JPH03265720A - Fluid type torque transmission device - Google Patents

Fluid type torque transmission device

Info

Publication number
JPH03265720A
JPH03265720A JP6302990A JP6302990A JPH03265720A JP H03265720 A JPH03265720 A JP H03265720A JP 6302990 A JP6302990 A JP 6302990A JP 6302990 A JP6302990 A JP 6302990A JP H03265720 A JPH03265720 A JP H03265720A
Authority
JP
Japan
Prior art keywords
electrode
fluid
insulating ring
electrodes
torque transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6302990A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kato
清 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP6302990A priority Critical patent/JPH03265720A/en
Publication of JPH03265720A publication Critical patent/JPH03265720A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To restrict the drop in slide performance between a shaft-like body of rotation and a cylindrical body of rotation by adding a liquid, which has a larger specific gravity than dispersed phase grains and dispersion mediums and which is not compatible with the dispersion mediums, to an electroviscous fluid. CONSTITUTION:A torque transmission unit 14 is provided with a cylindrical body 16 of rotation and a shaft-like body 18 of rotation, and a space between both the bodies 16, 18 of rotation is filled with an electroviscous fluid whose viscosity is changed in response to the strength of an electric field in use. Further, a liquid whose specific gravity is larger than that of dispersed phase grains and dispersion mediums and which is not compatible with the dispersion mediums, is added to the electroviscous fluid. Sometimes, the electroviscous fluid in which specific gravity of the dispersion mediums is larger than that of the dispersed phase grains is used. As a result, even when centrifugal force acts on the electroviscous fluid, the liquid 42 with greater specific gravity enters a space 40 between an inside electrode 32 and the circular groove 38 of an outside insulating ring 28 to remove the dispersed phase grains 44 from the space 40, and thereby the drop in slide performance between the cylindrical body 16 of rotation and the shaft-like body 18 of rotation can be restricted.

Description

【発明の詳細な説明】 (技術分野) 本発明は、電気粘性流体をトルク伝達媒体とする流体式
トルク伝達装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a fluid torque transmission device using an electrorheological fluid as a torque transmission medium.

(背景技術) 相対向する円板間に粘性流体を介在させて、その一方を
回転させると、それら円板間に位置する粘性流体のすり
剪断応力に基づいて、他方の円板も回転させられる。流
体式トルク伝達装置は、このような原理を利用してトル
クの伝達を行なうようにしたものであり、一般に、特開
昭63−34331号公報に開示されているように、輪
状回転体の外周面に固設された複数の円形つば状の内側
円板部材と、筒状回転体の内周面に固設された複数の円
形つば状の外側円板部材とが、粘性流体の充填空間内に
おいて、軸方向で相互に所定の間隙を隔てて相対回転可
能に交互に配置された構造とされている。
(Background technology) When a viscous fluid is interposed between opposing discs and one of them is rotated, the other disc is also rotated based on the shear stress of the viscous fluid located between the discs. . Hydrodynamic torque transmission devices utilize this principle to transmit torque, and generally, as disclosed in Japanese Patent Application Laid-Open No. 63-34331, the outer periphery of a ring-shaped rotating body is A plurality of circular brim-shaped inner disk members fixed to the surface and a plurality of circular brim-shaped outer disk members fixed to the inner peripheral surface of the cylindrical rotating body are arranged in a space filled with viscous fluid. The structure is such that they are arranged alternately with a predetermined gap in the axial direction so as to be relatively rotatable.

ところで、この種の流体式トルク伝達装置にあっては、
トルクを伝達する粘性流体として、ニュートン流体が一
般に採用されているが、近年、かかる粘性流体として、
作用する電界の大きさによって粘度が実質的に(見掛は
上)変化する性質を備えた電気粘性流体を採用すること
が提案されている。
By the way, in this type of fluid torque transmission device,
Newtonian fluid is generally used as the viscous fluid that transmits torque, but in recent years, as such viscous fluid,
It has been proposed to employ an electrorheological fluid whose viscosity changes substantially (apparently) depending on the magnitude of the applied electric field.

而して、この電気粘性流体を用いる流体式トルク伝達装
置は、前述の如き、従来の流体式トルク伝達装置におい
て、ニュートン流体の代わりに電気粘性流体を採用する
一方、内側円板部材と外側円板部材とを互いに極性の異
なる電極とすることによって得られるが、この種の電気
粘性流体を用いた流体式トルク伝達装置においては、ニ
ュートン流体を用いた従来の流体式トルク伝達装置以上
に、相対向する電極間の距離を精度良く維持することが
要求される。電気粘性流体を用いたトルク伝達装置にお
いては、電極間の距離変動によるトルク伝達特性の変動
が大きく、また相対向する電極が接触すると、電気的な
短絡現象を惹起する恐れがあるからである。
Therefore, this fluid type torque transmission device using an electrorheological fluid uses an electrorheological fluid instead of Newtonian fluid in the conventional fluid type torque transmission device as described above, but the inner disc member and the outer disc member are different from each other. This can be achieved by using electrodes with different polarities from the plate member, but in a fluid torque transmission device using this type of electrorheological fluid, the relative It is required to accurately maintain the distance between the facing electrodes. This is because in a torque transmission device using an electrorheological fluid, the torque transmission characteristics vary greatly due to variations in the distance between electrodes, and if opposing electrodes come into contact, there is a risk of causing an electrical short circuit phenomenon.

そこで、本願出願人らは、先に、特願平1−12076
7号において、電気粘性流体を用いた上述の如きトルク
伝達装置において、内側電極の内周縁部間に内側絶縁リ
ングを介在させると共に、外側電極の外周縁部間に外側
絶縁リングを配し、それら内側絶縁リングと外側絶縁リ
ングとにそれぞれ周方向の環状溝を形式して、外側電極
の内周縁部を内側絶縁リングの環状溝で周方向に案内さ
せる一方、内側電極の外周縁部を外側絶縁リングの環状
溝で周方向に案内させるようにすることを提案した。こ
のようにすれば、内側電極及び外側電極の内外周縁部が
、何れも、軸方向において拘束されることとなるために
、それらの相対向する電極間の距離が一定の距離に精度
良く保持されるのであり、また相対向する電極同士の接
触による短絡事故の発生を良好に防止することができる
のである。
Therefore, the applicants of the present application first filed the patent application No. 1-12076.
In No. 7, in the above-mentioned torque transmission device using an electrorheological fluid, an inner insulating ring is interposed between the inner circumferential edges of the inner electrodes, an outer insulating ring is arranged between the outer circumferential edges of the outer electrodes, and the The inner insulating ring and the outer insulating ring each have a circumferential annular groove, so that the inner circumferential edge of the outer electrode is guided in the circumferential direction by the annular groove of the inner insulating ring, while the outer circumferential edge of the inner electrode is guided in the outer insulating ring. We proposed that the ring be guided in the circumferential direction by an annular groove. In this way, both the inner and outer peripheral edges of the inner and outer electrodes are constrained in the axial direction, so that the distance between the opposing electrodes is maintained at a constant distance with high precision. Moreover, it is possible to effectively prevent short-circuit accidents caused by contact between opposing electrodes.

ところが、このように、内側電極及び外側電極の内外周
縁部を絶縁リングで周方向に案内させるようにした場合
には、回転操作開始後、時間の経過に従って、軸状回転
体と筒状回転体との滑り性能が次第に損なわれるように
なり、ついには、軸状回転体と筒状回転体との相対回転
性能が著しく損なわれて、伝達トルクの制御が不能にな
る恐れがある。
However, when the inner and outer peripheries of the inner and outer electrodes are guided in the circumferential direction by insulating rings, the shaft-like rotating body and the cylindrical rotating body gradually change over time after the rotation operation starts. The sliding performance between the rotary shaft and the cylindrical rotor gradually deteriorates, and eventually the relative rotational performance between the shaft-shaped rotary body and the cylindrical rotary body is significantly impaired, and there is a possibility that control of the transmitted torque becomes impossible.

この理由は、次のように考えられる。即ち、電気粘性流
体は、一般に、電気絶縁性の高い油状物質中に、シリカ
ゲル、デンプン、セルロース、酸基含有ポリマーの金属
塩等の吸水性微粒子、或いはボリアセン・キノンのよう
な有機半導体微粒子を分散させて得られるが、これら通
常の電気粘性流体は、分散媒よりも分散相粒子の比重の
方が大きいため、トルク伝達装置に採用した場合には、
かかる電気粘性流体に一種の遠心分離作用が働いて、比
重の大きな分散相粒子が外周側により多く偏在させられ
るようになる。ここで、内側電極の外周縁部が外側絶縁
リングで周方向に案内される形式のトルク伝達装置にお
いては、それら内側電極と外側絶縁リングの環状溝との
間の隙間が極めて小さいために、上記遠心分離作用にて
分離された分散相粒子が遠心力で多く入り込むと、それ
ら内側電極と外側絶縁リングとの間の摺動抵抗がその隙
間に入り込んだ分散相粒子によって著しく増大されるこ
ととなる。そして、その結果、軸状回転体と筒状回転体
との滑り性能が大幅に低下させられる、と考えられるの
である。
The reason for this is thought to be as follows. That is, electrorheological fluids generally consist of water-absorbing fine particles such as silica gel, starch, cellulose, metal salts of acid group-containing polymers, or organic semiconductor fine particles such as boriacene quinone dispersed in a highly electrically insulating oily substance. However, in these ordinary electrorheological fluids, the specific gravity of the dispersed phase particles is greater than that of the dispersion medium, so when used in a torque transmission device,
A type of centrifugal separation effect acts on the electrorheological fluid, and more dispersed phase particles with a larger specific gravity are distributed on the outer circumferential side. Here, in a torque transmission device in which the outer peripheral edge of the inner electrode is guided in the circumferential direction by an outer insulating ring, the gap between the inner electrode and the annular groove of the outer insulating ring is extremely small. If a large number of dispersed phase particles separated by centrifugation enter the gap due to centrifugal force, the sliding resistance between the inner electrode and the outer insulating ring will be significantly increased by the dispersed phase particles that have entered the gap. . As a result, it is thought that the sliding performance between the shaft-shaped rotating body and the cylindrical rotating body is significantly reduced.

(解決課題) ここにおいて、本発明は、このような事情に鑑みて為さ
れたものであり、その解決すべき課題とするところは、
内側電極の外周縁部及び外側電極の内周縁部がそれぞれ
外側絶縁リング及び内側絶縁リングで周方向に案内され
るように構成された形式の流体式トルク伝達装置であっ
て、輪状回転体と筒状回転体との滑り性能の低下を良好
に抑制して、トルク伝達の制御を安定して行なうことの
できる流体式トルク伝達装置を提供することにある。
(Problems to be solved) The present invention has been made in view of the above circumstances, and the problems to be solved are as follows:
A hydraulic torque transmission device of a type configured such that an outer circumferential edge of an inner electrode and an inner circumferential edge of an outer electrode are guided in the circumferential direction by an outer insulating ring and an inner insulating ring, respectively. It is an object of the present invention to provide a fluid type torque transmission device capable of stably controlling torque transmission by satisfactorily suppressing deterioration in sliding performance with a shaped rotating body.

(解決手段) そして、かかる課題を解決するために、本発明の第一発
明にあっては、前述の如き、軸状回転体の外周面に固設
した複数の円形つば状の内側電極と、筒状回転体の内周
面に固設した複数の円形つば状の外側電極とを、電気粘
性流体の充填空間内において、軸方向で相互に所定の間
隙を隔てて相対回転可能に交互に配置すると共に、それ
ら内側電極と外側電極との間に所定の電圧を印加し得る
ように為し、更に前記外側電極の外周縁部間に外側絶縁
リングを介在させて、該外側絶縁リングに形成した環状
溝にて前記内側電極の外周縁部を周方向に案内させると
共に、該内側電極の内周縁部間に内側絶縁リングを介在
させて、該内側絶縁リングに形式した環状溝にて前記外
側電極の内周縁部を周方向に案内させるようにした形式
の流体式トルク伝達装置において、前記電気粘性流体中
に、該電気粘性流体を構成する分散相粒子並びに分散媒
よりも比重の大きい、該分散媒とは非相溶性の液体を添
加することとしたのである。
(Solution Means) In order to solve this problem, the first invention of the present invention includes a plurality of circular flange-shaped inner electrodes fixed to the outer peripheral surface of the shaft-like rotating body, as described above; A plurality of circular flange-shaped outer electrodes fixed to the inner circumferential surface of a cylindrical rotating body are arranged alternately in a space filled with electrorheological fluid so that they can rotate relative to each other at a predetermined distance in the axial direction. At the same time, a predetermined voltage can be applied between the inner electrode and the outer electrode, and an outer insulating ring is interposed between the outer peripheral edge of the outer electrode. The outer circumferential edge of the inner electrode is guided in the circumferential direction by the annular groove, and an inner insulating ring is interposed between the inner circumferential edges of the inner electrode, and the annular groove formed in the inner insulating ring guides the outer electrode. In a hydrodynamic torque transmission device of the type in which the inner peripheral edge of the electrorheological fluid is guided in the circumferential direction, the electrorheological fluid contains dispersed particles having a specific gravity larger than that of the dispersed phase particles and the dispersion medium constituting the electrorheological fluid. It was decided to add a liquid that is incompatible with the medium.

また、本発明の第二発明にあっては、上述と同様の形式
の流体式トルク伝達装置において、電気粘性流体として
、分散媒の比重が分散相粒子の比重よりも大きい電気粘
性流体を用いることとしたのである。
Further, in a second aspect of the present invention, in a fluid torque transmission device of the same type as described above, an electrorheological fluid in which the specific gravity of the dispersion medium is larger than the specific gravity of the dispersed phase particles is used as the electrorheological fluid. That's what I did.

(作用・効果) 上記本発明の第一発明に従うトルク伝達装置においては
、電気粘性流体中に、電気粘性流体の分散相粒子並びに
分散媒よりも比重の大きい、分散媒とは非相溶性の液体
が添加されているため、電気粘性流体に遠心分離作用が
働くと、その添加された液体が外周部により多く偏在さ
せられることとなる。従って、内側電極の外周縁部と外
側絶縁リングの環状溝との間の隙間には、この添加され
た液体が入り込むこととなって、分散相粒子が排除され
ることとなり、これによって、それら内側電極と外側絶
縁リングとの間の摺動抵抗が分散相粒子にて増大せしめ
られるようなことが良好に防止されることとなる。つま
り、軸状回転体と筒状回転体との間の滑り性能の低下が
良好に抑制されて、トルク伝達の制御が安定して行なわ
れ得るようになるのである。
(Operation/Effect) In the torque transmission device according to the first aspect of the present invention, in the electrorheological fluid, dispersed phase particles of the electrorheological fluid and a liquid having a higher specific gravity than the dispersion medium and which is incompatible with the dispersion medium are added. is added, so when the electrorheological fluid is subjected to centrifugal separation, more of the added liquid will be unevenly distributed in the outer circumference. Therefore, the added liquid enters the gap between the outer circumferential edge of the inner electrode and the annular groove of the outer insulating ring, and the dispersed phase particles are removed. This effectively prevents the sliding resistance between the electrode and the outer insulating ring from being increased by the dispersed phase particles. In other words, deterioration in the sliding performance between the shaft-like rotating body and the cylindrical rotating body is effectively suppressed, and torque transmission can be controlled stably.

また、第二の発明に従うトルク伝達装置においては、分
散媒の比重が分散相粒子の比重よりも大きい電気粘性流
体が用いられるため、内側電極の外周縁部と外側絶縁リ
ングの環状溝との間の隙間には、比重の大きな分散媒が
遠心力で入り込むこととなり、従って、第一の発明と同
様に、軸状回転体と筒状回転体との間の滑り性能の低下
が良好に抑制されることとなる。
Further, in the torque transmission device according to the second invention, since an electrorheological fluid is used in which the specific gravity of the dispersion medium is larger than the specific gravity of the dispersed phase particles, the gap between the outer peripheral edge of the inner electrode and the annular groove of the outer insulating ring is A dispersion medium with a large specific gravity enters the gap due to centrifugal force, and therefore, similarly to the first invention, a decrease in the sliding performance between the shaft-like rotating body and the cylindrical rotating body is well suppressed. The Rukoto.

(実施例) 以下、本発明をより一層具体的に明らかにするために、
その実施例を図面に基づいて詳細に説明する。
(Example) Hereinafter, in order to clarify the present invention more specifically,
The embodiment will be described in detail based on the drawings.

先ず、第1図において、1012は、それぞれ、所定の
回転トルク源から回転トルクが人力される人力軸、及び
かかる人力軸10から伝達されるトルクを出力するた、
めの出力軸であり、トルク伝達部14を介して互いに同
軸的に連結されている。
First, in FIG. 1, reference numerals 1012 are a human-powered shaft to which rotational torque is manually applied from a predetermined rotational torque source, and a human-powered shaft that outputs the torque transmitted from the human-powered shaft 10, respectively.
They are the second output shafts, and are coaxially connected to each other via the torque transmission section 14.

トルク伝達部14は、出力軸12の端面に相対回転不能
に且つ同心的に連結された有底円筒状の筒状回転体16
と、入力軸10の端面に相対回転0 不能に且つ同軸的に連結された輪状回転体18とを備え
ており、筒状回転体16と軸状回転体18との間の空間
は、筒状回転体16の開口部に配された閉塞部材20に
より、それら両回転体16゜18の相対回転を許容する
状態で流体密に閉塞されている。そして、この閉塞部材
20で閉塞された両回転体16.18間の空間に、作用
される電界の強度に応じて粘度が実質的に変化する電気
粘性流体が充填されている。なお、21はシール材であ
る。
The torque transmitting unit 14 includes a cylindrical rotary body 16 having a bottomed cylindrical shape and concentrically connected to the end face of the output shaft 12 so as to be non-rotatable.
and an annular rotating body 18 that is coaxially connected to the end face of the input shaft 10 so as to be unable to rotate relative to the input shaft 10. A closing member 20 disposed at the opening of the rotating body 16 fluid-tightly closes the opening of the rotating body 16 in a manner that allows relative rotation of the two rotating bodies 16°18. The space between the rotating bodies 16 and 18 that is closed by the closing member 20 is filled with an electrorheological fluid whose viscosity substantially changes depending on the intensity of the applied electric field. Note that 21 is a sealing material.

ここで、筒状回転体16及び軸状回転体18は共に金属
材料で構成されているが、閉塞部材20は樹脂材料等の
非導電性材料で構成されている。
Here, both the cylindrical rotating body 16 and the shaft-shaped rotating body 18 are made of metal materials, but the closing member 20 is made of a non-conductive material such as a resin material.

また、筒状回転体16の底壁部と輪状回転体18の先端
面とは、それらの相対回転を許容する形態で配された非
導電性材料からなるスペーサ22で隔てられている。そ
して、ここでは、これによって、筒状回転体16と軸状
回転体18とが電気的に隔てられている。
Further, the bottom wall portion of the cylindrical rotating body 16 and the tip end surface of the annular rotating body 18 are separated by a spacer 22 made of a non-conductive material and arranged in a form that allows relative rotation therebetween. Here, the cylindrical rotating body 16 and the shaft-shaped rotating body 18 are electrically separated from each other by this.

ところで、筒状回転体16の内周面には、スプライン2
4が形成されており、円形っは状の金属板である外側電
極26と絶縁材料製の円環状の外側絶縁リング28とが
このスプライン24に交互に嵌合されて固定的に配設さ
れている。一方、かかる筒状回転体16内に突入させら
れた軸状回転体18の外周面にもスプライン30が形成
されており、このスプライン30に交互に嵌合されて、
外側電極26と同様の円形つば状の内側電極32と、外
側絶縁リング28と同様の円環状の内側絶縁リング34
とが固定的に配設されている。そして、ここでは、これ
により、外側電極26と内側電極32とが、電気粘性流
体の充填空間内において、軸方向において相互に一定の
間隙を隔てて相対回転可能に交互に配設されている。
By the way, on the inner peripheral surface of the cylindrical rotating body 16, there is a spline 2.
4 is formed, and an outer electrode 26 which is a circular metal plate and an annular outer insulating ring 28 made of an insulating material are alternately fitted to this spline 24 and fixedly arranged. There is. On the other hand, splines 30 are also formed on the outer peripheral surface of the shaft-like rotor 18 inserted into the cylindrical rotor 16, and the splines 30 are alternately fitted to
A circular brim-shaped inner electrode 32 similar to the outer electrode 26 and an annular inner insulating ring 34 similar to the outer insulating ring 28
are fixedly arranged. As a result, the outer electrodes 26 and the inner electrodes 32 are alternately arranged in the electrorheological fluid filled space with a certain gap between them in the axial direction so as to be relatively rotatable.

なお、軸状回転体18の最先端側の内側電極32は、こ
こでは、輪状回転体18と一体に構成されている。
Note that the inner electrode 32 on the most extreme side of the shaft-shaped rotating body 18 is configured integrally with the ring-shaped rotating body 18 here.

ここで、内側絶縁リング34の外周面及び外側絶縁リン
グ28の内周面には、それぞれ、周方向に延びる環状溝
36.38が形成されており、外1 2 側電極26の内周縁部及び内側電極32の外周縁部がそ
れら環状溝36.38内にそれぞれ周方向に摺動可能な
状態で突入せしめられている。そして、これにより、そ
れら電極26.32の相対回転時において、外側電極2
6の内周縁部が内側絶縁リング34の環状溝36で周方
向に案内されるようになっていると共に、内側電極32
の外周縁部が外側絶縁リング28の環状溝38で周方向
に案内されるようになっている。
Here, annular grooves 36 and 38 extending in the circumferential direction are formed in the outer circumferential surface of the inner insulating ring 34 and the inner circumferential surface of the outer insulating ring 28, respectively, and the inner circumferential edge of the outer 1 2 side electrode 26 and The outer peripheral edges of the inner electrodes 32 are slidably inserted in the respective annular grooves 36, 38 in the circumferential direction. As a result, when the electrodes 26 and 32 rotate relative to each other, the outer electrode 2
The inner peripheral edge of the inner electrode 32 is guided in the circumferential direction by the annular groove 36 of the inner insulating ring 34.
The outer peripheral edge of the outer insulating ring 28 is guided in the circumferential direction by an annular groove 38 of the outer insulating ring 28.

そして、本例では、このような構造の流体式トルク伝達
装置において、前記電気粘性流体として、通常の電気粘
性流体、例えば分散媒として電気絶縁性の高い油状物質
が採用される一方、分散相粒子として、デンプン、セル
ロース、酸基含有ポリマーの金属塩等の吸水性微粒子、
或いはポリアセン・キノンのような有機半導体微粒子が
採用されてなる電気粘性流体中に、それら分散媒や分散
相粒子よりも比重が大きく、しかも分散媒と非相溶性の
液体、例えば、比重が1,7〜2.0程度のパーフロロ
ポリエーテル(フロリナートiaM社商品名)や比重が
1.2〜1.3程度のフッ素化シリコーンオイル、或い
は比重が1.8程度のフルオロホスファゼン油等の液体
が、所定量添加された電気粘性流体が採用されている。
In this example, in a fluid torque transmission device having such a structure, a normal electrorheological fluid is used as the electrorheological fluid, for example, an oily substance with high electrical insulation is used as a dispersion medium, while dispersed phase particles Water-absorbing fine particles such as starch, cellulose, metal salts of acid group-containing polymers,
Alternatively, in an electrorheological fluid containing organic semiconductor fine particles such as polyacene quinone, a liquid having a specific gravity higher than that of the dispersion medium or dispersed phase particles and which is incompatible with the dispersion medium, for example, a liquid having a specific gravity of 1, Liquids such as perfluoropolyether (product name of Fluorinert IAM) with a specific gravity of about 7 to 2.0, fluorinated silicone oil with a specific gravity of about 1.2 to 1.3, or fluorophosphazene oil with a specific gravity of about 1.8 are used. , an electrorheological fluid added in a predetermined amount is employed.

このような構成の流体式トルク伝達装置においては、筒
状回転体16及び軸状回転体18を通して外側電極26
及び内側電極32間に電圧を印加すると、それら電極2
6.32に位置する電気粘性流体の粘度がその電圧に応
じて変化するために、それら電極26.32間に印加す
る電圧を制御することによって、入力軸10側から出力
軸12側へ伝達されるトルクを制御することができる。
In the hydrodynamic torque transmission device having such a configuration, the outer electrode 26 is passed through the cylindrical rotating body 16 and the axial rotating body 18.
When a voltage is applied between the inner electrodes 32 and 32, the inner electrodes 2
Since the viscosity of the electrorheological fluid located at 6.32 changes depending on the voltage, the voltage is transmitted from the input shaft 10 side to the output shaft 12 side by controlling the voltage applied between these electrodes 26.32. torque can be controlled.

そして、本例のトルク伝達装置においては、前述のよう
に、内側電極32の外周縁部及び外側電極26の内周縁
部が、それぞれ、外側絶縁リング28の環状溝38及び
内側絶縁リング34の環状溝36にて周方向に案内され
るようにされて、各電極26.32の自由側端部が軸方
向において拘束されているために、それらの相対向する
電極26.32間の距離が精度良く維持され、もってそ
3 4 れら電極26.32間の距離の変動によるトルク伝達特
性の制御誤差の発生が良好に抑制されると共に、それら
電極26.32の接触による短絡事故の発生が良好に防
止される。
In the torque transmission device of this example, as described above, the outer peripheral edge of the inner electrode 32 and the inner peripheral edge of the outer electrode 26 are shaped like the annular groove 38 of the outer insulating ring 28 and the annular groove of the inner insulating ring 34, respectively. Since each electrode 26.32 is guided circumferentially in the groove 36 and the free end of each electrode 26.32 is constrained in the axial direction, the distance between the opposing electrodes 26.32 is accurate. It is well maintained, and the occurrence of control errors in torque transmission characteristics due to fluctuations in the distance between these electrodes 26, 32 is well suppressed, and the occurrence of short circuit accidents due to contact between these electrodes 26, 32 is well suppressed. is prevented.

而して、かかる本例のトルク伝達装置においても、この
種の従来のトルク伝達装置と同様に、電気粘性流体に一
種の遠心分離作用が働くこととなるが、本例では、前述
のように、電気粘性流体中に、電気粘性流体の分散媒並
びに分散相粒子よりも比重が大きく、しかも分散媒と溶
は合わない性質の液体が添加されているために、この比
重の大きな液体が遠心力で外周部分により多く偏在させ
られることとなる。
Therefore, in the torque transmission device of this example as well, a kind of centrifugal separation effect acts on the electrorheological fluid as in the conventional torque transmission device of this type, but in this example, as described above, , because a liquid with a higher specific gravity than the dispersion medium and dispersed phase particles of the electrorheological fluid is added to the electrorheological fluid, and which does not dissolve in the dispersion medium, this liquid with high specific gravity is affected by centrifugal force. As a result, more of it is unevenly distributed in the outer peripheral portion.

従って、第2図に示されているように、内側電極32と
外側絶縁リング28の環状溝38との間の隙間40には
、その比重の大きな液体42が入り込むこととなって、
分散相粒子44はその隙間40から排除されることとな
り、それ故、その隙間40に入り込んだ分散相粒子44
によって内側電極32と外側絶縁リング28の摺動抵抗
が増大せしめられるようなことが良好に防止されること
となる。つまり、筒状回転体16と軸状回転体18との
滑り性能、ひいては入力軸10と出力軸12との滑り性
能が低下させられるようなことが良好に防止されること
となるのである。なお、第2図において、46は、分散
媒を示している。
Therefore, as shown in FIG. 2, the liquid 42 with a high specific gravity enters the gap 40 between the inner electrode 32 and the annular groove 38 of the outer insulating ring 28.
The dispersed phase particles 44 will be excluded from the gap 40, and therefore the dispersed phase particles 44 that have entered the gap 40 will be excluded from the gap 40.
This effectively prevents the sliding resistance between the inner electrode 32 and the outer insulating ring 28 from increasing. In other words, the sliding performance between the cylindrical rotating body 16 and the shaft-shaped rotating body 18, and furthermore the sliding performance between the input shaft 10 and the output shaft 12, is effectively prevented from being deteriorated. In addition, in FIG. 2, 46 indicates a dispersion medium.

ところで、このような滑り性能の低下防止効果は、電気
粘性流体として、分散媒46の比重が分散相粒子44よ
りも大きい電気粘性流体を採用することによっても、得
ることができる。
Incidentally, such an effect of preventing a decrease in slip performance can also be obtained by employing an electrorheological fluid in which the dispersion medium 46 has a higher specific gravity than the dispersed phase particles 44.

電気粘性流体の分散媒46の比重を分散相粒子44より
も大きくすれば、内側電極32と外側絶縁リング28の
環状溝38との間の隙間401こは、第3図に示されて
いるように、遠心分離作用による相分離にて比重の大き
な分散媒4Gが入り込むこととなるため、その隙間40
に分散相粒子44が入り込んで内側電極32と外側絶縁
リング28との摺動抵抗を増大させるようなことが良好
に防止されるのである。
If the specific gravity of the electrorheological fluid dispersion medium 46 is made larger than that of the dispersed phase particles 44, the gap 401 between the inner electrode 32 and the annular groove 38 of the outer insulating ring 28 becomes larger as shown in FIG. Because the dispersion medium 4G with a large specific gravity enters through phase separation due to centrifugal separation, the gap 40
This effectively prevents the dispersed phase particles 44 from entering into the inner electrode 32 and the outer insulating ring 28 from increasing the sliding resistance.

なお、このような電気粘性流体の分散媒46に5 6 は、分散相粒子44が、デンプン、セルロース酸基含有
ポリマーの金属塩等の吸水性微粒子、ポリアセン・キノ
ンのような有機半導体微粒子等である場合においては、
パーフロロポリエーテルやフッ素化シリコーンオイル、
或いはフルオロホスファゼン油等を好適に採用すること
ができる。
In addition, in the dispersion medium 46 of such an electrorheological fluid, the dispersed phase particles 44 are water-absorbing fine particles such as starch, metal salts of cellulose acid group-containing polymers, organic semiconductor fine particles such as polyacene quinone, etc. In some cases,
Perfluoropolyether and fluorinated silicone oil,
Alternatively, fluorophosphazene oil or the like can be suitably employed.

以上、本発明の実施例を詳細に説明したが、これらは文
字通りの例示であり、本発明が、それらの具体例に限定
されることなく、その趣旨を逸脱しない範囲内において
、種々なる変更、修正、改良等を施した態様で実施でき
ることは、勿論である。
Although the embodiments of the present invention have been described in detail above, these are literal illustrations, and the present invention is not limited to these specific examples, and various modifications and changes may be made without departing from the spirit thereof. Of course, the present invention can be implemented with modifications, improvements, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に従う流体式トルク伝達装置の一例を
示す要部断面図であり、第2図は、第1図の装置におけ
る電気粘性流体の遠心分離作用による相分離の状態を説
明するための説明図であり、第3図は、別の実施例の第
2図に相当する図である。 14:トルク伝達部  16:筒状回転体輪状回転体 外側絶縁リング 内側絶縁リング 隙間 分散相粒子 26:外側電極 32:内側電極 36.38:環状溝 42:液体 46:分散媒
FIG. 1 is a sectional view of a main part showing an example of a fluid torque transmission device according to the present invention, and FIG. 2 illustrates a state of phase separation due to centrifugal separation of electrorheological fluid in the device of FIG. 1. FIG. 3 is a diagram corresponding to FIG. 2 of another embodiment. 14: Torque transmission part 16: Cylindrical rotating body Annular rotating body Outer insulating ring Inner insulating ring Gap Dispersed phase particles 26: Outer electrode 32: Inner electrode 36. 38: Annular groove 42: Liquid 46: Dispersion medium

Claims (2)

【特許請求の範囲】[Claims] (1)軸状回転体の外周面に固設した複数の円形つば状
の内側電極と、筒状回転体の内周面に固設した複数の円
形つば状の外側電極とを、電気粘性流体の充填空間内に
おいて、軸方向で相互に所定の間隙を隔てて相対回転可
能に交互に配置すると共に、それら内側電極と外側電極
との間に所定の電圧を印加し得るように為し、更に前記
外側電極の外周縁部間に外側絶縁リングを介在させて、
該外側絶縁リングに形成した環状溝にて前記内側電極の
外周縁部を周方向に案内させると共に、該内側電極の内
周縁部間に内側絶縁リングを介在させて、該内側絶縁リ
ングに形成した環状溝にて前記外側電極の内周縁部を周
方向に案内させるようにした形式の流体式トルク伝達装
置において、 前記電気粘性流体中に、該電気粘性流体を構成する分散
相粒子並びに分散媒よりも比重の大きい、該分散媒とは
非相溶性の液体を添加したことを特徴とする流体式トル
ク伝達装置。
(1) A plurality of inner electrodes in the shape of a circular brim fixed on the outer circumferential surface of the axial rotating body and a plurality of outer electrodes in the shape of a circular brim fixed on the inner circumferential surface of the cylindrical rotating body are connected to each other using an electrorheological fluid. The inner electrodes and the outer electrodes are alternately arranged so as to be relatively rotatable at a predetermined distance from each other in the axial direction in the filling space, and a predetermined voltage can be applied between the inner electrode and the outer electrode, and An outer insulating ring is interposed between the outer peripheral edge of the outer electrode,
An annular groove formed in the outer insulating ring guides the outer peripheral edge of the inner electrode in the circumferential direction, and an inner insulating ring is interposed between the inner peripheral edges of the inner electrode. In a fluid type torque transmission device in which the inner peripheral edge of the outer electrode is circumferentially guided in an annular groove, dispersed phase particles and a dispersion medium constituting the electrorheological fluid are contained in the electrorheological fluid. A fluid torque transmission device characterized in that a liquid having a high specific gravity and incompatible with the dispersion medium is added.
(2)軸状回転体の外周面に固設した複数の円形つば状
の内側電極と、筒状回転体の内周面に固設した複数の円
形つば状の外側電極とを、電気粘性流体の充填空間内に
おいて、軸方向で相互に所定の間隙を隔てて相対回転可
能に交互に配置すると共に、それら内側電極と外側電極
との間に所定の電圧を印加し得るように為し、更に前記
外側電極の外周縁部間に外側絶縁リングを介在させて、
該外側絶縁リングに形成した環状溝にて前記内側電極の
外周縁部を周方向に案内させると共に、該内側電極の内
周縁部間に内側絶縁リングを介在させて、該内側絶縁リ
ングに形成した環状溝にて前記外側電極の内周縁部を周
方向に案内させるようにした形式の流体式トルク伝達装
置において、 前記電気粘性流体として、分散媒の比重が分散相粒子の
比重よりも大きい電気粘性流体を用いたことを特徴とす
る流体式トルク伝達装置。
(2) A plurality of inner electrodes in the shape of a circular brim fixed on the outer circumferential surface of the axial rotating body and a plurality of outer electrodes in the shape of a circular brim fixed on the inner circumferential surface of the cylindrical rotating body are connected to each other by electrorheological fluid. The inner electrodes and the outer electrodes are alternately arranged so as to be relatively rotatable at a predetermined distance from each other in the axial direction in the filling space, and a predetermined voltage can be applied between the inner electrode and the outer electrode, and An outer insulating ring is interposed between the outer peripheral edge of the outer electrode,
An annular groove formed in the outer insulating ring guides the outer peripheral edge of the inner electrode in the circumferential direction, and an inner insulating ring is interposed between the inner peripheral edges of the inner electrode. In a fluid torque transmission device of a type in which the inner circumferential edge of the outer electrode is guided in the circumferential direction in an annular groove, the electrorheological fluid is an electrorheological fluid in which the specific gravity of the dispersion medium is greater than the specific gravity of the dispersed phase particles. A fluid torque transmission device characterized by using fluid.
JP6302990A 1990-03-14 1990-03-14 Fluid type torque transmission device Pending JPH03265720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6302990A JPH03265720A (en) 1990-03-14 1990-03-14 Fluid type torque transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6302990A JPH03265720A (en) 1990-03-14 1990-03-14 Fluid type torque transmission device

Publications (1)

Publication Number Publication Date
JPH03265720A true JPH03265720A (en) 1991-11-26

Family

ID=13217495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6302990A Pending JPH03265720A (en) 1990-03-14 1990-03-14 Fluid type torque transmission device

Country Status (1)

Country Link
JP (1) JPH03265720A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5601164A (en) * 1993-11-11 1997-02-11 Bridgestone Corporation Device using electrorheological fluid
JP2016048090A (en) * 2014-08-27 2016-04-07 藤倉化成株式会社 Torque transmission device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5601164A (en) * 1993-11-11 1997-02-11 Bridgestone Corporation Device using electrorheological fluid
JP2016048090A (en) * 2014-08-27 2016-04-07 藤倉化成株式会社 Torque transmission device

Similar Documents

Publication Publication Date Title
US5007513A (en) Electroactive fluid torque transmission apparatus with ferrofluid seal
US5988336A (en) Clutch with electrorheological or magnetorheological liquid pushed through an electrode or magnet gap by means of a surface acting as a piston
US5992582A (en) Electrorheological rotary pure-shear damping devices
US6428441B1 (en) Locking differential with clutch activated by magnetorheological fluid
US4440345A (en) Sprinkler
US2283392A (en) Variable speed pulley
SE464829B (en) ANTI-MILLING MOVEMENT DEVICE
GB2083595A (en) Viscous Shear Clutch Assembly
JPH03532B2 (en)
US4501348A (en) Torsional oscillation damper with laterally displaceable damper member
JPH03265720A (en) Fluid type torque transmission device
JPS5828020A (en) Tortional vibration damping device
EP0225389B1 (en) Power transmitting structure utilizing viscous fluid
EP1552177B1 (en) Clutch having a variable viscosity fluid
EP3486517B1 (en) Torque transmission device, braking apparatus and power transmission apparatus
US2954857A (en) Transmission mechanism of the fluid shear type
US4174771A (en) Friction clutch
KR20160145740A (en) Rotation actuator
JPH0245541Y2 (en)
JPH01224529A (en) Viscous coupling
JPH02300525A (en) Torque transmission device using electro-viscous fluid
JPS61153041A (en) Power transmission gear
JPH0351544Y2 (en)
JPS63312524A (en) Continuously variable transmitting joint
JPH085391Y2 (en) Fan drive