JPH03265584A - Production of metal-impregnated ceramics - Google Patents

Production of metal-impregnated ceramics

Info

Publication number
JPH03265584A
JPH03265584A JP6541890A JP6541890A JPH03265584A JP H03265584 A JPH03265584 A JP H03265584A JP 6541890 A JP6541890 A JP 6541890A JP 6541890 A JP6541890 A JP 6541890A JP H03265584 A JPH03265584 A JP H03265584A
Authority
JP
Japan
Prior art keywords
layer
metal
porous layer
ceramic
dense
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6541890A
Other languages
Japanese (ja)
Inventor
Hiroshi Anzai
博 安斉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP6541890A priority Critical patent/JPH03265584A/en
Publication of JPH03265584A publication Critical patent/JPH03265584A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve heat resistance as well as joining strength between ceramics and metal by impregnating a molten metal into a porous layer of a ceramic sintered compact having a dense layer and a porous layer. CONSTITUTION:If necessary, a ceramic powder layer having an average grain size of the order of 10<-1>mum is laid at least on one side of a dense ceramic sintered plate, and a ceramic powder layer having an average grain size of the order of 10<0>-10<1>mum is laid at least on one side of the above powder layer, which is press compacted and then sintered at 1500-1800 deg.C for 0.5-24hr so as to be formed into a ceramic sintered compact having a porous layer and a dense layer. Subsequently, the porous layer part of this sintered compact is immersed into a melt of a metal, such as Fe, Ni, Al, Ag, etc., and the pressure is reduced to <=10<-1>Torr to impregnate the metal into the porous layer part, and then, the pressure is returned to atmospheric pressure and cooling is carried out.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属含浸セラミックスの製造法に関する。更
に詳しくは、セラミックスと金属との接合強度および耐
熱性の向上を図った金属含浸セラミックスの製造法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing metal-impregnated ceramics. More specifically, the present invention relates to a method for producing metal-impregnated ceramics that improves the bonding strength and heat resistance between ceramics and metals.

〔従来の技術〕および〔発明が解決しようとする課題〕
従来、セラミックスと金属との接合は、セラミックスの
表面をメタライズ処理し、更にその上に金属を重ねて熱
処理することによって行われている。しかしながら、こ
のような方法では、セラミックスと金属との接合強度が
低く、また耐熱性も十分であるとはいえないなどの欠点
がみられる。
[Prior art] and [Problem to be solved by the invention]
Conventionally, ceramics and metals have been bonded by metallizing the surface of the ceramic, and then layering metal on top of the metallization and heat-treating the surface. However, such a method has drawbacks such as low bonding strength between ceramic and metal and insufficient heat resistance.

本発明は、このような欠点を解消させた金属含浸セラミ
ックスの製造法を提供することを目的としている。
An object of the present invention is to provide a method for manufacturing metal-impregnated ceramics that eliminates these drawbacks.

〔課題を解決するための手段〕[Means to solve the problem]

かかる目的を達成せしめる本発明方法では、金属含浸セ
ラミックスの製造が、平均粒径が10””μ麿オーダー
のセラミックス粉体層の少くとも一方側に平均粒径が1
00〜101μ膳オーダーのセラミックス粉体層を重ね
、それをプレス成形および焼成して得られる多孔質層を
形成させたセラミックス焼結体の該多孔質層に溶融金属
を含浸させることにより行われる。
In the method of the present invention which achieves the above object, metal-impregnated ceramics are produced by forming a ceramic powder layer having an average particle size of 10"μ on at least one side of the ceramic powder layer having an average particle size of 10""μ order.
Ceramic powder layers of the order of 00 to 101 μm are piled up, press-molded and fired to form a porous layer, and the porous layer of a ceramic sintered body is impregnated with molten metal.

セラミックス粉体としては、Ag2O3、NgOlZr
O,などであって、その平均粒径が10−1μmオーダ
ーの粉体と100〜101μmオーダーの粉体とが用い
られ、好ましくは同一種類のセラミックス粉体であって
、それぞれ平均粒径を異にするものが組み合されて用い
られる。
As ceramic powder, Ag2O3, NgOlZr
O, etc., whose average particle size is on the order of 10-1 μm and powder on the order of 100 to 101 μm are used, preferably ceramic powders of the same type but with different average particle sizes. It is used in combination.

これらは、平均粒径の小さい方の粉体層の片側または両
側に平均粒径の大きい方の粉体層を重ね。
These are made by stacking a powder layer with a larger average particle size on one side or both sides of a powder layer with a smaller average particle size.

それをプレス成形した後、用いられたセラミックスの焼
成温度、例えばAl1,0.の場合には約1500〜1
800℃で約0.5〜24時間焼成することにより、セ
ラミックス焼結体を形成させる。
After press-molding it, the firing temperature of the ceramic used, for example, Al1,0. Approximately 1500 to 1 in the case of
A ceramic sintered body is formed by firing at 800° C. for about 0.5 to 24 hours.

、この焼成により、平均粒径の小さい方の粉体層は焼結
性も良いので緻密な層を形成させ、この良好な焼結性に
助けられて、同一の焼成条件では焼結性の良くない平均
粒径の大きい方の粉体層は。
By this firing, the powder layer with the smaller average particle size has good sinterability, so it forms a dense layer, and with the help of this good sinterability, it has good sinterability under the same firing conditions. There is no powder layer with larger average particle size.

多孔質層を形成するに至る。かかる焼結作用から、平均
粒径の小さい方の粉体からの緻密な層は、−般に約1〜
20膳の厚さで形成され、一方溶融金属を含浸させるた
めの多孔質層は、一般に約0.1〜2閣の厚さで形成さ
れる。
This leads to the formation of a porous layer. Because of this sintering action, a dense layer from the powder with a smaller average particle size - generally about 1 to 1
The porous layer for impregnation with molten metal is generally formed to a thickness of about 0.1 to 2 mm.

かかる緻密層および多孔質層よりなるセラミックス焼結
体は、粉体層のみのプレス成形および焼成によって形成
し得るが、予め製造されている緻密な焼結板の片面側ま
たは両面側に平均粒径の小さい方の粉体層および大きい
方の粉体層を重ね、その後プレス成形および焼成しても
得ることができる。ここで、平均粒径の小さい方の粉体
層を同時に焼成するのは、大きい方の粉体層の焼結性を
高めるためである。
A ceramic sintered body consisting of such a dense layer and a porous layer can be formed by press forming and firing only the powder layer, but the average grain size is formed on one or both sides of a dense sintered plate manufactured in advance. It can also be obtained by stacking a smaller powder layer and a larger powder layer, followed by press molding and firing. Here, the reason why the powder layer with the smaller average particle size is fired at the same time is to improve the sinterability of the powder layer with the larger average particle size.

このような構成をとった場合には、片面側が緻密層で他
面側が多孔質層よりなり、しかも非対称構造に基く変形
を防止するのに有効であるが、同様に平均粒径の小さい
方の粉体層の両側に大きい方の粉体層を重ね、プレス成
形および焼成して得られた多孔質層/緻密層/多孔質層
よりなるサンドウィッチ状焼結体の一方の多孔質を研磨
するなどして除去しても、構造的に安定な非対称セラミ
ックス焼結体が得られる。
When such a structure is adopted, one side is a dense layer and the other side is a porous layer, which is effective in preventing deformation due to the asymmetric structure. A sandwich-like sintered body consisting of a porous layer/dense layer/porous layer obtained by stacking larger powder layers on both sides of the powder layer, press forming and firing, and polishing one porous layer. Even when removed, a structurally stable asymmetric ceramic sintered body can be obtained.

これらの多孔質層への溶融金属の含浸は、Fe、Ni、
 AQ 、 Ag、 Cu、 Si、 Sn、Tiなど
の金属の溶融液中に多孔質層部分を浸漬し、減圧下、一
般には10−1丁orr以下の真空度にした後大気圧に
戻し、冷却することによって行われ、溶融金属は多孔質
層の空隙に充満される。
Impregnation of molten metals into these porous layers includes Fe, Ni,
The porous layer portion is immersed in a molten liquid of metal such as AQ, Ag, Cu, Si, Sn, Ti, etc. under reduced pressure, generally to a vacuum level of 10 −1 orr or less, and then returned to atmospheric pressure and cooled. The molten metal fills the voids in the porous layer.

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば、平均粒径の小さい方のセラミック
ス粉体層に大きい方のセラミックス粉体層を重ね、それ
をプレス成形および焼成することにより、同一焼成条件
下で緻密層および多孔質層を同時に焼結形成させ、その
多孔質層に溶融金属を含浸せしめることにより、アンカ
ー効果によるセラミックスと金属との間の接合力の向上
が図られ、またこれら複合相の形成による耐熱性の向上
も達成される。
According to the method of the present invention, a ceramic powder layer with a larger average particle size is stacked on a ceramic powder layer with a smaller average particle size, and by press forming and firing it, a dense layer and a porous layer are formed under the same firing conditions. By simultaneously sintering and forming the porous layer and impregnating the molten metal, it is possible to improve the bonding strength between the ceramic and metal due to the anchor effect, and also to improve heat resistance by forming these composite phases. achieved.

得られた金属含浸セラミックスは、一般に板状体である
が、部分的にプレス成形できる構造物であれば、任意の
形状をとり得る。
The obtained metal-impregnated ceramic is generally a plate-shaped body, but it can take any shape as long as it is a structure that can be partially press-molded.

〔実施例〕〔Example〕

次に、実施例について本発明を説明する。 Next, the present invention will be explained with reference to examples.

実施例1 平均粒径0.3μ閣のAQ、O,粉体の上下に、平均粒
径5μ朧のA0□03粉体をいずれも層上に重ねてプレ
ス成形し、それを1500℃で2時間焼成した。
Example 1 A0□03 powder with an average particle size of 5 μm was layered on top and bottom of AQ, O, powder with an average particle size of 0.3 μm, and press-molded at 1500°C for 2 hours. Baked for an hour.

内部が緻密でその両面側にそれぞれ約IIsの厚さで平
均孔径約1μmの多孔質層を形成させたセラミックス焼
結板(厚さ約10■)が得られ、その一方の多孔質面を
容器型に入れた溶融鉄に漬け、真空槽内で、10−”T
orr以上の真空度にした後大気圧に戻し、多孔質層の
空隙に溶融鉄を充満させて、冷却した。
A ceramic sintered plate (about 10 mm thick) with a dense interior and a porous layer with a thickness of about IIs and an average pore diameter of about 1 μm formed on each side of the plate was obtained, and one porous surface was placed on the container. Immerse it in molten iron in a mold and heat it to 10-”T in a vacuum chamber.
After the degree of vacuum was increased to orr or higher, the pressure was returned to atmospheric pressure, the voids in the porous layer were filled with molten iron, and the mixture was cooled.

得られた鉄含浸セラミックス板について、鉄が含浸され
た多孔質層側に金属板(SUS304)を熱処理で接合
し、その間のせん断強度を測定(孔径10mmの孔を一
端側に穿孔した20 X 50 X 1(Igvの鉄含
浸セラミックス板および金属板を他端側30mmの長さ
で接合し、孔部を把持して引張試験機にかける)すると
、約2000kgf#jの値が得られた。一方、従来法
による多孔質層を形成させず、直接セラミックスと金属
とが接合面を形成しているものについては、その面にお
けるせん断強度は約700kgf/d以下であった。
For the obtained iron-impregnated ceramic plate, a metal plate (SUS304) was bonded to the iron-impregnated porous layer side by heat treatment, and the shear strength therebetween was measured (20 × 50 holes with a hole diameter of 10 mm were drilled on one end side). When X 1 (Igv iron-impregnated ceramic plate and metal plate are joined with a length of 30 mm on the other end, gripping the hole and applying it to a tensile tester), a value of about 2000 kgf#j was obtained. In the case where a porous layer was not formed by the conventional method and the bonding surface was directly formed between the ceramic and the metal, the shear strength at that surface was about 700 kgf/d or less.

また、このサンプルを所定温度迄昇温して1時間保持し
1次いで常温迄降温した後引張試験を行ない、その平均
強度が熱処理をしないときの平均強度の80%以下とな
る温度を耐熱温度として測定すると、約1000℃以上
であった。一方上記従来法のそれは、約700℃以下で
あった。
In addition, this sample is heated to a predetermined temperature, held for 1 hour, then cooled down to room temperature, and then subjected to a tensile test.The temperature at which the average strength is 80% or less of the average strength without heat treatment is defined as the heat resistance temperature. When measured, the temperature was about 1000°C or higher. On the other hand, in the conventional method described above, the temperature was about 700°C or less.

実施例2 緻密なAρZOaセラミックス焼結板(厚さ8■)の片
面側に、平均粒径0.3μmのAg2O,粉体および平
均粒径5μ肩のAj220□粉体の層をそれぞれ順次重
ねてプレス成形し、それを1500℃で2時間焼成した
Example 2 A layer of Ag2O powder with an average particle size of 0.3 μm and a layer of Aj220□ powder with an average particle size of 5 μm were sequentially stacked on one side of a dense AρZOa ceramic sintered plate (thickness 8 mm). It was press-molded and baked at 1500°C for 2 hours.

緻密なAQ、0.セラミックス焼結板の片面側に形成さ
れた平均孔径的1.5μmの多孔質層(厚さ約2■)に
、実施例1と同様にして溶融鉄の含浸を行ない、得られ
た鉄含浸セラミックス板の金属との間のせん断強度を測
定すると約2000Kgf/aJの値が得られた。
Precise AQ, 0. A porous layer (about 2 cm thick) with an average pore diameter of 1.5 μm formed on one side of a sintered ceramic plate was impregnated with molten iron in the same manner as in Example 1, and the obtained iron-impregnated ceramic was obtained. When the shear strength between the plate and the metal was measured, a value of about 2000 Kgf/aJ was obtained.

Claims (1)

【特許請求の範囲】 1、平均粒径が10^−^1μmオーダーのセラミック
ス粉体層の少くとも一方側に平均粒径が10^0〜10
^1μmオーダーのセラミックス粉体層を重ね、それを
プレス成形および焼成して得られる多孔質層を形成させ
たセラミックス焼結体の該多孔質層に溶融金属を含浸さ
せることを特徴とする金属含浸セラミックスの製造法。 2、緻密なセラミックス焼結板の少くとも一面側に、平
均粒径がそれぞれ10^−^1μmオーダーおよび10
^0〜10^1μmオーダーのセラミックス粉体層を重
ね、それをプレス成形および焼成して得られる多孔質層
を形成させたセラミックス焼結体の該多孔質層に溶融金
属を含浸させることを特徴とする金属含浸セラミックス
の製造法。
[Scope of Claims] 1. At least one side of a ceramic powder layer with an average particle diameter of 10^-^1 μm order has an average particle diameter of 10^0 to 10
^ Metal impregnation characterized by impregnating molten metal into the porous layer of a ceramic sintered body in which ceramic powder layers of the order of 1 μm are stacked, press-molded and fired to form a porous layer. Ceramics manufacturing method. 2. On at least one side of the dense ceramic sintered plate, the average grain size is on the order of 10^-^1 μm and 10
It is characterized by impregnating molten metal into the porous layer of a ceramic sintered body, which is obtained by stacking ceramic powder layers on the order of ^0 to 10^1 μm, press-molding and firing them, and forming a porous layer. A method for manufacturing metal-impregnated ceramics.
JP6541890A 1990-03-15 1990-03-15 Production of metal-impregnated ceramics Pending JPH03265584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6541890A JPH03265584A (en) 1990-03-15 1990-03-15 Production of metal-impregnated ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6541890A JPH03265584A (en) 1990-03-15 1990-03-15 Production of metal-impregnated ceramics

Publications (1)

Publication Number Publication Date
JPH03265584A true JPH03265584A (en) 1991-11-26

Family

ID=13286486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6541890A Pending JPH03265584A (en) 1990-03-15 1990-03-15 Production of metal-impregnated ceramics

Country Status (1)

Country Link
JP (1) JPH03265584A (en)

Similar Documents

Publication Publication Date Title
JP3827725B2 (en) Method for producing sputtering target
KR100734675B1 (en) Open-porous molded body, method for production and use thereof
KR19990028330A (en) Coating methods, methods of making ceramic metal structures, bonding methods and structures formed therefrom
WO2004074210A1 (en) Ceramics-metal composite body and method of producing the same
KR20120025396A (en) Setter for firing
EP0137565B1 (en) Multilayer ceramic capacitor
EP0137566A2 (en) Method of manufacturing multilayer capacitors
CN110731543A (en) Preparation method of microporous ceramic heating element for atomizer
US2851354A (en) Process of forming sintered sheets having copper infiltrated portions
JPH03265584A (en) Production of metal-impregnated ceramics
JP4596855B2 (en) Metal-ceramic composite structure and electrode member for plasma generation comprising the same
US20050019199A1 (en) Double-layer metal sheet and method of fabricating the same
JP3332829B2 (en) Composite metal material and its manufacturing method
KR19990045037A (en) Aluminum nitride-aluminum composite material and manufacturing method thereof
JP3272433B2 (en) Method for producing cylindrical oxide superconducting compact
JPH046163A (en) Production of carrier consisting of aluminium nitride
JP4318814B2 (en) Method for producing metal-ceramic composite material
KR101132702B1 (en) A Poromeric sandwich panel and method of manufacturing the same
JPH0453831B2 (en)
JPH10130701A (en) Intermetallic compound composite material and its production
JP2940084B2 (en) Method for producing ceramic composite
JPH01292871A (en) Manufacture of oxide superconductive molding with electrode layer
JPH01152617A (en) Solid electrolytic capacitor
JPH04342488A (en) Composite material of metal and ceramic and its production
RU2283727C1 (en) Composition metallic material article production process