JPH03264897A - Treatment of high level radioactive waste - Google Patents

Treatment of high level radioactive waste

Info

Publication number
JPH03264897A
JPH03264897A JP6540490A JP6540490A JPH03264897A JP H03264897 A JPH03264897 A JP H03264897A JP 6540490 A JP6540490 A JP 6540490A JP 6540490 A JP6540490 A JP 6540490A JP H03264897 A JPH03264897 A JP H03264897A
Authority
JP
Japan
Prior art keywords
heating
sintering
high level
level radioactive
calcined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6540490A
Other languages
Japanese (ja)
Other versions
JPH0769466B2 (en
Inventor
Mizuaki Horie
堀江 水明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Reactor and Nuclear Fuel Development Corp filed Critical Power Reactor and Nuclear Fuel Development Corp
Priority to JP6540490A priority Critical patent/JPH0769466B2/en
Publication of JPH03264897A publication Critical patent/JPH03264897A/en
Publication of JPH0769466B2 publication Critical patent/JPH0769466B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE:To treat high level radioactive wastes without generating a huge amount of secondary wastes and to materialize highly volume reduction of them by heating up the high level radioactive wastes to get a calcined body and then by heating up again at very high temperature and sintering powder of the calcined body of the high level radioactive wastes which are obtained after vaporizing and removing a Cs by heating in a non-oxidative atmosphere. CONSTITUTION:A Cs is vaporized and removed by heating up high level radioactive wastes and by vaporizing a water content and a nitric acid to get a calcined body, and then by heating up again in a nonoxidative atmosphere. By this treatment, restrictions related to synthesis of a solidified body regarding to Cs confinement are eliminated. Then, by heating up the calcined body of high level radioactive wastes to make them a sintered body, high volume reduction is materialized. Since the calcined body has an ability of self sintering, the sintered body can be obtained by putting the calcined body in a vessel and heating it up. Moreover, under higher pressure, a much more dense and stably shaped solidified body can be obtained. As it is not for use as molded goods, 300 atoms as so-called high pressure is more than enough for producing such a densely solidified body.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は使用済燃料の再処理工程等で発生する高レベル
放射性廃棄物の処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for treating high-level radioactive waste generated in spent fuel reprocessing processes and the like.

更に詳しく述べると、高放射性廃棄物の仮焼体を非酸化
性雰囲気中で加熱することによりCs(セシウム)を気
化除去し、次いで高温加熱して高域容度の焼結体にする
処理方法に関するものである。
More specifically, this is a treatment method in which Cs (cesium) is vaporized and removed by heating a calcined body of highly radioactive waste in a non-oxidizing atmosphere, and then heated at a high temperature to produce a sintered body with a high range capacity. It is related to.

[従来の技術] ビューレックス法による使用済燃料の再処理で発生する
高レベル放射性廃棄物は、核分裂生成物を含む硝#I溶
液の形で貯蔵されている。この高放射性廃棄物は、将来
、ガラス等の媒体に混入することにより固体化される。
[Prior Art] High-level radioactive waste generated in the reprocessing of spent fuel by the Burex method is stored in the form of nitrate #I solution containing fission products. In the future, this highly radioactive waste will be solidified by mixing it with a medium such as glass.

媒体としてはガラスの他に合成岩石(シンロック)など
多種類の材料が研究されている。媒体中の核分裂生成物
の含有量は、核分裂生成物の媒体への溶解度、化学的耐
久性(水に対する浸出率)、崩壊熱の除去等により決ま
り、ガラス固化では約10%程度に制限されている。
In addition to glass, many other materials are being studied as media, including synthetic rock (synrock). The content of fission products in the medium is determined by the solubility of the fission products in the medium, chemical durability (leaching rate in water), removal of decay heat, etc., and is limited to about 10% in vitrification. There is.

また別の固化処理方法としてスーパーカルサイン法があ
る。これは高放射性廃棄物にアルミニウム化合物を添加
し、高核分裂生底物含有量の固化体の形成を図るもので
ある。
Another solidification treatment method is the supercalsine method. This involves adding aluminum compounds to highly radioactive waste to form a solidified material with a high fissile sediment content.

[発明が解決しようとする課B] 従来の一般的な固化処理において、ガラス等の媒体はい
たずらに高放射性廃棄物の容積を増加させている。また
高放射能で且つ高発熱量のCsを除去せずにそのまま固
化しており、Csの保持(C3の浸出率を小さくするこ
と)、発熱除去への対応のため核分裂生成物の含有量を
増大させることができない、抽出法やイオン交換法等に
よるCsの除去も試みられてきたが、抽出法における廃
溶媒、イオン交換法における廃イオン交換樹脂の廃棄物
としての処理に問題があるため実用化は困難である。
[Problem B to be solved by the invention] In conventional general solidification processing, media such as glass unnecessarily increase the volume of highly radioactive waste. In addition, Cs, which is highly radioactive and has a high calorific value, is solidified without being removed, and the content of fission products is reduced in order to retain Cs (reduce the leaching rate of C3) and remove heat. Attempts have been made to remove Cs by extraction methods, ion exchange methods, etc., which cannot increase the amount of Cs. It is difficult to

固化体の容積は、その貯蔵・処分の費用を低減させるた
め可能な限り小さくすべきである。
The volume of the solidified body should be as small as possible to reduce the costs of its storage and disposal.

そのためには固化体中の核分裂生成物の含有量を高くす
る必要があるが、前記の理由により現状では約10%に
とどまっている。
To achieve this, it is necessary to increase the content of fission products in the solidified body, but for the reasons mentioned above, it currently remains at about 10%.

またスーパーカルサイン法は化学的耐久性が間朋であり
、改善のため金属被覆を行う試み等がなされているが、
未だ高放射性廃棄物の高減容化は達成されていない。
In addition, the chemical durability of the super calcine method is poor, and attempts have been made to coat it with metal to improve it.
A significant volume reduction of highly radioactive waste has not yet been achieved.

本発明の目的は上記のような従来技術の欠点を解消し、
新しい二次廃棄物を多量に発生させることなく、高しヘ
ル放射性廃棄物を処理し、その高減容固化を容易に実現
できる方法を提供することにある。
The purpose of the present invention is to eliminate the drawbacks of the prior art as described above,
It is an object of the present invention to provide a method for processing highly radioactive waste and easily realizing high volume reduction and solidification of highly radioactive waste without generating a large amount of new secondary waste.

[課題を解決するための手段] 本発明は、高放射性廃棄物を加熱して仮焼体とし、更に
非酸化性雰囲気中で加熱しCsを気化除去して低発熱の
高放射性廃棄物の仮焼体粉体を得、この仮焼体粉体を高
温加熱して焼結させる高放射性廃棄物の処理方法である
。本発明の特徴は、予めCsを除去する点、及び仮焼体
を熔融することなく焼結体にする点である。
[Means for Solving the Problems] The present invention heats highly radioactive waste to form a calcined body, and further heats it in a non-oxidizing atmosphere to vaporize and remove Cs, thereby creating a calcined body of highly radioactive waste with low heat generation. This is a highly radioactive waste treatment method that obtains a calcined powder and sinters the calcined powder by heating it at a high temperature. The features of the present invention are that Cs is removed in advance and that the calcined body is made into a sintered body without being melted.

高放射性廃棄物は、通常、使用済燃料の再処理工程にお
ける抽残液として得られる硝酸溶液であり、使用済燃料
中の殆ど全ての核分裂生成物を含有している。高放射性
廃棄物の固化において処分の観点から問題とされる核種
には、Np、Amの超ウラン核種やTc、1等の長寿命
核種があるが、固化体の短期的健全性の観点からは(、
sが問題核種である。Csはアルカリ金属であり酸化物
の形態では水に対して易溶性であること、高放射性で且
つ高発熱量であることのためである。
Highly radioactive waste is usually a nitric acid solution obtained as a raffinate in the spent fuel reprocessing process, and contains almost all the fission products in the spent fuel. The nuclides that are problematic from the perspective of disposal when solidifying highly radioactive waste include transuranium nuclides such as Np and Am, and long-lived nuclides such as Tc and 1, but from the perspective of short-term integrity of the solidified waste, (,
s is the nuclide in question. This is because Cs is an alkali metal and in the form of an oxide is easily soluble in water, highly radioactive, and has a high calorific value.

本発明では、第1図に示すように、この高放射性廃棄物
を加熱し水分及び硝酸を蒸発させて仮焼体とし、更に非
酸化性雰囲気中で加熱することによってCsを気化除去
する。これによってCs閉し込めに関する固化体合成上
の制約が解消される。仮焼は水分や窒素酸化物を除去で
き、Cs等の核分裂生成物が気化し難い温度、即ち通常
600℃程度、最高700℃で行う。
In the present invention, as shown in FIG. 1, this highly radioactive waste is heated to evaporate water and nitric acid to form a calcined body, and further heated in a non-oxidizing atmosphere to vaporize and remove Cs. This eliminates constraints on solidified body synthesis regarding Cs confinement. Calcination is carried out at a temperature at which moisture and nitrogen oxides can be removed and fission products such as Cs are difficult to vaporize, that is, usually about 600°C and a maximum of 700°C.

仮焼には、高放射性廃棄物のガラス固化で研究されてい
るロータリーキルン方式やマイクロ波加熱方式などを適
用できる。核分裂生成物の中にはRu、MoのようにR
u0a 、Mo5sの酸化物状態で揮発性を示す元素が
ある。この揮発を抑制するためには、可能な限りこれら
の酸化物生成が進行しないことが望ましく、Cs気化除
去は、この観点から非酸化性雰囲気中で加熱する。加熱
温度は、通常900℃程度、最高1200℃である。
For calcining, the rotary kiln method and microwave heating method, which are being studied for the vitrification of highly radioactive waste, can be applied. Some of the fission products include R such as Ru and Mo.
There are elements that exhibit volatility in the oxide state of u0a and Mo5s. In order to suppress this volatilization, it is desirable that the production of these oxides should not proceed as much as possible, and from this point of view, Cs vaporization is performed by heating in a non-oxidizing atmosphere. The heating temperature is usually about 900°C and a maximum of 1200°C.

次にこの低発熱の高放射性廃棄物の仮焼体粉体を高温で
加熱し焼結体にすることで、高減容固化を実現する。仮
焼体は自己焼結性をもっているので、容器に入れ加熱す
ることにより焼結体を得ることができる。より良好な形
状の焼結体を得るためには、予め成形してから焼結する
(常圧焼結)か、成形と焼結を同時に行う(加圧焼結)
のが望ましい。成形後の焼結は、自己焼結性を利用し常
圧で可能であるが、比較的蒸気圧の高い核種の気化を防
くため加圧下で行うこともできる。圧力については特に
制限はない。
Next, this calcined powder of highly radioactive waste with low heat generation is heated at high temperature to form a sintered body, achieving high volume reduction and solidification. Since the calcined body has self-sintering properties, a sintered body can be obtained by placing it in a container and heating it. To obtain a sintered body with a better shape, either shape it in advance and then sinter it (pressureless sintering), or shape and sinter at the same time (pressure sintering).
is desirable. Sintering after molding can be performed at normal pressure to take advantage of self-sintering properties, but it can also be performed under pressure to prevent vaporization of nuclides with relatively high vapor pressure. There are no particular restrictions on pressure.

高圧力下では、より緻密な、形状の安定した同化体が得
られる。本方法では成形品として使用に供されるもので
はないから、高圧力といっても300気圧以下で、緻密
固化体を製造できる。
Under high pressure, a denser and shape-stable assimilate is obtained. In this method, since the product is not used as a molded product, a dense solidified product can be produced at a high pressure of 300 atmospheres or less.

また焼結を促進するため、ホウ素化合物やナトリウム化
合物等の焼結剤を添加するのも有効である。これらの焼
結剤の添加により、焼結体の密度を向上させることがで
きるが、水に対する浸出率は悪くなる。このため添加量
は20%以下、好ましくは10%以下にする。
It is also effective to add a sintering agent such as a boron compound or a sodium compound to promote sintering. By adding these sintering agents, the density of the sintered body can be improved, but the leaching rate with respect to water becomes worse. Therefore, the amount added should be 20% or less, preferably 10% or less.

焼結反応は、雰囲気、還元剤の添加、温度、圧力により
制御する。空気中で焼結反応を行わせることもできるが
、高温では炉材や容器材料などの酸化の問題があり、材
料選択が制限される。このため本発明では酸素含有量を
低減した空気、窒素もしくはアルゴンの雰囲気下、もし
くは真空中で行うのが望ましい。還元剤は還元雰囲気維
持のために有用である。還元剤としては、新たな二次廃
棄物を生しさせないため水素や一酸化炭素等の気体還元
剤、炭素等の酸化還元反応において気体化する還元剤、
アルカリ土類金属や希土類元素など廃棄物となる酸化物
層の構成元素である還元剤を使用する。またアルミニウ
ムなど酸化物として残存しても廃棄物となる酸化物相に
悪影響を与えない物質の使用も可能である。焼結反応時
、白金族元素(Ru。
The sintering reaction is controlled by atmosphere, addition of reducing agent, temperature, and pressure. Although it is possible to carry out the sintering reaction in air, there is a problem of oxidation of furnace materials, container materials, etc. at high temperatures, which limits material selection. Therefore, in the present invention, it is preferable to carry out the process in an atmosphere of air, nitrogen or argon with a reduced oxygen content, or in a vacuum. Reducing agents are useful for maintaining a reducing atmosphere. Reducing agents include gaseous reducing agents such as hydrogen and carbon monoxide to prevent the creation of new secondary waste, reducing agents that gasify during redox reactions such as carbon,
Reducing agents such as alkaline earth metals and rare earth elements, which are constituent elements of the oxide layer that becomes waste, are used. It is also possible to use a substance such as aluminum that does not adversely affect the oxide phase that becomes waste even if it remains as an oxide. During the sintering reaction, platinum group elements (Ru.

Rh、Pd)が金属状態まで還元されることがあるが、
これらは金属状態で安定であるから高放射性廃棄物の焼
結体として何ら問題はない。
Rh, Pd) may be reduced to a metallic state, but
Since these are stable in a metallic state, there is no problem as a sintered body of highly radioactive waste.

焼結温度は1000〜2000℃である。焼結処理の雰
囲気、還元剤、温度、圧力は反応条件により適宜組み合
わせる。
The sintering temperature is 1000-2000°C. The atmosphere, reducing agent, temperature, and pressure for the sintering treatment are appropriately combined depending on the reaction conditions.

焼結処理の例を第2図〜第6図に示す、第2図は常圧に
よる焼結の例である。焼結容器10に仮焼体粉体12を
充填し、加熱する。粉体は焼き締まり焼結体14になる
。焼結容器10をそのまま貯蔵容器とする場合は、同図
に示すように焼き締まりにより焼結容器10と焼結体1
4との間に空間が生しるので、更に仮焼体粉体を追加充
填して焼結処理を繰り返し、出来るだけ多量に焼結体を
密に充填する。第3図は酸形後に常圧焼結する例である
。仮焼体粉体10の成形体を焼結容器12内に設置し、
焼結する。
Examples of the sintering process are shown in FIGS. 2 to 6, and FIG. 2 is an example of sintering under normal pressure. A sintering container 10 is filled with calcined powder 12 and heated. The powder is sintered and becomes a sintered body 14. When the sintered container 10 is used as a storage container as it is, the sintered container 10 and the sintered body 1 are separated by sintering compaction as shown in the figure.
Since a space is created between the sintered body and the sintered body 4, additional calcined powder is added and the sintering process is repeated to fill as much sintered body as possible as densely as possible. FIG. 3 shows an example of pressureless sintering after acid formation. A molded body of calcined powder 10 is placed in a sintering container 12,
Sinter.

この場合、焼結体14は別の貯蔵容器に収納される。t
c形はセラミックス製造において使用されている一般的
な方法が適用できる。
In this case, the sintered body 14 is stored in a separate storage container. t
For the c-type, general methods used in ceramic manufacturing can be applied.

第4図は加圧焼結の例である。ここでは仮焼体粉体12
を焼結容器10に充填しプレスにより粉体のみを白抜き
矢印方向に圧縮成形し、その後加熱し焼結体14を得る
。第5図は加圧焼結の他の例であり、焼結容器lOごと
加圧する。
FIG. 4 is an example of pressure sintering. Here, calcined powder 12
A sintering container 10 is filled with the powder, and only the powder is compression-molded in the direction of the white arrow by a press, and then heated to obtain a sintered body 14. FIG. 5 shows another example of pressure sintering, in which the entire sintering container lO is pressurized.

仮焼体粉体12を焼結容器lOに充填し、該焼結容器l
Oを密閉した後、脱気する。次にプレスにより一軸圧縮
(上下方向)しつつ加熱し、焼結体14を得る。更に第
6図はHIP (熱間静水圧プレス)の例である。第5
図の場合と同様、仮焼体粉体12を焼結容器lOに充填
し、密閉して脱気した後、HIP法で焼結容器10ごと
三輪圧縮しつつ加熱し、焼結体14を得る。
The calcined powder 12 is filled into a sintering container lO, and the sintering container lO is
After sealing the O, degas it. Next, the sintered body 14 is obtained by heating while uniaxially compressing (in the vertical direction) using a press. Furthermore, FIG. 6 is an example of HIP (hot isostatic pressing). Fifth
As in the case shown in the figure, the calcined powder 12 is filled into the sintering container lO, sealed and degassed, and then heated while compressing the sintered container 10 in three rings using the HIP method to obtain the sintered material 14. .

【作用] 使用済燃料中の核分裂生成物は■金属元素、■非金属元
素、■希土類元素に大別できる。金属元素としてはアル
カリ土類金属やMo等の遷移金属、白金族元素等がある
。高放射性廃棄物を加熱して仮焼体とし、更に加熱する
ことにより、■の非金属元素および■の金属元素の中の
アルカリ金属の大部分が除去される。それらはSb、T
e、Cs、Rb等である。その結果、仮焼体の主成分は
、燃焼度45000MWD/MTU、冷却期間5年の使
用済燃料の場合、含有量が100g/MTLI以下の元
素を除くと次のようになる。
[Effect] Nuclear fission products in spent fuel can be broadly classified into ■metallic elements, ■nonmetallic elements, and ■rare earth elements. Examples of the metal elements include alkaline earth metals, transition metals such as Mo, and platinum group elements. By heating the highly radioactive waste to form a calcined body and further heating, most of the alkali metals in the nonmetallic elements (①) and the metallic elements (②) are removed. They are Sb, T
e, Cs, Rb, etc. As a result, in the case of spent fuel with a burnup of 45,000 MWD/MTU and a cooling period of 5 years, the main components of the calcined body are as follows, excluding elements whose content is 100 g/MTLI or less.

・アルカリ土類金属(Sr、Ba) 3、 3kg/MTLI   8. 7%・遷移金属(
Zr、Mo、Tc) ・・・10. 5kg/MTU  27. 9%・白金
族元素(Ru、Rh、Pd) 5、 4kg/MTLI  14. 3%・希土類元素
(Y、La、Ce等) ・・・18.5kg/門TU49.1%合計  −37
、7kg/MTU この仮焼体粉体を加熱し焼結させることにより、滅容度
の高い固化体が得られる。因にガラス固化では核分裂生
成物に対し10倍の重量となり使用済燃料1トン当たり
150Jの固化体となるが、本発明では容積7.31の
固化体になる。
・Alkaline earth metals (Sr, Ba) 3, 3kg/MTLI 8. 7%・Transition metal (
Zr, Mo, Tc)...10. 5kg/MTU 27. 9%・Platinum group elements (Ru, Rh, Pd) 5, 4kg/MTLI 14. 3%・Rare earth elements (Y, La, Ce, etc.)...18.5kg/gate TU49.1% total -37
, 7 kg/MTU By heating and sintering this calcined powder, a solidified body with a high degree of volume loss can be obtained. Incidentally, in vitrification, the weight is 10 times that of nuclear fission products, resulting in a solidified material of 150 J per ton of spent fuel, but in the present invention, the solidified material has a volume of 7.31 J.

[実施例1] 燃焼度45000MWO/MTU 、冷却期間5年の使
用済燃料中の核分裂生成物の&ll威を0RIGENコ
ードによって計算し、相当する高放射性廃液の模擬廃液
を台底した。この模擬廃液を600℃に加熱して仮焼体
とし、更に900℃のアルゴン雰囲気下でCs気化除去
を行った。
[Example 1] The amount of fission products in the spent fuel with a burnup of 45,000 MWO/MTU and a cooling period of 5 years was calculated using the 0RIGEN code, and a simulated waste liquid of a corresponding highly radioactive waste liquid was prepared. This simulated waste liquid was heated to 600°C to form a calcined body, and further Cs was vaporized and removed in an argon atmosphere at 900°C.

得られた仮焼体45gをルツボに入れアルゴン雰囲気下
で1450’C−1時間の加熱処理を行った。冷却後、
内容物を取り出したところ、焼き締まった焼結体であっ
た。なお焼結体の体積は9.4mlであった。その水へ
の浸出率をJIS−R3502に準した方式で測定した
45 g of the obtained calcined body was placed in a crucible and heat treated at 1450'C for 1 hour in an argon atmosphere. After cooling,
When the contents were taken out, it was found to be a hardened sintered body. Note that the volume of the sintered body was 9.4 ml. The rate of leaching into water was measured according to JIS-R3502.

浸出率は8 X 10−’g/c1  ・dでガラス固
化体(5X 10−’g/cm”  ・d )とほぼ同
程度テアリ、高放射性固化体として十分な化学的耐久性
を有していることが確認された。
The leaching rate is 8 x 10-'g/c1 d, which is about the same level as the vitrified material (5 x 10-'g/cm" d), and has sufficient chemical durability as a highly radioactive solidified material. It was confirmed that there is.

[実施例2] 実施例1と同し操作を、加熱温度1800℃で実施した
。内容物は硬く焼き締まっており、浸出率は3 X 1
0−’g/c−・dであった。
[Example 2] The same operation as in Example 1 was carried out at a heating temperature of 1800°C. The contents are baked hard and the leaching rate is 3 x 1.
It was 0-'g/c-.d.

[発明の効果コ 本発明は高放射性廃棄物を加熱して仮焼体とし、更に加
熱してCsを気化除去するため、Csの存在に基因する
Cs保持や発熱等による制約を回避できる。モして仮焼
体を焼結するため高減容固化体を製造できる。このため
本発明では従来のガラス固化に比べて約1/20もの大
幅な減容固化を実現できる。従って高放射性廃棄物の貯
蔵・処分における大幅な費用削減が可能になる。
[Effects of the Invention] In the present invention, highly radioactive waste is heated to form a calcined body, and Cs is vaporized and removed by further heating, so that restrictions such as Cs retention and heat generation due to the presence of Cs can be avoided. Since the calcined body is then sintered, a highly reduced volume solidified body can be produced. Therefore, in the present invention, it is possible to achieve a significant volume reduction and solidification of about 1/20 compared to conventional vitrification. Therefore, it becomes possible to significantly reduce costs in storing and disposing of highly radioactive waste.

また焼結により高放射性廃棄物を固化するため、固化容
器の腐食を低減でき、高減容固化体の製造上で大きな問
題であった材料問題を解決できる。更に特殊な加熱方式
(例えば電子ビーム加熱やプラズマ加熱等)ではなくヒ
ーター加熱等での処理が可能であり処理設備を容易に且
つ安価に構成できる。
Furthermore, since highly radioactive waste is solidified by sintering, corrosion of the solidification container can be reduced, and the material problem that was a major problem in manufacturing highly volume-reduced solidified bodies can be solved. Furthermore, it is possible to perform processing using heater heating, etc., instead of using a special heating method (for example, electron beam heating, plasma heating, etc.), and the processing equipment can be configured easily and at low cost.

更に熔融では冷却過程において結晶構造の成長プロセス
により不均一な固化体ができる場合があるが、本発明は
焼結であるためマクロ的に均一な同化体が得られる。
Furthermore, in the case of melting, a non-uniform solidified product may be formed due to the crystal structure growth process during the cooling process, but since the present invention uses sintering, a macroscopically uniform assimilated product can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を用いた処理プロセスの説明図、第
2図、第3図、第4図、第5図、第6図はそれぞれ焼結
工程の説明図である。 10・・・焼結容器、12・・・仮焼体粉体、14・・
・焼結体。 第1図
FIG. 1 is an explanatory diagram of the treatment process using the method of the present invention, and FIGS. 2, 3, 4, 5, and 6 are explanatory diagrams of the sintering process, respectively. 10... Sintering container, 12... Calcined powder, 14...
・Sintered body. Figure 1

Claims (1)

【特許請求の範囲】 1、高放射性廃棄物を加熱して仮焼体とし、更に非酸化
性雰囲気中で加熱しセシウムを気化除去して低発熱の高
放射性廃棄物の仮焼体粉体を得、この仮焼体粉体を焼結
させることを特徴とする高放射性廃棄物の処理方法。 2、焼結処理を、一軸圧縮又はHIP法により加圧下で
行う請求項1記載の処理方法。 3、焼結処理に際して、仮焼体粉体に焼結剤を添加する
請求項1又は2記載の処理方法。
[Claims] 1. Highly radioactive waste is heated to form a calcined body, and further heated in a non-oxidizing atmosphere to vaporize and remove cesium to produce a calcined powder of highly radioactive waste with low heat generation. and sintering the calcined powder. 2. The processing method according to claim 1, wherein the sintering treatment is performed under pressure by uniaxial compression or HIP method. 3. The processing method according to claim 1 or 2, wherein a sintering agent is added to the calcined powder during the sintering process.
JP6540490A 1990-03-15 1990-03-15 Highly radioactive waste treatment method Expired - Lifetime JPH0769466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6540490A JPH0769466B2 (en) 1990-03-15 1990-03-15 Highly radioactive waste treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6540490A JPH0769466B2 (en) 1990-03-15 1990-03-15 Highly radioactive waste treatment method

Publications (2)

Publication Number Publication Date
JPH03264897A true JPH03264897A (en) 1991-11-26
JPH0769466B2 JPH0769466B2 (en) 1995-07-31

Family

ID=13286052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6540490A Expired - Lifetime JPH0769466B2 (en) 1990-03-15 1990-03-15 Highly radioactive waste treatment method

Country Status (1)

Country Link
JP (1) JPH0769466B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013164410A (en) * 2012-01-13 2013-08-22 Nippon Steel & Sumitomo Metal Method for purifying radioactive contaminant
CN105777101A (en) * 2016-03-31 2016-07-20 西南科技大学 Zirconium sodium phosphate-monazite glass ceramic solidified body and preparation method thereof
CN114276013A (en) * 2021-12-31 2022-04-05 西南科技大学 Method for directly vitrifying high-level waste by utilizing microwave

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013164410A (en) * 2012-01-13 2013-08-22 Nippon Steel & Sumitomo Metal Method for purifying radioactive contaminant
CN105777101A (en) * 2016-03-31 2016-07-20 西南科技大学 Zirconium sodium phosphate-monazite glass ceramic solidified body and preparation method thereof
CN114276013A (en) * 2021-12-31 2022-04-05 西南科技大学 Method for directly vitrifying high-level waste by utilizing microwave

Also Published As

Publication number Publication date
JPH0769466B2 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
US4172807A (en) Method for anchoring radioactive substances in a body resistant to leaching by water
US5156804A (en) High neutron-absorbing refractory compositions of matter and methods for their manufacture
Evans et al. Uranium nitrides
US3953556A (en) Method of preparing uranium nitride or uranium carbonitride bodies
Spedding et al. The preparation of rare earth metals
JPH03264898A (en) Treatment of high level radioactive wastes
CN110818414A (en) Europium hafnate neutron absorbing material and application thereof
Zhang et al. Rapid preparation of traditional and high-entropy garnet ceramics by SPS at low temperature with ultrafast densification
US5273709A (en) High neutron absorbing refractory compositions of matter and methods for their manufacture
Kutty et al. Characterization and densification studies on ThO2–UO2 pellets derived from ThO2 and U3O8 powders
JPH03264897A (en) Treatment of high level radioactive waste
US3275564A (en) Process of fabrication of sintered compounds based on uranium and plutonium
Lei et al. Surface alteration and chemical durability of hollandite (Cr, Al and Ti) consolidated by spark plasma sintering in acid solution
US3213032A (en) Process for sintering uranium nitride with a sintering aid depressant
Samsonov et al. Borides of the rare earth metals
McCarthy et al. Ceramic nuclear waste forms. II. A ceramic-waste composite prepared by hot pressing
GB954821A (en) Improvements in or relating to process for the preparation of carbide
US3761546A (en) Method of making uranium dioxide bodies
JPH04366800A (en) Method for disposing of highly radioactive waste through capacity-reducing vitrification
Kripyakevich et al. Compounds with Th6Mn23-type structures in alloys of the rare-earth metals with manganese and iron
US3303140A (en) Radioactive materials of low surface area
Maki et al. EFFECTIVE/RAPID IMMOBILIZATION OF RADIONUCLIDES FROM FUKUSHIMA DECOMMISSIONING BY SPARK PLASMA SINTERING PROCESS
Podbolotov et al. Synthesis of mineral matrices based on enriched zirconium pyrochlore for immobilization of actinide-containing waste
Stewart et al. Titanate wasteforms for Tc-99 immobilization
US3206409A (en) Radioactive gas disposal

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070731

Year of fee payment: 12

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070731

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100731

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100731

Year of fee payment: 15