JPH0326608A - Powder pressurizing and supplying device - Google Patents

Powder pressurizing and supplying device

Info

Publication number
JPH0326608A
JPH0326608A JP15834189A JP15834189A JPH0326608A JP H0326608 A JPH0326608 A JP H0326608A JP 15834189 A JP15834189 A JP 15834189A JP 15834189 A JP15834189 A JP 15834189A JP H0326608 A JPH0326608 A JP H0326608A
Authority
JP
Japan
Prior art keywords
powder
rotor
passage
pressure
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15834189A
Other languages
Japanese (ja)
Other versions
JP2597009B2 (en
Inventor
Yajuro Seike
彌十郎 清家
Shigeto Matsuo
栄人 松尾
Kenji Tagashira
健二 田頭
Yoshitaka Koga
古閑 義孝
Yoichiro Nakajima
洋一郎 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP15834189A priority Critical patent/JP2597009B2/en
Publication of JPH0326608A publication Critical patent/JPH0326608A/en
Application granted granted Critical
Publication of JP2597009B2 publication Critical patent/JP2597009B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Transport Of Granular Materials (AREA)

Abstract

PURPOSE:To enable supply stop of fine powder coal supplying device for a jet floor-gasifying furnace by providing a radial passage formed from the center portion of a rotor and a radial passage formed at the final end, which is open to the peripheral edge of the rotor via an axial passage, to supply powder to the center portion via a valve. CONSTITUTION:High-pressure jet is run from a jet nozzle 12 to deliver powder to a high-pressure area 10 in a casing 9. In the meantime, the pressure of a space portion 17 is higher than that of the high-pressure area 10 and gas flows into the high-pressure area 10 via a labyrinth seal 28 to prevent the leakage of fine powder. Then, a volume jetted from a nozzle 12 is controlled, allowing the flow rate of the powder to be controlled and its supply to be stopped.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、噴流床ガス化炉の微粉炭供給装置,流動床ガ
ス化炉の石炭供給装置,加圧流動床ボイラの石炭および
石灰石供給装置、高炉への石炭供給装置、その他高圧装
置へ粉本を供給する粉体加圧供給装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a pulverized coal supply device for an entrained bed gasifier, a coal supply device for a fluidized bed gasifier, and a coal and limestone supply device for a pressurized fluidized bed boiler. This invention relates to a powder pressurization supply device for supplying powder to a coal supply device to a blast furnace and other high-pressure devices.

〔従来の技術〕[Conventional technology]

粉体加圧供給装置としては、従来ロックホッパシステム
が一般に使用されている。これは3段のホッパから構成
され,作動が確実であるが、■コストが高い,■ガス使
用量が多い、■ホッパでの滞留時間が長く微粉炭では自
然発火の心配がある,■加圧ガスとしてN2等のイナー
トガスが使用され大容量のものではこのイナートガス製
造コストが高い等の欠点があった。
Conventionally, a lock hopper system is generally used as a pressurized powder supply device. This consists of a three-stage hopper and is reliable in operation; however, ■ it is high in cost, ■ it consumes a large amount of gas, ■ the residence time in the hopper is long, and there is a risk of spontaneous combustion with pulverized coal, ■ pressurization. Inert gases such as N2 are used as the gas, and large-capacity ones have drawbacks such as high production costs for this inert gas.

そこで,遠心力により粉体を圧密し高圧下のケーシング
内へ粉体を供給する、回転式の粉本加圧供給装置が,種
々提案されているが,この方式における最大の技術的課
題は粉体の流量制御である。
Therefore, various rotary powder bottle pressure supply devices have been proposed that use centrifugal force to compact the powder and supply the powder into a casing under high pressure, but the biggest technical problem with this method is It controls the body's flow rate.

流量制御が不十分なものは粉体供給装置として使用でき
ないからである。
This is because a device with insufficient flow rate control cannot be used as a powder supply device.

従来提案されている装置のいくつかを例示すると、まず
第5図に全体縦断面図が,第6図にロータ(Ol)の横
断面図が、それぞれ示されるものは、ロータ(01)の
出口部にスプリング(03)付きの出口弁(02)を設
げて,遠心力による粉体圧密圧力とスプリング(03)
の力とをバランスさせたものである。
To illustrate some of the conventionally proposed devices, first, the overall vertical sectional view is shown in FIG. 5, and the cross sectional view of the rotor (Ol) is shown in FIG. 6. An outlet valve (02) with a spring (03) is installed in the part to reduce the powder compaction pressure caused by centrifugal force and the spring (03).
It is a balance between the power of

次に,第7図に全体縦断面図が,第8図に制御ノズル(
06)の拡大断面図が,それぞれ示されるものは、通路
出口に絞り可能な制御ノズル(06)と,同制御ノズル
(06)に合流するガス給送管路(07)とを設け,制
御ノズル(06)への作動ガスの圧力を変えることによ
り流量を制御するものである。
Next, Fig. 7 shows the overall longitudinal sectional view, and Fig. 8 shows the control nozzle (
The enlarged sectional view of 06) is provided with a control nozzle (06) that can be throttled at the exit of the passage and a gas supply pipe (07) that merges with the control nozzle (06). The flow rate is controlled by changing the pressure of the working gas to (06).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記従来の粉体加圧供給装置には、次のような解決すべ
き課題がめった. 第5図および第6図に示されたものは,ロータ(01)
の回転数が一定であれば出口弁(02)の開度は一定と
なり、流量も一定となる.したがって、流量を変化させ
るためにはロータ(01)の回転数を変える必要がある
。また、通路出口の断面形状がリング状となっているの
で,粉体が閉塞しやすL)。
The conventional powder pressurization feeding device has the following problems that need to be solved. What is shown in Figures 5 and 6 is the rotor (01)
If the rotation speed of the outlet valve (02) is constant, the opening degree of the outlet valve (02) will be constant, and the flow rate will also be constant. Therefore, in order to change the flow rate, it is necessary to change the rotation speed of the rotor (01). In addition, since the cross-sectional shape of the passage outlet is ring-shaped, it is easy for powder to block it.

また第7図および第8図に示された装置では、作動ガス
の圧力を変えることにより流量を制御しており,ロータ
回転数が一定でも流量を制御することができるが,ノズ
ル(06)の開口が一定であるため最小流量がきまり,
粉本の供給を停止することができない.したがって,粉
体の供給を停止する場合には.ケーシング内を減圧する
とともに,ロータの回転を停止する必要がある。
Furthermore, in the devices shown in Figures 7 and 8, the flow rate is controlled by changing the pressure of the working gas, and the flow rate can be controlled even when the rotor rotation speed is constant. Since the opening is constant, the minimum flow rate is determined.
It is not possible to stop the supply of powdered books. Therefore, when stopping powder supply. It is necessary to reduce the pressure inside the casing and stop the rotation of the rotor.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、前記従来の課題を解決するために,通路の終
端に第2の半径方向通路を,それぞれ連通させるととも
に,同第2の半径方向通路の終端をロータ周縁に開口さ
せ,かつ上記ロータ中央部に粉本を,上記回転軸方向通
路に弁を介して加圧ガスを,それぞれ供給するようにし
たことを特徴とする粉体加圧供給装置を提案するもので
ある。
In order to solve the above-mentioned conventional problems, the present invention provides second radial passages that communicate with the terminal ends of the passages, opens the terminal ends of the second radial passages at the rotor periphery, and The present invention proposes a pressurized powder supply device characterized in that a powder book is supplied to the central portion and pressurized gas is supplied to the passage in the direction of the rotation axis through a valve.

〔作 用〕[For production]

本発明によれば、ロータ内の粉体通路の一部が回転軸方
向を向いているので,ロータが回転しても粉体はこの回
転軸方向通路で停止する。そしてこれを移送するために
、その回転軸方向通路に加圧ガスを供給する。加圧ガス
の流量を変えることにより,粉体流量を制御する. 〔実施例〕 第1図は本発明の一実施例を示す縦断面図,第2図は同
じく周辺機器を含む全体配置図,第3図は同じくロータ
の粉休出口付近の詳細断面図である。
According to the present invention, a part of the powder passage in the rotor faces in the direction of the rotation axis, so that even when the rotor rotates, the powder stops in this passage in the rotation axis direction. In order to transfer this, pressurized gas is supplied to the passage in the direction of the rotation axis. The powder flow rate is controlled by changing the flow rate of pressurized gas. [Embodiment] Fig. 1 is a longitudinal sectional view showing an embodiment of the present invention, Fig. 2 is an overall layout including peripheral equipment, and Fig. 3 is a detailed sectional view of the vicinity of the rotor powder outlet. .

まず第2図において,低圧粉本ホッパ(1)内の粉体は
,プロワ(3)で駆動される空気輸送装置(4)にフィ
ーダ(2)によって定量供給され,粉体移送管(5)を
経て粉本加圧供給装置のロータ(7)の中央空洞部{6
》に送られる.ロータ(7)は,軸受(ハ)で支承され
た回転軸(至)に取付けられており,モータ(5)で回
転駆動される.ロータ中央空淘部(6)へ送られた粉体
は,ロータ(7)により遠心力を受け,ロータ(7) 
K設けられた複数の半径方向通路(8)に遠心分離され
る。半径方向通路(8)ではさらに強い遠心力を受ける
ため粉体は圧密され,ケーシング(9)内の高圧領域Q
lのガス圧に抗して円周方向へ押し出される.コンブレ
ッサα3から導管α4,制御弁αタ,通路αQを経て供
給される高圧空気により,粉本は更にケーシング(9)
内の高圧領域aωに移送される(後に詳述する)。
First, in Fig. 2, the powder in the low-pressure powder main hopper (1) is fed in a fixed amount by the feeder (2) to the pneumatic transport device (4) driven by the blower (3), and then the powder is fed into the powder transfer pipe (5). through the central cavity of the rotor (7) of the powder book pressurization supply device {6
》 The rotor (7) is attached to a rotating shaft (to) supported by a bearing (c), and is rotationally driven by a motor (5). The powder sent to the rotor central air clearance section (6) is subjected to centrifugal force by the rotor (7), and
K is centrifuged into a plurality of radial passages (8) provided. In the radial passage (8), the powder is consolidated because it is subjected to even stronger centrifugal force, resulting in a high pressure area Q in the casing (9).
It is pushed out in the circumferential direction against the gas pressure of l. The high pressure air supplied from the compressor α3 through the conduit α4, the control valve α, and the passage αQ causes the powder to be further compressed into the casing (9).
(described in detail later).

そして空気輸送装置翰に導かれ,コンプレッサalによ
り加圧された空気により,ガス化炉等の高圧装置Qυに
供給される.一方、粉体移送管(5)からロータ中央空
洞部(6)に粉体とともに送られたガスは,ロータ(7
)の回転により遠心分離され,排気管(社),集塵装置
@,真空ポンプ(財)を経て大気へ放出される。
The air is then guided to the air transport device and is supplied to a high-pressure device Qυ such as a gasification furnace by pressurized air by the compressor AL. On the other hand, the gas sent along with the powder from the powder transfer pipe (5) to the rotor central cavity (6) is transferred to the rotor (7).
), it is centrifuged and released into the atmosphere via an exhaust pipe, a dust collector, and a vacuum pump.

次に第1図およびta3図に示されるように,ロータ(
7)内に設けられた各半径方向通路(8)の終端には,
それぞれ回転軸方向通路t11)の始端がつながってお
り,それら回転軸方向通路aυの終端に@2の半径方向
通路(lla)の始端がつながっている。そして第2の
半径方向通路(lla)の終端はロータ(7)の周縁に
開口している.上記回転軸方向通路卸の始端には,ジェ
ットノズルαカが同軸方向に開口している.そのジェッ
トノズルαのは通路(I趨により空間部a刀に連通して
いる.この空間部(17)はまた,前記通路(IGを経
て導管α4)(IEZ図)に連通している.なお、(至
),@,(7),Cl9はラビリンスシールである.さ
て,ロータ(7)の遠心力により半径方向通路(8)に
押出された粉本は.第3図に示されるように,次の条件
を満たすとき,回転軸方向通路側で停止する。すなわち
, 73 ) D cotθ ここで l:回転軸方向長さ D:半径方向高さ θ:粉体の安息角 粉本の安息角θは20°から45°の範囲であるから,
 cotθは2.75ないし1.00となる.すなわち
,粉本の安息角に応じてl/D を1 7’jいし3に
する必要があり,それ以下では、粉体が安息角が保てず
に,第2の半径方向通路(lla)にこぼれ出る.lを
Dの3倍以上にすると,搬送抵抗が増えて圧力損失が大
きくなり、後述する作動ガスの所要流量が増える. 高圧領域α値内のガスは,圧密された粉本の間隙を通っ
てロータ(7)の中心部へ逆流するが,粉本が圧密され
ているため流量は小さい。粉体の遠心力が高圧ガスの圧
力よりも大きい場合は,粉体は逆流しない。
Next, as shown in Fig. 1 and ta3, the rotor (
At the end of each radial passage (8) provided in
The starting ends of the rotational axis direction passages t11) are connected to each other, and the starting ends of the radial passageways (lla) @2 are connected to the terminal ends of the rotational axis direction passages aυ. The end of the second radial passage (lla) opens at the periphery of the rotor (7). At the starting end of the passage in the direction of the rotational axis, a jet nozzle α opens in the same axial direction. The jet nozzle α communicates with the space a through the passage (I). This space (17) also communicates with the passage (conduit α4 via IG) (IEZ diagram). , (To), @, (7), Cl9 is a labyrinth seal. Now, the powder book pushed out into the radial passage (8) by the centrifugal force of the rotor (7) is as shown in Figure 3. , it stops on the passage side in the direction of the rotational axis when the following conditions are met: 73) D cotθ where l: Length in the direction of the rotational axis D: Height in the radial direction θ: Angle of repose of the powder Angle of repose of the powder Since θ is in the range of 20° to 45°,
cotθ is 2.75 to 1.00. In other words, it is necessary to set l/D to 17'j to 3 depending on the angle of repose of the powder book.If it is less than that, the angle of repose of the powder cannot be maintained and the powder is forced into the second radial passage (lla). Spills out. If l is made more than three times D, the conveyance resistance will increase, pressure loss will increase, and the required flow rate of working gas, which will be described later, will increase. Gas within the high pressure region α value flows back to the center of the rotor (7) through the gap between the compacted powder sheets, but the flow rate is small because the powder books are compacted. If the centrifugal force on the powder is greater than the pressure of the high-pressure gas, the powder will not flow backwards.

次に,回転軸方向通路αυ内の粉体を移送するには、ジ
ェットノズルα2から高圧ジェットを噴出させ、粉体を
ケーシング(9)内の高圧領域に送り出す。
Next, in order to transfer the powder in the passage αυ in the rotation axis direction, a high-pressure jet is ejected from the jet nozzle α2, and the powder is sent to a high-pressure region in the casing (9).

ジェットノズルcLカに送られる高圧ガスは,コンブレ
ッサα3で加圧され、導管(14、制御弁(l!9、ケ
ーシング内の通路aQ,空間部(Inおよびロータ(7
)内の通路α檜を経て,:)エットノズル02へ供給さ
れる。この場合,回転軸方向通路αυが短い程、上記高
圧ジェットのエネルギが小さくてすむ、すなわち作動ガ
ス流量が小さくてすむ.したがって、回転軸方向通路α
υの長さとしては,粉本を停止できる最小長さが適正で
ある。また、第3図図示のように回転軸方向通路αυを
出口に向けて広げた方が,粉本が流出しやすいが、その
傾斜角度αはO0から25°の範囲が適当である. 上記のように高圧ジェットを噴出させている状態では、
空間部anの圧力が高圧領域(1Gよりも高いから,空
間部卸のガスは、ラビリンスシール(至)を経て高圧領
域αOへ洩れる.したがって、高圧領域H内の微粉がラ
ビリンスシール弼および空間部卸へ逆流することはない
。すなわち,空間部卸内のガスは、常に清浄であり,通
路(IS ,αaに粉体が閉塞する等の問題は発生しな
い。また,ラビリンスシール(自)のシール効果により
,空間部(17)から高圧領域αGへの洩れ量は少なく
,ラビリンスシール翰の洩れ量流量分布は均一となる。
The high-pressure gas sent to the jet nozzle cL is pressurized by the compressor α3, and is passed through the conduit (14), the control valve (l!9, the passage aQ in the casing, the space (In) and the rotor (7).
) is supplied to the et nozzle 02 through the passage α in :). In this case, the shorter the passage αυ in the rotational axis direction, the smaller the energy of the high-pressure jet, that is, the smaller the working gas flow rate. Therefore, the rotational axial passage α
The appropriate length of υ is the minimum length that can stop the powder book. Furthermore, if the passage αυ in the direction of the rotational axis is widened toward the outlet as shown in FIG. 3, powder can easily flow out, but the appropriate inclination angle α is in the range of 25° from O0. When the high-pressure jet is ejected as described above,
Since the pressure in the space an is higher than the high pressure region (1G), the gas in the space leaks into the high pressure region αO through the labyrinth seal. Therefore, the fine powder in the high pressure region H flows into the labyrinth seal and into the space. There is no backflow to the outlet.In other words, the gas inside the space is always clean, and problems such as powder clogging the passages (IS, αa) do not occur.In addition, the labyrinth seal (self) seal As a result, the amount of leakage from the space (17) to the high-pressure region αG is small, and the leakage flow rate distribution of the labyrinth seal bracket becomes uniform.

次に粉体流量の制御について説明する.粉本流量は,ジ
ェットノズルαカから噴出する高圧ジェットの流量を変
えることにより制御できる。
Next, we will explain the control of powder flow rate. The powder flow rate can be controlled by changing the flow rate of the high-pressure jet ejected from the jet nozzle α.

すなわち,高圧ジェットの作動ガス流量が大きいほど.
粉体流量は大きくなる。粉体流量の最大値は,半径方向
通路(8)の通路面積によってきまる。
In other words, the higher the working gas flow rate of the high-pressure jet.
The powder flow rate increases. The maximum value of the powder flow rate is determined by the passage area of the radial passage (8).

この場合,作動ガス流量と粉本流量とは直線的な関係に
ならたい。したがって,作動ガス流量の変化で粉本流量
を制御すると、制御精度が低い。
In this case, the working gas flow rate and powder flow rate should have a linear relationship. Therefore, if the powder flow rate is controlled by changing the working gas flow rate, the control accuracy is low.

そこで,粉本流量の制御性を向上するために,作動ガス
の流量を粉本流量が最大となる値に設定しておき,導管
α4に設けた弁αタの開閉運転を行たって,弁が開いて
いる時間を制御する。
Therefore, in order to improve the controllability of the main powder flow rate, the flow rate of the working gas is set to a value that maximizes the main powder flow rate, and the valve α installed in the conduit α4 is opened and closed. Control opening hours.

ここで Tl:弁開時間 T2:弁閉時間 Tt=Tx+Tz :周期 Q:粉体流量 Qm:最大粉体流量 上記式からわかるように,周期Ti=T1+T2を一定
にすると、粉体流tQは弁開時間T1  と直線的な比
例関係となる.すなわち,粉体流1tQの制御性が向上
し,作動ガスの流量マたは圧力は一定に設定しておいて
よい。したがってこの鳩合弁a5は、制御弁でなく単な
る開閉弁でよい。なお,実用的な粉本加圧供給装置にお
ける粉体の滞留時間は2たいし10秒程度であり,弁開
閉周期をその半分の1秒ないし5秒とすると運転制御が
しやすい。
Here, Tl: Valve opening time T2: Valve closing time Tt=Tx+Tz: Period Q: Powder flow rate Qm: Maximum powder flow rate As can be seen from the above equation, if the period Ti=T1+T2 is constant, the powder flow tQ is There is a linear proportional relationship with the opening time T1. That is, the controllability of the powder flow 1tQ is improved, and the flow rate or pressure of the working gas may be set constant. Therefore, this pigeon joint valve a5 may be a simple opening/closing valve rather than a control valve. Incidentally, the residence time of powder in a practical powder book pressurization supply device is about 2 to 10 seconds, and operation control is facilitated by setting the valve opening/closing period to half that, 1 to 5 seconds.

次に第4図は,本発膚の他の実施例におけるロ?夕の粉
本出口付近の詳細断面図である。この図において,前記
@3図により説明した第一の実施例と同様の部分につい
ては,同一の符号を付け詳しい説明を省く. 第4図において,ロータ(7)に設けられた半径方向通
路(8)の終端につながった,回転軸方向通路αυの始
端は、開口穴(至)によクて高圧領域α0に開口してい
る.そして,粉体移送用のジェットノズル(至)は,出
口■■■を上記開口穴■に向けて,ケーシング(9)に
取り付けられている.したがって,ジェットノズル(至
)から噴出するジェットは,回転軸方向通路αυ内の粉
体を,高圧部α値へ移送することができる。そして,ロ
ータ(7)に設けられた複数の開口穴C33をすべて同
一円周上へ配置することにより,1個のジェットノズル
(至)から噴出されるジェットでロータ(7)の回転と
ともに,すべての回転軸方向通路αυの粉体を移送する
ことができる。
Next, FIG. 4 shows a diagram of another embodiment of the present invention. It is a detailed sectional view of the vicinity of the Yunokonmoto exit. In this figure, the same parts as those in the first embodiment described in Figure @3 are given the same reference numerals and detailed explanations will be omitted. In Fig. 4, the starting end of the passage αυ in the rotational axis direction, which is connected to the terminal end of the radial passage (8) provided in the rotor (7), opens into the high pressure region α0 through an opening hole (to). There is. The jet nozzle (to) for powder transfer is attached to the casing (9) with the outlet ■■■ facing the opening hole ■. Therefore, the jet ejected from the jet nozzle can transfer the powder in the passage αυ in the direction of the rotational axis to the high pressure part α value. By arranging the plurality of opening holes C33 provided in the rotor (7) all on the same circumference, the jet ejected from one jet nozzle (to) rotates the rotor (7) and all The powder can be transferred through the rotational axial passage αυ.

この場合,個々の回転軸方向通路a1)に対するジェッ
ト噴射は,間欠的に作動することになるが,作動時間は
ロータ《7》の回転数と通路卸の数とできまる.したが
って、粉本流量の制御はジェット流量を変えることによ
って行なう。弁の開閉をロータ回転数と同調させれば,
作動ガス量が節減される。
In this case, the jet injection for each passage a1) in the direction of the rotational axis operates intermittently, and the operating time is determined by the rotational speed of the rotor (7) and the number of passages. Therefore, the powder flow rate is controlled by changing the jet flow rate. If the opening and closing of the valve is synchronized with the rotor rotation speed,
The amount of working gas is saved.

本実施例では,ジェットノズル(至)がケーシング(9
)に取付けられるので,構造が非常に簡単で,製作コス
トが安くなる。
In this example, the jet nozzle (to) is connected to the casing (9).
), the structure is very simple and manufacturing costs are low.

なお,本実施例では,ケーシング(9)トロータ(7)
との間にそれぞれ複数個のラビリンスシール(至).■
を設け,更にそれらラビリンスシール(至),翰の間の
空間部(17>のケーシング(9)に開口部(至)を設
けて、この開口部(至)から空間部(IDへ,高圧領域
αOよりも高い圧力のガスを吹き込むようにした.した
がって,ケーシング(9)内の微粉が,ラビリンスシー
ル(至)や空間部(1?)へ逆流することが防止できた
In addition, in this example, the casing (9) and the rotor (7)
Multiple labyrinth seals (to) between each. ■
Furthermore, an opening (to) is provided in the casing (9) of the space (17) between the labyrinth seal (to) and the fence, and the high pressure area is connected from this opening (to) to the space (ID). Gas was blown at a pressure higher than αO.Therefore, it was possible to prevent the fine powder in the casing (9) from flowing back into the labyrinth seal (to) and the space (1?).

〔発明の効果〕〔Effect of the invention〕

(1)本発明においては,ロータの粉体通路出口に回転
軸方向を向く部分を設け,その部分にジェットノズルを
配置したので,高圧ジェットのガス流量を変えることに
より,ロータの回転数やケーシング内圧力を変更するこ
となく,粉体供給量(流量)を変化させることができる
.特に作動ガスの供給を停止することにより、ロータの
回転を停止したりケーシング内のガス圧カを低下させる
等の操作なせずに,粉体供給を完全に停止して流量を零
にできる. (2)また、粉体通路の形状が単純で,弁等が使用され
ていないので、閉塞の恐れがない。
(1) In the present invention, a part facing the rotational axis direction is provided at the powder passage outlet of the rotor, and a jet nozzle is placed in that part. Therefore, by changing the gas flow rate of the high-pressure jet, the rotational speed of the rotor can be adjusted. The powder supply amount (flow rate) can be changed without changing the internal pressure. In particular, by stopping the supply of working gas, it is possible to completely stop the powder supply and reduce the flow rate to zero without having to perform operations such as stopping the rotation of the rotor or reducing the gas pressure inside the casing. (2) Furthermore, since the shape of the powder passage is simple and no valves or the like are used, there is no risk of blockage.

(3)さらVc.粉体流量の制御手段が,ジェットノズ
ル駆動用ガスの圧カまたは流量を変えるという単純なも
のなので,故障が少ない。
(3) Further Vc. Since the means for controlling the powder flow rate is simple, changing the pressure or flow rate of the gas for driving the jet nozzle, failures are rare.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す縦断面図,第2図は同
じく周碧機器を含む全体配置図,第3図は同じくロータ
の粉休出口付近の詳細断面図.第4図は本考案の他の実
施例におけるロータの粉体出口付近の詳細断面図である
.第5図は従来提案されている粉体加圧供給装置の一例
を示す全体縦断面図,第6図は同例のロータを示す横断
面図.第7図は同じく従来の他の例を示す全体縦断面図
,第8図は同例のノズルを示す拡大断面図である。 (1)・・・低圧粉体ホッパ (2)・・・フィーダ《
3}・・・ブロワ     (4)・・・空気輸送装置
(51・・・粉体移送管   (6)・・・ロータ中央
空洞部(7)・・・ロータ     (8)・・・半径
方向通路(9)・・・ケーシング   α0・・・高圧
領域α9・・・回転軸方向通路 (lla)・・・第2
の半径方向通路α2・・・ジェットノズル 0・・・コ
7 フl/ツサ(141−・・導管      αタ・
・・制御弁QO・・・通路(16a)・・・開口部aD
・・・空間部     αか・・通路αり・・・コンゾ
レッサ  翰・・・空気輸送装置QI)・・・高圧装置
    の・・・排気管(自)・・・集塵装置    
の・・・真空ポンプ(ホ)・・・回転軸     (ハ
)・・・軸受匈・・・モータ @@(至)Gυ・・・ラビリンスシール(至)・・・開
口穴     (至)・・・ジェットノズル例・・・ジ
ェットノズルの出口  (至)・・・開口部(Ol)・
・・ロータ    (o2)・・・弁(03)・・・ス
プリング (07)・・・ガス給送管路 (06)・・・制御ノズル 代 理 入
Fig. 1 is a longitudinal sectional view showing an embodiment of the present invention, Fig. 2 is an overall layout including peripheral equipment, and Fig. 3 is a detailed sectional view of the vicinity of the powder outlet of the rotor. FIG. 4 is a detailed cross-sectional view of the rotor near the powder outlet in another embodiment of the present invention. Fig. 5 is an overall vertical cross-sectional view showing an example of a conventionally proposed powder pressurization supply device, and Fig. 6 is a cross-sectional view showing the rotor of the same example. FIG. 7 is an overall longitudinal sectional view showing another conventional example, and FIG. 8 is an enlarged sectional view showing a nozzle of the same example. (1)...Low pressure powder hopper (2)...Feeder《
3}...Blower (4)...Pneumatic transport device (51...Powder transfer tube (6)...Rotor central cavity (7)...Rotor (8)...Radial passage (9)...Casing α0...High pressure area α9...Rotation axis direction passage (lla)...Second
Radial passage α2...Jet nozzle 0...Co7 Full/tube (141-...Conduit αta...
...Control valve QO...Passage (16a)...Opening aD
...Space α...Passage α...Conzoresor...Pneumatic transport device QI)...High pressure equipment...Exhaust pipe (self)...Dust collector
...Vacuum pump (E)...Rotating shaft (C)...Bearing shaft...Motor @@ (to) Gυ...Labyrinth seal (to)...Opening hole (to)...・Jet nozzle example...Jet nozzle outlet (to)...Opening (Ol)・
...Rotor (o2)...Valve (03)...Spring (07)...Gas supply pipe (06)...Control nozzle substitute entry

Claims (1)

【特許請求の範囲】[Claims] 回転するロータの中央部から周縁部に向かう半径方向通
路の終端に回転軸方向通路を、同回転軸方向通路の終端
に第2の半径方向通路を、それぞれ連通させるとともに
、同第2の半径方向通路の終端をロータ周縁に開口させ
、かつ上記ロータ中央部に粉体を、上記回転軸方向通路
に弁を介して加圧ガスを、それぞれ供給するようにした
ことを特徴とする粉体加圧供給装置。
A rotary axial passage is communicated with the terminal end of the radial passage extending from the center to the peripheral edge of the rotating rotor, and a second radial passage is communicated with the terminal end of the rotary axial passage, and the second radial passage Powder pressurization characterized in that the end of the passage is opened at the rotor periphery, and powder is supplied to the center of the rotor, and pressurized gas is supplied to the passage in the direction of the rotational axis via a valve. Feeding device.
JP15834189A 1989-06-22 1989-06-22 Powder pressure supply device Expired - Lifetime JP2597009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15834189A JP2597009B2 (en) 1989-06-22 1989-06-22 Powder pressure supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15834189A JP2597009B2 (en) 1989-06-22 1989-06-22 Powder pressure supply device

Publications (2)

Publication Number Publication Date
JPH0326608A true JPH0326608A (en) 1991-02-05
JP2597009B2 JP2597009B2 (en) 1997-04-02

Family

ID=15669523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15834189A Expired - Lifetime JP2597009B2 (en) 1989-06-22 1989-06-22 Powder pressure supply device

Country Status (1)

Country Link
JP (1) JP2597009B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6283924B1 (en) 1998-11-20 2001-09-04 Asahi Kogaku Kogyo Kabushiki Kaisha Endoscopic biopsy forceps
US6378351B1 (en) 1999-09-30 2002-04-30 Asahi Kogaku Kogyo Kabushiki Kaisha Method for manufacturing endoscopic biopsy forceps cup
CN103129971A (en) * 2011-12-02 2013-06-05 衡阳镭目科技有限责任公司 Powder material quantificational pneumatic conveyor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6283924B1 (en) 1998-11-20 2001-09-04 Asahi Kogaku Kogyo Kabushiki Kaisha Endoscopic biopsy forceps
US6378351B1 (en) 1999-09-30 2002-04-30 Asahi Kogaku Kogyo Kabushiki Kaisha Method for manufacturing endoscopic biopsy forceps cup
CN103129971A (en) * 2011-12-02 2013-06-05 衡阳镭目科技有限责任公司 Powder material quantificational pneumatic conveyor

Also Published As

Publication number Publication date
JP2597009B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
US5997220A (en) Vertical-shaft airlock
US5655853A (en) Vertical-shaft airlock
US20070128988A1 (en) Feeder Assembly For Particle Blast System
US4655679A (en) Power translation device
JPH081132B2 (en) Free-rotating pressure wave supercharger driven by gas power
GB1353062A (en) Aerated powder pump
JPS61197911A (en) Fuel combustion plant
JPH0326608A (en) Powder pressurizing and supplying device
US9156631B2 (en) Multi-stage solids feeder system and method
CN107601056A (en) A kind of birotor Geldart-D particle batcher in parallel
US4668534A (en) Method and apparatus for applying fusion bonded powder coatings to the internal diameter of tubular goods
CA1239961A (en) Switching valve and a pneumatic transportation system for powdered or granular material with such a switching valve for selection of different transport paths
US4392347A (en) Gas turbine engine fuel system
US3178165A (en) Apparatus for injecting solid particulate material into a metallurgical furnace
US2916217A (en) Pressurized pneumatic mechanical unit pulverizer
JPS5841253B2 (en) Crushed material feeding device
CN211901077U (en) Self-suction device of gas pressurizer
CN207312649U (en) A kind of parallel connection birotor Geldart-D particle batcher
JPH06293437A (en) Powder pressure feeding device
CN2081465U (en) Windward side topping outer adjusting straight automatic voltage-stabilizing by-pass valve
JPH07125844A (en) Powder supplying device
JP2846268B2 (en) gas turbine
US2750234A (en) Improved rotary solids transfer pump for handling fluidized solids
CA1190173A (en) Dry pulverized solid material pump
US1494354A (en) Steam turbine