JPH03265781A - Fluid transport pipe - Google Patents

Fluid transport pipe

Info

Publication number
JPH03265781A
JPH03265781A JP2060756A JP6075690A JPH03265781A JP H03265781 A JPH03265781 A JP H03265781A JP 2060756 A JP2060756 A JP 2060756A JP 6075690 A JP6075690 A JP 6075690A JP H03265781 A JPH03265781 A JP H03265781A
Authority
JP
Japan
Prior art keywords
carbon fiber
pipe
reinforcing layer
tube
interlock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2060756A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Makino
良之 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2060756A priority Critical patent/JPH03265781A/en
Publication of JPH03265781A publication Critical patent/JPH03265781A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize reduction of weight, detection of breakdown of a reinforcing layer, and temperature preservation and heating of a transport fluid by providing a plastic pipe on a metallic interlock pipe, and providing a carbon fiber reinforcing layer thereon, and providing an outer sheath on the carbon fiber reinforcing layer. CONSTITUTION:This is composed of a flexible composite pipe 1, that is, the metallic interlock pipe 2, where an metallic tape whose cross section is S-shaped, for example, a steel tape is wound into tubular shape and uneven parts are engaged with each other, a plastic pipe 3 which is made on the interlock pipe 2 by extrusion coverage, or the like, carbon fiber reinforcing layers 4 and 5, which are provided on the plastic pipe 3, and an outer sheath 6 of plastic, which is provided on these reinforcing layers 4 and 5. As a result, sharp weight reduction of a fluid transport pipe can be realized. Moreover, abnormality such as the deformation of the reinforcing layer, breakdown, etc. can be detected by the change of electric resistance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は油、ガスの如き流体、特に油井、ガス井等から
採取された原油、天然ガスの如き流体を輸送する可撓性
複合管からなる流体輸送管に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a flexible composite pipe for transporting fluids such as oil and gas, particularly crude oil and natural gas extracted from oil wells, gas wells, etc. The present invention relates to a fluid transport pipe.

〔従来の技術〕[Conventional technology]

従来の流体輸送管は、金属製のインターロック管の上に
プラスチック管を設け、プラスチック管の上に金属補強
層を設け、金属補強層の上に外部シースを設けた可撓性
複合管からなっている。
Conventional fluid transport tubes consist of a flexible composite tube with a plastic tube on top of a metal interlock tube, a metal reinforcing layer on top of the plastic tube, and an outer sheath on the metal reinforcing layer. ing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、従来の流体輸送管は金属補強層を用いて
いるので、単位長さ当たりの重量が大きくなり、特に近
年海底油田が浅海域から沖合の深海域の方まで開発され
、長尺の輸送管が使用される機会が多くなってきており
、自重を支えるために補強層の厚さが大きくなり、益々
重量が大きくなる傾向にある。このため、輸送管の製造
、運搬、施工が面倒で費用がかかり、経済的でない問題
があった。
However, since conventional fluid transport pipes use a metal reinforcement layer, they have a large weight per unit length.Especially in recent years, as offshore oil fields have been developed from shallow waters to offshore deep waters, long transport pipes are being used more frequently, and the thickness of the reinforcing layer has become larger in order to support its own weight, which tends to increase the weight. For this reason, manufacturing, transporting, and constructing the transport pipes are troublesome and costly, which poses the problem of being uneconomical.

また低流動性の流体を輸送する場合、流体を熱交換器等
に通して加熱し、流動性を高めたうえで輸送することが
ある。このとき輸送管には、発泡プラスチック等で保i
iを設けたり、ヒータを輸送管上に巻付けたり、輸送管
内にヒータ層を設けることが行われる。
Furthermore, when transporting a fluid with low fluidity, the fluid may be heated through a heat exchanger or the like to increase its fluidity before being transported. At this time, protect the transport pipe with foamed plastic, etc.
i, wrapping a heater around the transport pipe, or providing a heater layer inside the transport pipe.

しかし、保温層を設けることにより複合管の外径が著し
く増大し、輸送管を海洋で使用するとき、波浪等の影響
を受は易くなるほか、輸送管をドラム等に巻取るとき、
巻量(収納量)が少なくなり、実用上の問題が多かった
However, by providing a heat insulating layer, the outer diameter of the composite pipe increases significantly, and when the transport pipe is used in the ocean, it becomes more susceptible to the effects of waves, etc., and when the transport pipe is wound onto a drum, etc.
The amount of roll (storage amount) was reduced, which caused many practical problems.

一方、ヒータ巻構造は流体輸送管が波浪、潮流により繰
り返し曲げを受け、ヒータが切れ易い問題があった。
On the other hand, the heater winding structure has a problem in that the fluid transport pipe is repeatedly bent by waves and currents, and the heater tends to burn out.

更に流体輸送管が繰り返し曲げを受けて金属補強層が疲
労破壊を起こした場合、それを速やかに検知できず、そ
のまま放置することにより、やがて流体輸送管が破壊し
、流体輸送不能となるほか、周囲を油等で汚染するとい
った重大災害を引き起こす恐れがあった。
Furthermore, if the fluid transport pipe is subjected to repeated bending and the metal reinforcing layer suffers fatigue failure, this cannot be detected promptly and if left untreated, the fluid transport pipe will eventually break and become unable to transport fluid. There was a risk of causing a serious disaster such as contaminating the surrounding area with oil, etc.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記の種々の問題を解決するためになされたも
ので、請求項1記載の発明は、金属製のインターロック
管の上にプラスチック管を設け、プラスチック管の上に
炭素繊維補強層を設け、炭素繊維補強層の上に外部シー
スを設けた可撓性複合管からなっている。 請求項2記
載の発明は、請求項1記載の流体輸送管において、前記
可撓性複合管の一方の端末に、前記インターロック管の
端末と炭素繊維補強層の端末との間を電気絶縁する絶縁
側端末金具を取付L3ると共に、これら両端末間に補強
層異常検知器を接続し、前記可撓性複合管の他方の端末
に、前記インターロック管の端末と炭素繊維補強層の端
末との間を電気的に接続して導通させる導通側端末金具
を取付けて構成されている。
The present invention has been made to solve the various problems mentioned above, and the invention as claimed in claim 1 provides a plastic pipe on top of a metal interlock pipe, and a carbon fiber reinforcing layer on top of the plastic pipe. It consists of a flexible composite tube with an outer sheath over a carbon fiber reinforcement layer. The invention according to claim 2 is the fluid transport pipe according to claim 1, wherein electrical insulation is provided between the end of the interlock pipe and the end of the carbon fiber reinforcing layer at one end of the flexible composite pipe. Attach the insulating side terminal fitting L3, connect a reinforcing layer abnormality detector between these two terminals, and connect the terminal of the interlock tube and the terminal of the carbon fiber reinforcing layer to the other terminal of the flexible composite tube. It is constructed by attaching a conductive side terminal fitting to electrically connect and conduct between the two.

請求項3記載の発明は、請求項2記載の流体輸送管にお
いて、前記補強層異常検知器に代えて加熱電源装置を接
続して構成されている。
According to a third aspect of the invention, in the fluid transport pipe according to the second aspect, a heating power supply device is connected in place of the reinforcing layer abnormality detector.

(作 用〕 補強層として、炭素繊維補強層を用いるので、金属補強
層に比べて単位長さ当たりの重量が軽くなる。特に炭素
繊維強化プラスチックは広く使われている鋼材の約1/
6程度の重量なので、このプラスチックで形成された炭
素繊維補強層を備えた可撓性複合管からなる流体輸送管
は著しく重量を軽減することができる。
(Function) Since a carbon fiber reinforced layer is used as a reinforcing layer, the weight per unit length is lighter than that of a metal reinforced layer.In particular, carbon fiber reinforced plastic is about 1/2 the weight of widely used steel materials.
Since the weight is about 6, the fluid transport tube made of this plastic and made of a flexible composite tube with a carbon fiber reinforcement layer can significantly reduce the weight.

また炭素繊維補強層は導電性であり、その体積固有抵抗
は、例えば炭素繊維強化プラスチックの場合、1〜10
6Ω・0であるから、その抵抗を測定することにより、
その補強層の破断の検出を行うことができる。
Further, the carbon fiber reinforced layer is conductive, and its volume resistivity is, for example, 1 to 10 in the case of carbon fiber reinforced plastic.
Since it is 6Ω・0, by measuring the resistance,
Breakage of the reinforcing layer can be detected.

更に炭素繊維補強層に常時適切な電流を流して通電する
ことにより、その補強層が発熱し、輸送流体を保温また
は加温することができる。
Furthermore, by constantly passing an appropriate current through the carbon fiber reinforcing layer, the reinforcing layer generates heat, and the transport fluid can be kept warm or heated.

〔実施例〕〔Example〕

(第1実施例) 次に本発明の第1実施例を第1図を参照しながら詳細に
説明すると、本発明による流体輸送管は次の構成の可撓
性複合管1、即ち断面形状がS字形の金属テープ例えば
鋼製テープを管状に巻付けて凹凸部を互いにかみ合わせ
た金属製のインターロック管2と、このインターロック
管2の上に押出被覆等によって形成されたプラスチック
管3と、このプラスチック管3の上に設けられた炭素繊
維補強層4.5と、この補強N4.5の上に設けられた
プラスチックの外部シース6とで構成された可撓性複合
管からなっている。
(First Embodiment) Next, a first embodiment of the present invention will be described in detail with reference to FIG. A metal interlock tube 2 in which an S-shaped metal tape, for example, a steel tape, is wrapped around a tube and the concave and convex portions are interlocked with each other; a plastic tube 3 formed on the interlock tube 2 by extrusion coating or the like; It consists of a flexible composite tube consisting of a carbon fiber reinforcement layer 4.5 provided on the plastic tube 3 and a plastic outer sheath 6 provided on the reinforcement N4.5.

炭素繊維補強層4はプラスチック管3からの内圧に耐え
るためのものであり、図示するように中央部に凹部を有
し、両側縁に凸部を有する断面形状が山形の炭素繊維強
化プラスチツク長尺体を2層、逆向きに重ね合わせて互
いに凹凸部をかみ合わせながら短ピツチで巻付けて形成
したり、また一方の側縁に凸部を有し、他方の側縁に、
この凸部に対応する凹部を有する断面形状がZ形の炭素
繊維強化プラスチツク長尺体を凹凸部がかみ合うように
短ピツチで巻付けて形成したり、炭素繊維強化プラスチ
ツクテープや炭素繊維織物条帯を多層に巻付ける等して
形成される。炭素繊維補強層5は内圧により発生する軸
力及び自重や外部張力により発生する軸力に耐えるよう
にするためのもので、断面形状が長方形又は円形の炭素
繊維強化プラスチツク長尺体の多数本を複数層(図示す
るものは2層)交互又は同一方向に長ピツチで巻付けて
形成される。また炭素繊維補強層4.5は両層が必ずし
も炭素繊維補強層である必要がなく、少なくとも一層が
炭素繊維補強層であれば良い。
The carbon fiber reinforcing layer 4 is to withstand the internal pressure from the plastic pipe 3, and is made of a long length of carbon fiber reinforced plastic with a chevron-shaped cross-section having a concave portion in the center and convex portions on both side edges, as shown in the figure. The body is formed by stacking two layers in opposite directions and wrapping them in a short pitch while interlocking the uneven parts, or having a protrusion on one side edge and a convex part on the other side edge.
A carbon fiber-reinforced plastic elongated body having a Z-shaped cross section and a concave portion corresponding to the convex portion is wound with short pitches so that the concave and convex portions engage, or a carbon fiber-reinforced plastic tape or a carbon fiber woven strip is formed. It is formed by winding it in multiple layers. The carbon fiber reinforcement layer 5 is intended to withstand the axial force generated by internal pressure, its own weight, and the axial force generated by external tension. It is formed by winding a plurality of layers (two layers in the figure) alternately or in long pitches in the same direction. Further, both of the carbon fiber reinforced layers 4.5 do not necessarily need to be carbon fiber reinforced layers, and it is sufficient if at least one layer is a carbon fiber reinforced layer.

内径100服、外径145Mの210 kg/c+M仕
様の可撓性複合管1について、従来のものと本発明によ
るものの重量を比較した結果を下記表に示す。これによ
ると、本発明の可撓性複合管は大幅な計量化をはかれる
ことが判る。
The table below shows the results of comparing the weights of a conventional flexible composite tube 1 with an inner diameter of 100 mm and an outer diameter of 145 mm and a weight of 210 kg/c+M according to the present invention. According to this, it can be seen that the flexible composite pipe of the present invention can be significantly weighted.

ここで炭素繊維補強層4,5が炭素繊維強化プラスチツ
ク長尺体で構成される場合、その長尺体は一例として東
し■製の炭素繊維(商品名トレカ)40重量%に、ナイ
ロン66樹脂を溶融浸漬し押出成形によって得られる。
Here, when the carbon fiber reinforcing layers 4 and 5 are composed of carbon fiber-reinforced plastic elongated bodies, the elongated bodies are made of, for example, 40% by weight of carbon fiber manufactured by Toshi ■ (trade name: Trading Card) and nylon 66 resin. obtained by melt dipping and extrusion molding.

また最適な特性を得るため、炭素繊維に他の繊維を混紡
、混繊したり、樹脂に無機物やカーボン粒子を充填する
ことも行われる。また樹脂はナイロン樹脂以外にPEK
(芳香族ポリエーテルケトン)、PEEK(ポリエーテ
ルポリエーテルケトン)、PES (ポリエーテルサル
フォン)PPS (ポリフヱニレンサルファイド)、ボ
リイξド、ポリプロピレン等が使用される。
In addition, in order to obtain optimal characteristics, carbon fibers may be blended with other fibers, or resin may be filled with inorganic substances or carbon particles. In addition to nylon resin, the resin is PEK.
(aromatic polyetherketone), PEEK (polyether polyetherketone), PES (polyether sulfone), PPS (polyphenylene sulfide), polyamide, polypropylene, etc. are used.

(第2実施例) この流体輸送管は前記第1実施例に示す可撓性複合管1
の両端末に、第2図に示すように円筒状の絶縁側端末金
具Aと導通側端末金具Bとが取付けられる。なお第2図
では、絶縁側端末金具Aは円筒形の上半部と対称形の下
半部を省略して上半部のみを断面で示し、導通側端末金
具Bば上半部を断面で示し、両端末金具A、Bの間に連
なる可撓性複合管1は鎖線で略示しである。
(Second Embodiment) This fluid transport pipe is the flexible composite pipe 1 shown in the first embodiment.
As shown in FIG. 2, a cylindrical insulating-side terminal fitting A and a conductive-side terminal fitting B are attached to both ends of the cylindrical terminal fitting. In Fig. 2, the cylindrical upper half and the symmetrical lower half of the insulating side terminal fitting A are omitted and only the upper half is shown in cross section, and the conductive side terminal fitting B shows the upper half in cross section. The flexible composite pipe 1 that extends between both end fittings A and B is schematically shown by a chain line.

更に詳細に説明すると、可撓性複合管1の一方の端末1
aにおいては、金属製のインターロック管2の端末2a
と炭素繊維補強N4,5の端末4a、5aとの間を絶縁
する絶縁側端末金具Aが取付けられると共に、前記端末
2aと前記4a  5aとの間に補強層異常検知器25
が接続される。
To explain in more detail, one end 1 of the flexible composite pipe 1
In a, the terminal 2a of the metal interlock tube 2
An insulating side terminal fitting A is attached to insulate between the terminals 4a and 5a of the carbon fiber reinforcement N4 and 5, and a reinforcing layer abnormality detector 25 is installed between the terminals 2a and the terminals 4a to 5a.
is connected.

また可撓性複合管1の他方の端末1bにおいては、金属
製のインターロック管2の端末2bと炭素繊維補強層4
,5の端末4b、5bとの間を電気的に接続して導通さ
せる導通側端末金具Bが取付けられる。
Furthermore, at the other end 1b of the flexible composite tube 1, the end 2b of the metal interlock tube 2 and the carbon fiber reinforcing layer 4 are connected to each other.
, 5 is attached with a conductive side terminal fitting B that electrically connects and establishes continuity between the terminals 4b and 5b of the terminals 4b and 5b.

可撓性複合管1の一方の端末1aに取付けられる絶縁側
端末金具Aは次のように構成される。即ち、可撓性複合
管1の一方の端末における金属製のインターロック管2
の端末2aとプラスチック管3の端末3aの端縁7に絶
縁リング8,9を置いて金属製のエンドボディ10を嵌
め込み、プラスチック管3の端部の外周に環状パツキン
11を嵌める。
The insulated end fitting A attached to one end 1a of the flexible composite pipe 1 is constructed as follows. That is, the metal interlock tube 2 at one end of the flexible composite tube 1
Insulating rings 8 and 9 are placed on the end edge 7 of the end 2a of the plastic tube 3 and the end 3a of the plastic tube 3, a metal end body 10 is fitted, and an annular packing 11 is fitted around the outer periphery of the end of the plastic tube 3.

このエンドボディ10は、内径をインター口。This end body 10 has an inner diameter as an interface.

り管2と同一にし、その内裏部に前記のインターロック
管2の端末2a、プラスチック管3の端末3a及び絶縁
リング8,9が嵌入する凹部12と、前記環状パツキン
11を嵌入させて押える凹部13とを設け、内奥端面1
4に止めボルト15で固定した金属製インナーケーシン
グ16の先端で、前記環状パツキンIIを押圧して、イ
ンターロック管2の端末2aとプラスチック管3の端末
3aとの各外周を押える。
A recess 12, which is the same as the inner pipe 2, into which the end 2a of the interlock pipe 2, the end 3a of the plastic pipe 3, and the insulating rings 8, 9 are fitted, and a recess into which the annular packing 11 is fitted and pressed. 13, and the inner inner end surface 1
The annular packing II is pressed by the tip of the metal inner casing 16 fixed to the inner casing 16 with a fixing bolt 15 to press the outer peripheries of the end 2a of the interlock tube 2 and the end 3a of the plastic tube 3.

前記インナーケーシング16と炭素繊維補強層4.5の
端末4a、5aとをボンド線17で接続して炭素繊維補
強層4.5の端末4a、5aとエンドボディ10とを電
気的に接続し、このインナーケーシング16と炭素繊維
補強層4.5の端末4a、5aと、外部シース6の端末
6aとの各外周に熱硬化性樹脂絶縁体18を被せ、エン
ドボディ10の外周面に螺合したアウターケーシングI
9の後端部20と外部シース6の外周面との間に環状パ
ツキン21を設けてアウターケーシング19内を密封す
る。22はエンドボディ10の先端のフランジ部である
Connecting the inner casing 16 and the terminals 4a, 5a of the carbon fiber reinforcing layer 4.5 with a bond wire 17 to electrically connect the terminals 4a, 5a of the carbon fiber reinforcing layer 4.5 and the end body 10, A thermosetting resin insulator 18 is placed around each of the outer peripheries of the inner casing 16, the ends 4a and 5a of the carbon fiber reinforcing layer 4.5, and the end 6a of the outer sheath 6, and is screwed onto the outer peripheral surface of the end body 10. Outer casing I
An annular packing 21 is provided between the rear end portion 20 of the outer casing 9 and the outer peripheral surface of the outer sheath 6 to seal the inside of the outer casing 19. 22 is a flange portion at the tip of the end body 10.

前記インターロック管2の端末2aにリード線23を接
続して外部に引出し、またエンドボディlOにリード線
24を接続し、この両リード線23.24に電流計等の
補強層異常検知器25を接続して炭素繊維補強N4,5
の端末4a、5aとインターロック管2の端末2aとの
間を導通状態にする。
A lead wire 23 is connected to the terminal 2a of the interlock tube 2 and pulled out to the outside, and a lead wire 24 is connected to the end body 1O, and a reinforcing layer abnormality detector 25 such as an ammeter is connected to both lead wires 23 and 24. Connect carbon fiber reinforcement N4,5
The terminals 4a, 5a of the interlock tube 2 and the terminal 2a of the interlock tube 2 are brought into conduction.

可撓性複合管1の他方の端末1bに取付けられる導通側
端末金具Bは次のように構成される。即ち、内径を金属
製のインターロック管2と同一にした金属製のエンドボ
ディ26の内奥部の凹部27に、インターロック管2と
プラスチック管3の端末2b、3bを嵌入させ、内奥部
のパツキン押え用の凹部28に環状パツキン29を置き
、エンドボディ26の内奥端面30に止めポルト31で
固定した金属製のインナーケーシング32の先端で、前
記環状パツキン29を押圧してインターロック管2の端
末2bとプラスチック管3の端末3bとを押える。
The conduction side end fitting B attached to the other end 1b of the flexible composite tube 1 is constructed as follows. That is, the ends 2b and 3b of the interlock tube 2 and the plastic tube 3 are fitted into the recess 27 at the inner depth of the metal end body 26, which has the same inner diameter as the metal interlock tube 2, and the inner diameter is the same as that of the metal interlock tube 2. Place the annular packing 29 in the recess 28 for holding the packing, and press the annular packing 29 with the tip of the metal inner casing 32 fixed to the inner end face 30 of the end body 26 with the stopper port 31 to release the interlock tube. 2 and the end 3b of the plastic tube 3.

前記のインナーケーシング32と炭素繊維補強層4,5
の端末4b、5bとをポンド線33で接続して炭素繊維
補強層4,5の端末4b、5bとエンドボディ26とを
電気的に接続し、このインナーケーシング32と、炭素
繊維補強層4.5の端末4b、5bと、外部シース6の
端末6bとの各外周に熱硬化性樹脂絶縁体34を被せ、
エンドボディ26の外周面に螺合したアウターケーシン
グ35の後端部36と外部シース6の端末6bの外周面
との間に環状パツキン37を設けてアウターケーシング
35内を密封する。38はエンドボディ26の先端のフ
ランジ部である。
The inner casing 32 and the carbon fiber reinforcing layers 4 and 5
The terminals 4b, 5b of the carbon fiber reinforcing layers 4, 5 are electrically connected to the end body 26 by connecting the ends 4b, 5b of the carbon fiber reinforcing layer 4. 5 and the terminal 6b of the outer sheath 6 are covered with a thermosetting resin insulator 34,
An annular packing 37 is provided between the rear end portion 36 of the outer casing 35 screwed onto the outer circumferential surface of the end body 26 and the outer circumferential surface of the terminal 6b of the outer sheath 6 to seal the inside of the outer casing 35. 38 is a flange portion at the tip of the end body 26.

前記のインターロック管2の端末2bに金属スリーブ3
9の一端を溶接40L、このスリーブ39の他端をエン
ドボディ26に溶接してインターロック管2の端末2b
とエンドボディ26とを溶接することにより、炭素繊維
補強層4,5の端末4b、5bとインターロック管2の
端末2bとをボンド線33、エンドボディ26、スリー
ブ39を介して電気的に接続する。
A metal sleeve 3 is attached to the end 2b of the interlock tube 2.
One end of the sleeve 39 is welded to the end body 26, and the other end of the sleeve 39 is welded to the end body 26 to form the terminal 2b of the interlock tube 2.
By welding the ends 4b and 5b of the carbon fiber reinforcing layers 4 and 5 and the end 2b of the interlock tube 2 through the bond wire 33, the end body 26, and the sleeve 39, do.

2 前記のようにして可撓性複合管1の両端末に絶縁側端末
金具Aと導通側端末金具Bとを取付けて補強層異常検知
器25を接続することにより、可撓性複合管lの金属製
のインターロック管2と炭素繊維補強層4.5を往復電
路とする回路が形成され、この回路は補強層異常検知器
25−絶縁側端末金具A側のリード線23−金属製のイ
ンターロック管2−導通側端末金具B側のエンドボディ
26−ボンド線33−炭素繊維補強層4,5−絶縁側端
末金具A側のボンド線17−ニンドポデイ10−リード
線24−補強層異常検知器25により形成される回路と
なる。
2. By attaching the insulating end fitting A and the conductive end fitting B to both ends of the flexible composite pipe 1 as described above and connecting the reinforcing layer abnormality detector 25, the A circuit is formed in which the metal interlock tube 2 and the carbon fiber reinforcement layer 4.5 serve as a reciprocating electrical path, and this circuit connects the reinforcement layer abnormality detector 25 - the lead wire 23 on the insulated terminal fitting A side - the metal interface. Lock tube 2 - End body 26 on the conductive side terminal fitting B side - Bond wire 33 - Carbon fiber reinforcement layers 4, 5 - Bond wire 17 on the insulation side terminal fitting A side - Nindpodi 10 - Lead wire 24 - Reinforcement layer abnormality detector The circuit is formed by 25.

この可撓性複合管1の全長が無傷で正常な状態のインタ
ーロック管2の抵抗値をR1、炭素繊維補強層4,5の
抵抗値をR2、絶縁側端末金具Aにおける抵抗値をR3
、導通側端末金具Bにおける抵抗値をR4とすると、こ
の正常な状態における前記の回路の正常な抵抗値ROは
、RO=R1−I−R2+ R3+ R4となる。そこ
でこの正常なインターロック管2、炭素繊維補強層4,
5の回路に通電すると、補強層異常検知器25はこの正
常時における所定の電流値を示すことになる。
The resistance value of the interlock tube 2 when the entire length of the flexible composite tube 1 is intact and normal is R1, the resistance value of the carbon fiber reinforcing layers 4 and 5 is R2, and the resistance value at the insulated end fitting A is R3.
If the resistance value at the conductive side terminal fitting B is R4, the normal resistance value RO of the circuit in this normal state is RO=R1-I-R2+R3+R4. Therefore, this normal interlock tube 2, carbon fiber reinforcement layer 4,
When the circuit No. 5 is energized, the reinforcing layer abnormality detector 25 will indicate a predetermined current value in this normal state.

この可撓性複合管1の炭素繊維補強層4.5が疲労劣化
したり外傷を受けると、変形による断面積の減少や損壊
、破断が生じるが、このように変形、損壊、破断等の異
常が生じると、その部分の電気抵抗値が正常値よりも変
化し、炭素繊維補強層4.5が完全に切断されると、抵
抗値は無限大となる。
When the carbon fiber reinforcing layer 4.5 of the flexible composite pipe 1 deteriorates due to fatigue or is subjected to external trauma, the cross-sectional area decreases due to deformation, or damage or breakage occurs. When this occurs, the electrical resistance value of that portion changes from the normal value, and when the carbon fiber reinforcing layer 4.5 is completely cut, the resistance value becomes infinite.

このように炭素繊維補強層4.5に異常が生じてその抵
抗値が正常値R2よりも変化すると、電流計等の補強層
異常検知器25は正常時における指示とは異なった指示
をすることになる。従って、この検知器25の指示によ
り炭素繊維補強N4゜5の疲労劣化を検知することがで
きる。そして炭素繊維補強層4.5のいずれかが疲労劣
化を生じたことを検知されたならば、この可撓性複合管
1を速やかに新たなものに交換して安全に保つのである
In this way, when an abnormality occurs in the carbon fiber reinforcing layer 4.5 and its resistance value changes from the normal value R2, the reinforcing layer abnormality detector 25 such as an ammeter will give a different instruction from the normal one. become. Therefore, the fatigue deterioration of the carbon fiber reinforced N4.5 can be detected by the instruction from the detector 25. If it is detected that any of the carbon fiber reinforcing layers 4.5 has deteriorated due to fatigue, the flexible composite tube 1 is promptly replaced with a new one to maintain safety.

(第3実施例) 第3図に示すものは、可撓性複合管lの炭素繊維補強N
4,5として、第4図に示すような構造の炭素繊維強化
プラスチツク長尺体50を用いた場合の絶縁側端末金具
Aを示したものである。即ち、前記炭素繊維強化プラス
チツク長尺体50は炭素繊維強化プラスチックコア51
の上にポリエチレン等の絶縁被覆層52を設けて構成さ
れる。
(Third Example) What is shown in Fig. 3 is a flexible composite pipe l with carbon fiber reinforcement N.
4 and 5 show insulating side terminal fittings A when a carbon fiber reinforced plastic elongated body 50 having a structure as shown in FIG. 4 is used. That is, the carbon fiber reinforced plastic elongated body 50 has a carbon fiber reinforced plastic core 51.
An insulating coating layer 52 made of polyethylene or the like is provided thereon.

図示しないが、この炭素繊維強化プラスチツク長尺体5
0は絶縁被覆層52を設ける代わりに、プラスチックの
中心部に炭素繊維を密に配列し、外に向かって疎となる
ように配列したもので構成してもよい。
Although not shown, this carbon fiber reinforced plastic elongated body 5
0 may be constructed by arranging carbon fibers densely in the center of the plastic and sparsely arranging them outward, instead of providing the insulating coating layer 52.

上記のような炭素繊維強化プラスチツク長尺体50を用
いると、第3図に示すように絶縁側端末金具Aにおいて
、炭素繊維補強層4.5の端末4a、5aにおける炭素
繊維強化プラスチツクコア51の一部又は全部を該一部
又は全部のコア毎に独立して各リード線24(アウター
ケーシング19とは絶縁さている)を介し、複数の補強
層異常検知器25と接続することができる。全部の炭素
繊維強化プラスチツクコア51を各々独立して各リード
線24を介し前記検知器25と接続することが望ましい
When the carbon fiber reinforced plastic elongated body 50 as described above is used, as shown in FIG. A part or all of the cores can be independently connected to a plurality of reinforcing layer abnormality detectors 25 via each lead wire 24 (insulated from the outer casing 19). It is desirable that all the carbon fiber reinforced plastic cores 51 be independently connected to the detector 25 via each lead wire 24.

導通側端末金具Bは図示しないが、炭素繊維補強層4.
5の端末4b、5bにおける炭素繊維強化プラスチツク
コア5Iを独立してボンド線33を介しエンドボディ2
6に接続し、エンドボディ26とインターロック管2の
端末2bとを接続する。
Although the conductive side terminal fitting B is not shown, the carbon fiber reinforcing layer 4.
The carbon fiber reinforced plastic cores 5I at the terminals 4b and 5b of 5 are independently connected to the end body 2 via bond wires 33.
6 to connect the end body 26 and the terminal 2b of the interlock tube 2.

これにより、可撓性複合管1のインターロック管2と各
炭素繊維強化プラスチツク長尺体5oと各補強層異常検
知器25を電路とする複数の回路が形成される。
As a result, a plurality of circuits are formed in which the interlock tube 2 of the flexible composite tube 1, each carbon fiber reinforced plastic elongated body 5o, and each reinforcing layer abnormality detector 25 serve as electrical circuits.

この複数の回路の各々の正常時の抵抗値ROは前記第2
実施例と同しくRO=R1+R2+R3+R4となる。
The normal resistance value RO of each of the plurality of circuits is the second
As in the embodiment, RO=R1+R2+R3+R4.

そこで前記各回路に通電すると、補強層異常検知器25
は、正常時における所定の電流値を示す。この可撓性複
合管1の炭素繊維補強層4,5を構成する炭素繊維強化
プラスチツク長尺体50のいずれかが外傷や疲労劣化を
受ける5 6 と、変形し、断面積の減少や破断が生しる。このとき異
常な炭素繊維強化プラスチツク長尺体50の電気抵抗値
が正常値よりも大きくなり、破断の場合導通がなくなる
Therefore, when the respective circuits are energized, the reinforcing layer abnormality detector 25
indicates a predetermined current value under normal conditions. If any of the carbon fiber reinforced plastic elongated bodies 50 constituting the carbon fiber reinforced layers 4 and 5 of the flexible composite pipe 1 is subjected to external trauma or fatigue deterioration, it will deform, resulting in a reduction in cross-sectional area or breakage. Live. At this time, the electrical resistance value of the abnormal carbon fiber-reinforced plastic elongated body 50 becomes larger than the normal value, and in the case of breakage, there is no continuity.

このように炭素繊維強化プラスチツク長尺体50に異常
が生してその抵抗値が正常抵抗値R2より変化すると、
該当する電流計等の補強層異常検知器25は正常時にお
ける指示とは異なった指示をすることになる。このよう
に炭素繊維強化プラスチツク長尺体50の複数本又は全
部にこれら長尺体毎の回路を形成した場合、前記炭素繊
維強化プラスチツク長尺体50の破断本数を観測するこ
とができ、可撓性複合管Iが重大な破壊を引き起こす前
に、その前駆状態を正しく精度よく検知することができ
好ましい。
In this way, when an abnormality occurs in the carbon fiber reinforced plastic elongated body 50 and its resistance value changes from the normal resistance value R2,
The relevant reinforcing layer abnormality detector 25 such as an ammeter will give an instruction different from the instruction during normal times. In this way, when a circuit is formed for each of the carbon fiber reinforced plastic elongated bodies 50 or all of the elongated bodies 50, the number of broken carbon fiber reinforced plastic elongated bodies 50 can be observed, and the flexible It is preferable that the precursor state of the sexual complex tube I can be detected correctly and accurately before it causes serious destruction.

(第4実施例) この実施例は、前記第2実施例に示す流体輸送管におい
て、補強層異常検知器25の代わりに、第5図に示すよ
うな加熱電源装置42を接続した可撓性複合管1からな
るものであり、その他の構成は第2実施例と同じである
(Fourth Embodiment) This embodiment is a flexible structure in which a heating power supply device 42 as shown in FIG. 5 is connected in place of the reinforcing layer abnormality detector 25 in the fluid transport pipe shown in the second embodiment. It consists of a composite pipe 1, and the other configurations are the same as in the second embodiment.

この加熱電源装置42により、これと金属製のインター
ロック管2と炭素繊維補強層4,5とで形成される回路
に適切な電流を流すと、補強層45は発熱し、流体輸送
管と別個に保温層やヒータを設けることなく、輸送流体
を加温又は保温して輸送することができる。
When this heating power supply device 42 applies an appropriate current to the circuit formed by this, the metal interlock tube 2, and the carbon fiber reinforcing layers 4 and 5, the reinforcing layer 45 generates heat and separates from the fluid transport tube. Transport fluid can be heated or kept warm and transported without providing a heat insulating layer or heater.

〔発明の効果〕〔Effect of the invention〕

前記したように、本発明はブラスチンク管の上に炭素繊
維補強層を設けたので、流体輸送管の大幅な軽量化をは
かることができ、その製造、運搬、施工が容易で費用の
低減、特に海洋での石油生産システムのコストダウンが
可能である。また輸送管の外径が大きくならないため、
この輸送管を海洋で使用しても、該管が波浪等の影響を
受けにくく、繰返し曲げによる疲労破壊が減少して寿命
が長くなるほか、ドラム等への巻取収納量が増えて輸送
量が増大し、輸送コストを低減させることができる。
As described above, since the present invention provides a carbon fiber reinforcing layer on the brass tink pipe, it is possible to significantly reduce the weight of the fluid transport pipe, and it is easy to manufacture, transport, and install, reducing costs, especially It is possible to reduce the cost of offshore oil production systems. Also, since the outer diameter of the transport pipe does not increase,
Even when this transport pipe is used in the ocean, it is less susceptible to the effects of waves, etc., and fatigue fractures due to repeated bending are reduced, resulting in a longer life. can be increased, and transportation costs can be reduced.

また炭素繊維は導電性であるため、金属製のインターロ
ック管と炭素繊維補強層と補強層異常検知器とで該補強
層の異常検知用の回路を形威し、該補強層の変形、損壊
、破断等の異常に対する電気抵抗変化により、補強層の
異常を検知し、流体輸送管の重大事故を未然に防ぐこと
が可能となり、安全を確保することができる。
Furthermore, since carbon fiber is conductive, a metal interlock tube, a carbon fiber reinforcing layer, and a reinforcing layer abnormality detector form a circuit for detecting an abnormality in the reinforcing layer, thereby preventing deformation or damage of the reinforcing layer. It is possible to detect an abnormality in the reinforcing layer based on changes in electrical resistance due to abnormalities such as rupture, thereby preventing serious accidents in the fluid transport pipe and ensuring safety.

更に前記補強層異常検知器の代わりに加熱電源装置を設
けて前記回路に通電することにより、輸送流体を加温又
は保温することができ、高粘度輸送流体を低粘度で輸送
することができ、流体輸送のコストを低減させることが
できる。
Furthermore, by providing a heating power supply device instead of the reinforcing layer abnormality detector and energizing the circuit, the transportation fluid can be heated or kept warm, and the high viscosity transportation fluid can be transported with a low viscosity. The cost of fluid transportation can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例を示す一部断面図、第2図
はその第2実施例を示す一部断面図、第3図はその第3
実施例を示す断面図、第4図は第3実施例で用いる炭素
繊維強化プラスチツク長尺体の例を示す断面図、第5図
は本発明の第4実施例を示す断面図である。 1:可撓性複合管、2:インターロック管、3ニブラス
チツク管、4.5=炭素繊維補強層、6:外部シース、
1a:可撓性複合管の一方の端末、1b:可撓性複合管
の他方の端末、2a、2b:インターロック管の端末、
4a、4b、5a、5b:炭素繊維補強層の端末、25
:補強層異常検知器、42:加熱電源装置、A:絶縁側
端末金具、B:導通側端末金具。
FIG. 1 is a partial sectional view showing the first embodiment of the present invention, FIG. 2 is a partial sectional view showing the second embodiment, and FIG. 3 is the third embodiment.
FIG. 4 is a sectional view showing an example of the carbon fiber reinforced plastic elongated body used in the third embodiment, and FIG. 5 is a sectional view showing the fourth embodiment of the present invention. 1: Flexible composite tube, 2: Interlock tube, 3 Niblast tube, 4.5 = carbon fiber reinforcement layer, 6: External sheath,
1a: one end of the flexible composite tube, 1b: the other end of the flexible composite tube, 2a, 2b: the ends of the interlock tube,
4a, 4b, 5a, 5b: Terminals of carbon fiber reinforcing layer, 25
: Reinforcement layer abnormality detector, 42: Heating power supply device, A: Insulating side terminal fitting, B: Conductive side terminal fitting.

Claims (3)

【特許請求の範囲】[Claims] (1)金属製のインターロック管の上にプラスチック管
を設け、プラスチック管の上に炭素繊維補強層を設け、
炭素繊維補強層の上に外部シースを設けた可撓性複合管
からなる流体輸送管。
(1) A plastic pipe is provided on top of the metal interlock pipe, a carbon fiber reinforcement layer is provided on the plastic pipe,
A fluid transport tube consisting of a flexible composite tube with an outer sheath over a carbon fiber reinforcement layer.
(2)前記可撓性複合管の一方の端末に、前記インター
ロック管の端末と炭素繊維補強層の端末との間を電気絶
縁する絶縁側端末金具を取付けると共に、これら両端末
間に補強層異常検知器を接続し、前記可撓性複合管の他
方の端末に、前記インターロック管の端末と炭素繊維補
強層の端末との間を電気的に接続して導通させる導通側
端末金具を取付けてなる請求項1記載の流体輸送管。
(2) An insulating end fitting is attached to one end of the flexible composite tube to electrically insulate between the end of the interlock tube and the end of the carbon fiber reinforcing layer, and a reinforcing layer is placed between these two ends. An abnormality detector is connected to the other end of the flexible composite pipe, and a conduction side terminal fitting is attached to the other end of the flexible composite pipe to electrically connect and conduct between the end of the interlock pipe and the end of the carbon fiber reinforcing layer. The fluid transport pipe according to claim 1, comprising:
(3)前記補強層異常検知器に代えて加熱電源装置を接
続してなる請求項2記載の流体輸送管。
(3) The fluid transport pipe according to claim 2, wherein a heating power supply device is connected in place of the reinforcing layer abnormality detector.
JP2060756A 1990-03-12 1990-03-12 Fluid transport pipe Pending JPH03265781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2060756A JPH03265781A (en) 1990-03-12 1990-03-12 Fluid transport pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2060756A JPH03265781A (en) 1990-03-12 1990-03-12 Fluid transport pipe

Publications (1)

Publication Number Publication Date
JPH03265781A true JPH03265781A (en) 1991-11-26

Family

ID=13151438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2060756A Pending JPH03265781A (en) 1990-03-12 1990-03-12 Fluid transport pipe

Country Status (1)

Country Link
JP (1) JPH03265781A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7000645B2 (en) 2000-10-10 2006-02-21 Nkt Flexibles I/S Armoured, flexible pipe
JP2012233577A (en) * 2011-04-29 2012-11-29 Evonik Degussa Gmbh Temperature-controllable pipe suitable for offshore applications

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7000645B2 (en) 2000-10-10 2006-02-21 Nkt Flexibles I/S Armoured, flexible pipe
JP2012233577A (en) * 2011-04-29 2012-11-29 Evonik Degussa Gmbh Temperature-controllable pipe suitable for offshore applications

Similar Documents

Publication Publication Date Title
EP3334969B1 (en) An unbonded flexible pipe
US10851918B2 (en) Unbonded flexible pipe
US9046207B2 (en) Line for transporting a fluid containing a hydrocarbon, and method for producing such a line
AU2016214075B2 (en) Subsea pipe-in-pipe structures
US9020333B2 (en) Line for transporting a fluid containing a hydrocarbon, and method for producing such a line
RU2597724C2 (en) Flexible multilayer structure pipe, use thereof and method for heating of the flexible pipe
US8087430B1 (en) Leak detecting hose
US8450667B2 (en) Flexible, electrically heatable hose
BRPI0809236A2 (en) FLEXIBLE COMPOUND TUBULAR ASSEMBLY WITH HIGH INSULATING PROPERTY AND METHODS FOR MAKING THE SAME
JPH05500102A (en) Flexible tubular conduit containing integrated heating means
US7243716B2 (en) Heated windable rigid duct for transporting fluids, particularly hydrocarbons
RU2718659C2 (en) Electric insulator, method of formation thereof and hydraulic system
BR102012010528A2 (en) temperable piping for offshore use
IE54432B1 (en) Winding or insulating tape made of a high temperature-resistant synthetic resin
BR112017017018B1 (en) TUBE FRAME WITHIN TUBE, METHOD FOR MAKING A TUBE FRAME WITHIN TUBE AND SUBSEA INSTALLATION
CN110546305B (en) Arrangement of electrical continuity and/or radial support
JP5598718B2 (en) Multi-layer insulation joint and double pipe connection structure
JP2015092112A (en) Hose assembly for transferring cryogenic fluid and composite hose
US4225158A (en) Flexible hoses
US9347591B2 (en) Static dissipation in composite structural components
JPH03265781A (en) Fluid transport pipe
RU2745550C2 (en) Flexible transportation of various media and pipe for its production
US20130037155A1 (en) Static dissipation in composite structural components
JPH01307651A (en) Diagnostic method for deterioration of fluid transport pipe
BR112021012105A2 (en) FLEXIBLE TUBE FOR TRANSPORTING A FLUID IN A SUBSEA ENVIRONMENT AND MANUFACTURING METHOD OF A FLEXIBLE TUBE FOR TRANSPORTING A FLUID IN A SUBSEA ENVIRONMENT