JPH03265486A - Inverter control system - Google Patents

Inverter control system

Info

Publication number
JPH03265486A
JPH03265486A JP2063833A JP6383390A JPH03265486A JP H03265486 A JPH03265486 A JP H03265486A JP 2063833 A JP2063833 A JP 2063833A JP 6383390 A JP6383390 A JP 6383390A JP H03265486 A JPH03265486 A JP H03265486A
Authority
JP
Japan
Prior art keywords
winding
inverter
connection
output
switches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2063833A
Other languages
Japanese (ja)
Other versions
JP2932080B2 (en
Inventor
Toshihiro Sawa
俊裕 沢
Ikuo Nagai
長井 郁夫
Mitsujiro Sawamura
光次郎 沢村
Akira Kumagai
彰 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2063833A priority Critical patent/JP2932080B2/en
Publication of JPH03265486A publication Critical patent/JPH03265486A/en
Application granted granted Critical
Publication of JP2932080B2 publication Critical patent/JP2932080B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent fluctuation of ripple current even upon modification of the connection of winding by varying the PWN carrier frequency of an inverter according to the primary impedance of motor winding at the time of connection of winding. CONSTITUTION:Since signals (b), (c) are applied, respectively, on minus and plus inputs of a comparator 29, output thereof goes High thus turning switches 25A, 27A ON and turning switches 25B, 27B OFF. Under this state, output of an integrator 21 is obtained by integrating the input signal (a) to the integrator 21. When the output increases and exceeds over the comparison voltage of the comparator 29, output thereof goes Low thus turning the switches 25A, 27A OFF and turning the switches 25B, 27B ON. Consequently, the output Vout drops below the comparison voltage -Es of the comparator 29. Since the oscillation frequency is determined by a reference voltage, an input resistance and an integration capacitor, the oscillation frequency can be modified by regulating any one of them.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は巻線切替え制御方式のインバータドライブに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an inverter drive using a winding switching control method.

[従来の技術] 従来、工作機械の主軸ドライブ等では定出力制御範囲拡
大のために、電動機巻線を接続変更してインバータドラ
イブすることがある(例えば特開昭60−21.999
3号公報)。
[Prior Art] Conventionally, in order to expand the constant output control range of spindle drives of machine tools, the motor windings are sometimes connected to be changed and driven by an inverter (for example, Japanese Patent Laid-Open No. 60-21.999
Publication No. 3).

具体的に説明すると、第5図において、1は電動機7を
制御するインバータ、7は電動機、71〜73は電動機
7の三相巻線である。91.92は電動機7の巻線を接
続変更する開閉器である。
Specifically, in FIG. 5, 1 is an inverter that controls the motor 7, 7 is the motor, and 71 to 73 are three-phase windings of the motor 7. 91 and 92 are switches for changing the connection of the windings of the electric motor 7.

開閉器91を閉、開閉器92を開にすれば、電動機巻線
71〜73はスター接続(以下Y接続という)になり、
開閉器91を開、開閉器92を閉にすれば、電動機巻線
71〜73はデルタ接続(以下Δ接続という)になる。
When the switch 91 is closed and the switch 92 is opened, the motor windings 71 to 73 become star-connected (hereinafter referred to as Y-connection).
When the switch 91 is opened and the switch 92 is closed, the motor windings 71 to 73 become delta connections (hereinafter referred to as Δ connections).

Δ接続時の1相のインピーダンスをZとすると、Y接続
時の1相のインピーダンスは3Zになる。
If the impedance of one phase in Δ connection is Z, the impedance of one phase in Y connection is 3Z.

誘導電動機を電圧形PWMインバータでドライブしたと
きに生じるリップル電流の大きさは、PWM電圧波形と
、このインピーダンスによって決まる。。
The magnitude of ripple current generated when an induction motor is driven by a voltage-type PWM inverter is determined by the PWM voltage waveform and its impedance. .

[発明が解決しようとする課題〕 ところが、従来技術ではPWM電圧波形のPWMキャリ
ア周波数が一定であったために、前述のリップル電流の
大きさが巻線接続によって変わるという問題があった。
[Problems to be Solved by the Invention] However, in the prior art, since the PWM carrier frequency of the PWM voltage waveform was constant, there was a problem in that the magnitude of the ripple current described above varied depending on the winding connection.

とくに、電流マイナルーブをもつインバータでは、電流
ループゲインはリップル電流値によって制限されるから
、巻線接続を変更するということは電流応答性を左右す
る重要な問題であった。
In particular, in an inverter with a current minor loop, the current loop gain is limited by the ripple current value, so changing the winding connection is an important issue that affects current response.

本発明は、巻線接続を変更してもリップル電流の大きさ
が変化しないようにすることを目的とするものである。
An object of the present invention is to prevent the magnitude of ripple current from changing even if the winding connections are changed.

[課題を解決するための手段] 本発明は上記課題を解決するため、巻線接続変更可能な
多相誘導電動機と、接続変更を行うための開閉器と、巻
線切替え制御機能を持つインバータからなる可変速ドラ
イブシステムにおいて、それぞれの巻線接続時の電動機
巻線の1次インピーダンスに応じて、インバータのPW
Mキャリア周波数を変化させて前記多相誘導電動機を制
御するようにしたものである。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a polyphase induction motor that can change the winding connection, a switch for changing the connection, and an inverter that has a winding switching control function. In a variable speed drive system, the inverter's PW varies depending on the primary impedance of the motor windings when each winding is connected.
The multiphase induction motor is controlled by changing the M carrier frequency.

[作用] PWMキャリア周波数を巻線接続に対応して変え、巻線
接続を変更してもリップル電流が一定になるようにして
あり、かつPWMキャリア周波数の変化によってスイッ
チングロスも変化するから、過負荷保護レベルを調節し
てインバータのパワー素子の破壊を防ぐことができる。
[Function] The PWM carrier frequency is changed in accordance with the winding connection so that the ripple current remains constant even if the winding connection is changed, and since the switching loss also changes as the PWM carrier frequency changes, overload is avoided. The load protection level can be adjusted to prevent damage to the power elements of the inverter.

[実施例コ 本発明を図に示す実施例について説明する。[Example code] The present invention will be described with reference to embodiments shown in the drawings.

第1図は本発明の実施例を示すブロック図で、インバー
タlはダイオード等整流素子を使用したコンバータ部2
、トランジスタ等の自己消弧素子を使用したインバータ
部3、平滑コンデンサ4からなる主回路部と、電流検出
器5と制御回路6からなる制御回路部で構成されている
。7は巻線接続変更可能な誘導電動機、8は誘導電動機
7に取り付けた速度検出のためのエンコーダ、9は第5
図において説明した開閉器91.92からなる巻線接続
変更のための巻線切替え装置である。さらに、制御回路
6は誘導電動機7の速度を制御する速度制御部11.ベ
クトル制御などの電流指令発生器12、その電流指令発
生器12にそれぞれの巻線接続に応じて制御定数を供給
する定数メモリ13、電流指令と電流検出器5からの検
出信号を入力として電圧指令を出力する電流制御部14
、PWM制御のためのキャリア信号発生器]5、電圧指
令とPWMキャリア信号からインバータ部3のトランジ
スタをドライブする信号を発生するPWM制御部16、
電流検出器5からの検出信号に基づき過負荷保護動作を
行う過負荷保護部17、外部からの指令や電動機速度に
基づきインバータ内部で発生する巻線選択指令により、
定数メモリ13、キャリア信号発生器15、過負荷保護
部17、巻線切替え装置9に巻線接続信号を与える巻線
選択指令発生器18で構成される。
FIG. 1 is a block diagram showing an embodiment of the present invention, where an inverter l is a converter section 2 using a rectifying element such as a diode.
, a main circuit section consisting of an inverter section 3 using self-extinguishing elements such as transistors, a smoothing capacitor 4, and a control circuit section consisting of a current detector 5 and a control circuit 6. 7 is an induction motor whose winding connection can be changed, 8 is an encoder for speed detection attached to the induction motor 7, and 9 is a fifth
This is a winding switching device for changing winding connections, which includes the switches 91 and 92 explained in the figure. Further, the control circuit 6 includes a speed control section 11. which controls the speed of the induction motor 7. A current command generator 12 for vector control, etc., a constant memory 13 that supplies control constants to the current command generator 12 according to each winding connection, and a voltage command by inputting the current command and the detection signal from the current detector 5. A current control section 14 that outputs
, carrier signal generator for PWM control] 5. PWM control unit 16 that generates a signal to drive the transistor of the inverter unit 3 from the voltage command and the PWM carrier signal;
The overload protection unit 17 performs overload protection operation based on the detection signal from the current detector 5, and the winding selection command generated inside the inverter based on an external command or motor speed.
It is composed of a constant memory 13, a carrier signal generator 15, an overload protection section 17, and a winding selection command generator 18 that provides a winding connection signal to the winding switching device 9.

巻線選択指令がY接続である時、PWMキャリア周波数
、過負荷保護レベルが標準設定されているとする。
It is assumed that when the winding selection command is Y connection, the PWM carrier frequency and overload protection level are set as standard.

次に、巻線選択指令をΔ接続に変更すると、巻線インピ
ーダンスが1/3に低下するから、PWMキャリア周波
数を変更しなければリップル電流は3倍になる。しかし
、電流制御ゲインを巻線接続にかかわらず一定にして制
御するためには、リップル電流を一定に保つ必要がある
Next, when the winding selection command is changed to Δ connection, the winding impedance decreases to 1/3, so if the PWM carrier frequency is not changed, the ripple current will triple. However, in order to keep the current control gain constant regardless of the winding connection, it is necessary to keep the ripple current constant.

リップル電流は、PWM電圧波形と電動機巻線インピー
ダンスによって決まるから、このリップル電流一定制御
を実現するためには、キャリア周波数を高くすればよく
、巻線選択指令発生器18の信号に応じて、PWM制御
部16に入力するキャリア信号発生器15のPWMキャ
リア周波数を変更すればよい。
Since the ripple current is determined by the PWM voltage waveform and the motor winding impedance, in order to achieve constant ripple current control, the carrier frequency only has to be made high. The PWM carrier frequency of the carrier signal generator 15 input to the control unit 16 may be changed.

例えば、キャリア周波数発生器15の代表例として三角
波発振器を第2図に示す。21は積分器、22A、22
Bは積分器2の積分コンデンサ、23A123Bは積分
コンデンサ22A、22Bを巻線選択指令発生器18の
信号に基づいて切替えるためのスイッチ、24は積分器
2の入力抵抗、26A126Bは積分器2に入力する基
準電圧源、25A125Bは積分器21の入力の基準電
圧源26A126Bの極性を切替えるスイッチ、28A
、28Bは三角波信号のピーク値を決める基準電圧源、
27A127Bはその極性を切替えるスイッチ、29は
積分器21の出力と基準電圧源28A、28Bとを比較
して論理信号を出力するコンパレータである。
For example, a triangular wave oscillator is shown in FIG. 2 as a representative example of the carrier frequency generator 15. 21 is an integrator, 22A, 22
B is the integrating capacitor of the integrator 2, 23A123B is a switch for switching the integrating capacitors 22A and 22B based on the signal from the winding selection command generator 18, 24 is the input resistance of the integrator 2, and 26A126B is the input to the integrator 2 A reference voltage source 25A125B is a switch 28A that switches the polarity of a reference voltage source 26A126B input to the integrator 21.
, 28B is a reference voltage source that determines the peak value of the triangular wave signal;
27A and 127B are switches for changing the polarity, and 29 is a comparator that compares the output of the integrator 21 with the reference voltage sources 28A and 28B and outputs a logic signal.

先ず、スイッチ23Aがオフ、23Bがオンとする。い
ま、時刻をtlとすると、第3図に示すように、コンパ
レータ29の一人力には信号■、→−一人力は信号■が
加わっているから、出力はHレベルになり、信号■によ
りスイッチ25A、27Aがオン、スイッチ25B、2
7Bがオフとなる。
First, switch 23A is turned off and switch 23B is turned on. Now, if the time is tl, as shown in Fig. 3, the signal ■ is added to the single power of the comparator 29, and the signal ■ is added to the -manual power, so the output becomes H level, and the switch is activated by the signal ■. 25A, 27A are on, switches 25B, 2
7B is turned off.

この状態で、積分器21の出力■。、1.は、積分器2
1の入力信号■を積分して得られるから、基準電圧源2
6Aの電圧を−E、とし、基準電圧源28Aの電圧をR
6、基準電圧源28Bの電圧を−E、とすると、 Vout =: −’ f:0−二Jニー−d t −
E、  −= (1)C22BR24 て表わされる。C22Bは積分コンデンサ22Bの容量
を表わし、R24は入力抵抗24の抵抗値を表わす。
In this state, the output of the integrator 21 is ■. , 1. is integrator 2
Since it is obtained by integrating the input signal 1, the reference voltage source 2
The voltage of 6A is -E, and the voltage of reference voltage source 28A is R.
6. If the voltage of the reference voltage source 28B is -E, then Vout =: -' f:0-2Jnee-dt-
E, -= (1)C22BR24 It is expressed as follows. C22B represents the capacitance of the integrating capacitor 22B, and R24 represents the resistance value of the input resistor 24.

この出力Vljulが上昇し、時刻t2においてコンパ
1ノータ29の比較電圧であるE、をこえると、コンパ
レータ出力は反転してLレベルになり、信号■によりス
イッチ25A、27Aがオフ、スイッチ25B、27B
がオンとなる。
When this output Vljul rises and exceeds the comparison voltage E of the comparator 1 notor 29 at time t2, the comparator output is inverted and becomes the L level, and the signal ■ turns off the switches 25A and 27A, and turns off the switches 25B and 27B.
turns on.

したがって、積分器21には信号■に示すように、基準
電圧源26Bから基準電圧E、が印加されることになり
、その出力電圧V。u+は時刻t、においで、 となり、出力■。、は時刻t4でコンパレータ29の比
較電圧である一E、より下がるまで下降する。
Therefore, the reference voltage E from the reference voltage source 26B is applied to the integrator 21, as shown by the signal ■, and its output voltage V. u+ becomes at time t and smell, and the output ■. , decreases until it falls below 1E, which is the comparison voltage of the comparator 29, at time t4.

三角波発振器はこの動作を自動的に繰り返して三角波信
号を出力する。この発振器の発振周波数は式(1)、(
2)かられかるように、基準電圧E1、R8、入力抵抗
R,、積分コンデンサC22Bで決まる。したがって、
発振周波数を変更するには、このうちのいずれかを操作
すればよい。
The triangular wave oscillator automatically repeats this operation and outputs a triangular wave signal. The oscillation frequency of this oscillator is expressed by formula (1), (
2) As shown, it is determined by the reference voltage E1, R8, input resistance R, and integrating capacitor C22B. therefore,
To change the oscillation frequency, you can operate any one of these.

一般的には、コンデンサ容量を変更する方法を用いるこ
とが多く、この場合は、巻線切替え信号18でコンデン
サ容量を変更した。Y接続で積分コンデンサC22Bが
選択されているとすると、Δ接続時は積分コンデンサC
22Aが選択される。当然のことながら、Δ接続でキャ
リア周波数を高(するから、コンデンサ容量は、C22
A < C22Bとなる。
Generally, a method of changing the capacitor capacity is often used, and in this case, the capacitor capacity was changed using the winding switching signal 18. If integrating capacitor C22B is selected for Y connection, integrating capacitor C22B is selected for Δ connection.
22A is selected. Naturally, the carrier frequency is raised by the Δ connection (so the capacitor capacity is C22
A < C22B.

一方、Δ接続時にY接続時と同一の電流を通電すると、
PWMキャリア周波数は高くなっているから、インバー
タ部3のトランジスタのスイッチングロスは増加する。
On the other hand, if the same current is applied during Δ connection as when Y connection is applied,
Since the PWM carrier frequency is high, the switching loss of the transistor in the inverter section 3 increases.

したがって、トランジスタの熱破壊を生じさせないため
には、通電時の発生ロスをΔ接続時とY接続時で同程度
に抑えなljればならない。過負荷保護部17は第4図
に示す電流・時間積である過負荷保護動作レベルを巻線
接続指令発生器18の信号に応じて切替えて使用する。
Therefore, in order to prevent thermal breakdown of the transistor, the loss generated during energization must be suppressed to the same level lj in the Δ connection and in the Y connection. The overload protection section 17 switches and uses an overload protection operation level, which is a current/time product shown in FIG. 4, in accordance with a signal from a winding connection command generator 18.

すなわち、)′接続時は従来の過負荷保護レベルを適用
し、Δ接続時は°過負荷保護レベルをY接続時より下げ
て使用する。
That is, when connecting )', the conventional overload protection level is applied, and when connecting Δ, the overload protection level is lowered than when connecting Y.

以上のように、従来の巻線切替え方式のインバータドラ
イブに、巻線切替え指令に基づいてPWMキャリア周波
数を変更する手段と過負荷保護レベルを変更する手段と
を付加することで、巻線接続にかかわらず一定の電流制
御応答性を得ることができる。
As described above, by adding means for changing the PWM carrier frequency and means for changing the overload protection level based on a winding switching command to a conventional winding switching type inverter drive, the winding connection can be improved. Constant current control responsiveness can be obtained regardless of the current control.

本実施例は、ベクトル制御インバータについて説明した
ものであるが、V/f制御の巻線切替え方式インバータ
についても同様の手法を用いることで、電流応答性を改
善できる。
Although this embodiment describes a vector control inverter, current responsiveness can be improved by using a similar technique for a V/f controlled winding switching type inverter.

[発明の効果] 以上述べたように、本発明によれば巻線接続にかかわり
なくリップル電流を一定にでき、電流制御応答性を一定
に保つことができ、安定した特性を備えた巻線切替え方
式のインバータを提供することができるという効果があ
る。
[Effects of the Invention] As described above, according to the present invention, ripple current can be kept constant regardless of the winding connection, current control responsiveness can be kept constant, and winding switching with stable characteristics can be achieved. This has the advantage that it is possible to provide an inverter of this type.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すブロック図、第2図はP
WMキャリア指令発生回路、第3図は過負荷保護特性を
表わす説明図、第4図は過負荷保護動作レベルを示す特
性図、第5図は従来の巻線切替え方式インバータの構成
図である。 l・・・インバータ、2・・・コンバータ部、3・・イ
ンバータ部、5・・・電流検出器、6・・・制御回路、
7・・誘導電動機、8・・・エンコーダ、9・・・巻線
切替え装置 第 図 第 図 ot1 電2 電!t4
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a block diagram showing an embodiment of the present invention.
WM carrier command generation circuit, FIG. 3 is an explanatory diagram showing overload protection characteristics, FIG. 4 is a characteristic diagram showing overload protection operation levels, and FIG. 5 is a configuration diagram of a conventional winding switching type inverter. l... Inverter, 2... Converter section, 3... Inverter section, 5... Current detector, 6... Control circuit,
7...Induction motor, 8...Encoder, 9...Winding switching device Figure ot1 Electric 2 Electric! t4

Claims (1)

【特許請求の範囲】 1、巻線接続変更可能な多相誘導電動機と、接続変更を
行うための開閉器と、巻線切替え制御機能を持つインバ
ータからなる可変速ドライブシステムにおいて、 それぞれの巻線接続時の電動機巻線の1次インピーダン
スに応じて、インバータのPWMキャリア周波数を変化
させて前記多相誘導電動機を制御することを特徴とする
インバータの制御方式。 2、インバータのPWMキャリア周波数の変化に応じて
インバータの過負荷保護動作レベルを調節する機能をも
つ請求項1記載のインバータの制御方式。
[Claims] 1. In a variable speed drive system consisting of a polyphase induction motor whose winding connection can be changed, a switch for changing the connection, and an inverter having a winding switching control function, each winding An inverter control method characterized in that the multiphase induction motor is controlled by changing the PWM carrier frequency of the inverter according to the primary impedance of the motor winding at the time of connection. 2. The inverter control system according to claim 1, which has a function of adjusting the overload protection operation level of the inverter in accordance with changes in the PWM carrier frequency of the inverter.
JP2063833A 1990-03-13 1990-03-13 Inverter control method Expired - Fee Related JP2932080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2063833A JP2932080B2 (en) 1990-03-13 1990-03-13 Inverter control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2063833A JP2932080B2 (en) 1990-03-13 1990-03-13 Inverter control method

Publications (2)

Publication Number Publication Date
JPH03265486A true JPH03265486A (en) 1991-11-26
JP2932080B2 JP2932080B2 (en) 1999-08-09

Family

ID=13240748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2063833A Expired - Fee Related JP2932080B2 (en) 1990-03-13 1990-03-13 Inverter control method

Country Status (1)

Country Link
JP (1) JP2932080B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8076890B2 (en) 2006-03-31 2011-12-13 Thk Co., Ltd. AC motor driving apparatus and control method
CN110892636A (en) * 2017-07-28 2020-03-17 三菱电机株式会社 Driving device, compressor, air conditioner, and method for driving permanent magnet embedded motor
EP3667897A4 (en) * 2017-08-08 2020-10-07 Mitsubishi Electric Corporation Electric motor drive device and air conditioner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8076890B2 (en) 2006-03-31 2011-12-13 Thk Co., Ltd. AC motor driving apparatus and control method
TWI408890B (en) * 2006-03-31 2013-09-11 Thk Co Ltd AC motor drive device and control method
CN110892636A (en) * 2017-07-28 2020-03-17 三菱电机株式会社 Driving device, compressor, air conditioner, and method for driving permanent magnet embedded motor
EP3661047A4 (en) * 2017-07-28 2020-12-23 Mitsubishi Electric Corporation Drive device, compressor, air conditioner, and method for driving embedded permanent magnet-type electric motor
US10951139B2 (en) 2017-07-28 2021-03-16 Mitsubishi Electric Corporation Driving device, compressor, air conditioner and method of driving interior permanent magnet motor
CN110892636B (en) * 2017-07-28 2023-01-17 三菱电机株式会社 Driving device, compressor, air conditioner, and method for driving permanent magnet motor
EP3667897A4 (en) * 2017-08-08 2020-10-07 Mitsubishi Electric Corporation Electric motor drive device and air conditioner
US10978981B2 (en) 2017-08-08 2021-04-13 Mitsubishi Electric Corporation Drive apparatus for electric motor and air conditioner

Also Published As

Publication number Publication date
JP2932080B2 (en) 1999-08-09

Similar Documents

Publication Publication Date Title
US7683568B2 (en) Motor drive using flux adjustment to control power factor
US5111374A (en) High frequency quasi-resonant DC voltage notching scheme of a PWM voltage fed inverter for AC motor drives
US4529927A (en) Apparatus for the control of a switched power regulator
US4879639A (en) Power converter for driving an AC motor at a variable speed
US4364109A (en) Control device of inverters
JP2007523587A (en) DC-DC voltage regulator whose switching frequency is responsive to the load
US7102321B2 (en) Control method for peak power delivery with limited DC-bus voltage
EP0401442A1 (en) Apparatus for automatic control of power factor of inductive load
US4473790A (en) Control circuit for suppression of line resonances in current feedback pulse width modulation control systems with a minimum d-c filter
US5576606A (en) Asynchronous motor power supply control system
JPH03265486A (en) Inverter control system
US4288729A (en) Control system for D.C. electric motor
US5490056A (en) Inverter apparatus having two control modes and apparatus using the same
JPH06245588A (en) Pwm inverter control method
JP3263962B2 (en) DC braking system
JPH04251597A (en) Controller for current type inverter
JPH0652998B2 (en) Method and device for controlling control voltage of three-phase inverter for AC motor power supply
JPS5914999B2 (en) Current source inverter control device
Salo et al. Experimental results of the current-source PWM inverter fed induction motor drive with an open-loop stator current control
SU720636A1 (en) Voltage stabilized three-phase bridge inverter
JPH06197546A (en) Pwm control circuit for power conversion device
Maswood et al. Performance parameters of a pulse-width modulation voltage source inverter with proportional-integral controller under non-ideal conditions
JPS592579A (en) Controller for inverter
JPH0731192A (en) Controller and control method for variable speed drive system
SU1034026A1 (en) Stabilized power supply source having transformerless input

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees