of a secondary battery in this paper mold.
本電池は本実施例の炭素膜jを負極体4とし、セパレー
タ6を介して■205よりなる正極体5が配置されて構
成されており、基板1上の突起部3が設けられた面は、
正極体5と向かい合っている。尚、電解液に1.−11
モ#々のLiCIO4を含有したプロピレンカーボネー
トを用いた。本電池の厚みはステンレス容器の外板7を
含めて0.9fiである。封口は樹脂の封口体8により
されている。This battery is constructed by using the carbon film j of this example as a negative electrode body 4, and a positive electrode body 5 made of ■205 is placed with a separator 6 in between. ,
It faces the positive electrode body 5. In addition, 1. -11
Propylene carbonate containing various types of LiCIO4 was used. The thickness of this battery including the outer plate 7 of the stainless steel container is 0.9fi. The opening is sealed with a resin sealing body 8.
尚、本実施例の電池との比較のために、本実施例と同様
の炭素電極を用い、突起部3の設けられた面が本実施例
と反対を向いている電池a及び上記従来方法による比較
電極を負極体とした電池すを作製した。電池a、bは負
極体を除いて他の構成を本実施例による電池と同じにし
た。For comparison with the battery of this example, a battery a using the same carbon electrode as that of this example and with the surface provided with the protrusion 3 facing opposite to that of this example, and a battery prepared by the conventional method described above were prepared. A battery cell was fabricated using the reference electrode as a negative electrode body. Batteries a and b had the same structure as the battery according to this example except for the negative electrode body.
これら電池を比較したところ、大電流での充放電特性に
おいて、本実施例の電池が最も優れており、次に電池す
が優れていた。When these batteries were compared, the battery of this example was the most excellent in charge/discharge characteristics at large currents, followed by the battery.
以上示した電池でに、正極体とセパレータと負極体とが
1つずつ積層された構造について示したが、各構成要素
がさらに積層されて負極体の両側に正極体が配置される
場合には、突起部を両面に有する基板を用いて炭素体電
極を製造し、これを用いて負極体の両側のいずれの正極
体に対しても負極体の突起部の設けられた面が向けられ
ている構造とするのが良い。The battery shown above has a structure in which the positive electrode body, separator, and negative electrode body are laminated one by one, but when each component is further laminated and the positive electrode body is placed on both sides of the negative electrode body, A carbon electrode is manufactured using a substrate having protrusions on both sides, and the surface of the negative electrode body provided with the protrusions is directed toward both positive electrode bodies on both sides of the negative electrode body. It is better to have a structure.
〈発明の効果〉
本発明の方法によシ炭素電極を製造すると、アルカリ金
属等を無理なく、容易に可逆的にインターカレート及び
デインターカレートできる炭素電極が製造でき、これを
用いることによって、高容量、長サイクル寿命、かつ、
大電流放電が可能な二次電池を提供できる。<Effects of the Invention> By manufacturing a carbon electrode by the method of the present invention, a carbon electrode that can easily and reversibly intercalate and deintercalate alkali metals etc. can be manufactured. , high capacity, long cycle life, and
A secondary battery capable of large current discharge can be provided.
また、本発明の電池によれば、本発明の方法により製造
される炭素電極の特性を最大限に発揮する非水二次電池
を提供できる。Further, according to the battery of the present invention, it is possible to provide a non-aqueous secondary battery that maximizes the characteristics of the carbon electrode manufactured by the method of the present invention.
第1図は本発明の実施例に用いた基板の概略構造図、第
2図に実施例で用いた反応装置図、第3図は放電容量と
放電時間率の関係を示す図、第4図に本実施例のペーパ
ー型りに
次電池の概略構
遣口である。
1・・・基板
2・・・平面状基板
3・・・突起部
4・・・負極体
5・・・正擺体
6−・・セパレータFig. 1 is a schematic structural diagram of a substrate used in an example of the present invention, Fig. 2 is a diagram of a reaction apparatus used in an example, Fig. 3 is a diagram showing the relationship between discharge capacity and discharge time rate, and Fig. 4 This is a schematic diagram of the battery used in the paper mold of this example. 1... Substrate 2... Planar substrate 3... Protrusion 4... Negative electrode body 5... Regular body 6-... Separator
Claims (1)
有してなる導電性基板上に、炭化水素又は炭化水素化合
物を気相で熱分解して熱分解炭素を堆積することを特徴
とする炭素電極の製造方法。 2、正極体とセパレータと負極体とが積層されて成り、 上記負極体が請求項1記載の炭素電極であって、該炭素
電極は上記突起部の設けられた面が上記正極体に向けら
れていることを特徴とする非水二次電池。[Claims] 1. Pyrolytic carbon is deposited by thermally decomposing a hydrocarbon or a hydrocarbon compound in a gas phase on a conductive substrate having a plurality of protrusions on at least one side of a flat substrate. A method for manufacturing a carbon electrode, characterized by: 2. A positive electrode body, a separator, and a negative electrode body are laminated, and the negative electrode body is the carbon electrode according to claim 1, and the carbon electrode has a surface provided with the protrusion facing the positive electrode body. A non-aqueous secondary battery characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2065968A JP2899048B2 (en) | 1990-03-15 | 1990-03-15 | Carbon electrode and non-aqueous secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2065968A JP2899048B2 (en) | 1990-03-15 | 1990-03-15 | Carbon electrode and non-aqueous secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03266358A true JPH03266358A (en) | 1991-11-27 |
JP2899048B2 JP2899048B2 (en) | 1999-06-02 |
Family
ID=13302308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2065968A Expired - Fee Related JP2899048B2 (en) | 1990-03-15 | 1990-03-15 | Carbon electrode and non-aqueous secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2899048B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0440370A (en) * | 1990-06-05 | 1992-02-10 | Mitsubishi Electric Corp | Semiconductor acceleration sensor |
WO2013008335A1 (en) * | 2011-07-14 | 2013-01-17 | トヨタ自動車株式会社 | Sulfide-based solid-state battery, moving body provided with sulfide-based solid-state battery, and use method of sulfide-based solid-state battery |
JP5224622B1 (en) * | 2012-06-08 | 2013-07-03 | 太陽誘電株式会社 | Electrochemical devices |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63245855A (en) * | 1987-03-31 | 1988-10-12 | Sharp Corp | Electrode and battery |
JPS63245858A (en) * | 1987-03-31 | 1988-10-12 | Sharp Corp | Nonaqueous secondary battery and process for the manufacture |
JPH01302667A (en) * | 1988-05-27 | 1989-12-06 | Seiko Electronic Components Ltd | Flat plate type battery |
JPH0265066A (en) * | 1988-08-29 | 1990-03-05 | Hitachi Maxell Ltd | Flat type nonaqueous liquid active material battery |
-
1990
- 1990-03-15 JP JP2065968A patent/JP2899048B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63245855A (en) * | 1987-03-31 | 1988-10-12 | Sharp Corp | Electrode and battery |
JPS63245858A (en) * | 1987-03-31 | 1988-10-12 | Sharp Corp | Nonaqueous secondary battery and process for the manufacture |
JPH01302667A (en) * | 1988-05-27 | 1989-12-06 | Seiko Electronic Components Ltd | Flat plate type battery |
JPH0265066A (en) * | 1988-08-29 | 1990-03-05 | Hitachi Maxell Ltd | Flat type nonaqueous liquid active material battery |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0440370A (en) * | 1990-06-05 | 1992-02-10 | Mitsubishi Electric Corp | Semiconductor acceleration sensor |
WO2013008335A1 (en) * | 2011-07-14 | 2013-01-17 | トヨタ自動車株式会社 | Sulfide-based solid-state battery, moving body provided with sulfide-based solid-state battery, and use method of sulfide-based solid-state battery |
JP5224622B1 (en) * | 2012-06-08 | 2013-07-03 | 太陽誘電株式会社 | Electrochemical devices |
US8722232B2 (en) | 2012-06-08 | 2014-05-13 | Taiyo Yuden Co., Ltd. | Electrochemical device |
Also Published As
Publication number | Publication date |
---|---|
JP2899048B2 (en) | 1999-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8703338B2 (en) | Material based on carbon and silicon nanotubes that can be used in negative electrodes for lithium batteries | |
US7914930B2 (en) | Method for producing non-aqueous electrolyte secondary battery | |
US20110104551A1 (en) | Nanotube composite anode materials suitable for lithium ion battery applications | |
TWI521780B (en) | Power storage device | |
KR20190041420A (en) | Positive electrode active material for lithium secondary battery, preparing method of the same, positive electrode and lithium secondary battery including the same | |
EP0267791B1 (en) | A secondary battery using nonaqueous electrolytes | |
JP7276969B2 (en) | Positive electrode for secondary battery, manufacturing method thereof, and lithium secondary battery including the same | |
KR102640161B1 (en) | Positive electrode for secondary battery, method for manufacturing the same and lithium secondary battery comprising the same | |
KR102459678B1 (en) | An anode for lithium secondary battery, a battery comprising the same and manufacturing method therof | |
US20090098459A1 (en) | Electrochemical element, and method and apparatus for manufacturing electrode thereof | |
JP7418490B2 (en) | Lithium composite oxide and lithium secondary battery containing it | |
US20040175622A9 (en) | Method of preparing electrode composition having a carbon-containing-coated metal oxide, electrode composition and electrochemical cell | |
CN109565032B (en) | Negative electrode for nonaqueous electrolyte secondary battery, and method for producing negative electrode for nonaqueous electrolyte secondary battery | |
JPH0887996A (en) | Carbonaceous electrode for nonaqueous secondary battery, its manufacture, and nonaqueous secondary battery using the same | |
US11916227B2 (en) | Multilayer body and method for producing same | |
JPH03266358A (en) | Manufacture of carbon electrode and nonaqueous secondary battery | |
JP6653991B2 (en) | Stabilized anode for lithium battery and method for producing the same | |
JPH01307157A (en) | Manufacture of electrode for battery | |
JPH0325866A (en) | Secondary battery | |
JP2010251194A (en) | Positive electrode for battery and method of manufacturing the same | |
KR101298128B1 (en) | Fabrication method of Li-ion battery anode using Sn-SnO hybrid nanostructures | |
KR102237951B1 (en) | Positive electrode active material, producing method thereof, positive electrode and secondary battery comprising the same | |
JP3889555B2 (en) | Nonaqueous electrolyte secondary battery | |
KR102609878B1 (en) | Positive electrode and secondary battery comprising the same | |
CN110504412B (en) | Electrochemical solid-state cell with hydrogen-absorbing material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |