JPH03264703A - Gas turbine cooling moving blade - Google Patents

Gas turbine cooling moving blade

Info

Publication number
JPH03264703A
JPH03264703A JP6106490A JP6106490A JPH03264703A JP H03264703 A JPH03264703 A JP H03264703A JP 6106490 A JP6106490 A JP 6106490A JP 6106490 A JP6106490 A JP 6106490A JP H03264703 A JPH03264703 A JP H03264703A
Authority
JP
Japan
Prior art keywords
steam
cooling
blade
gas turbine
supply port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6106490A
Other languages
Japanese (ja)
Inventor
Takashi Sasaki
隆 佐々木
Takanari Okamura
岡村 隆成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6106490A priority Critical patent/JPH03264703A/en
Publication of JPH03264703A publication Critical patent/JPH03264703A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance cooling efficiency and simplify manufacture of a cooling blade for a high temperature turbine of a return flow type where steam is used as a cooling medium by additionally disposing a separator for separating a supply port and a recovery port of the cooling medium on upstream and downstream sides respectively. CONSTITUTION:A steam cooling moving blade 30 of a gas turbine is constituted in a return flow type with the planted portion thereof arranged in a rotor. A steam supply port 32 and a steam recovery port 33 are disposed upstream and downstream of a blade bottom portion, respectively. A sealing projection 34 as a separator for separating supplied steam from recovered steam is provided in the bucket bottom portion. In the bucket 30, a passage B is disposed outside of another passage A inside the blade 30, and both ends of each channel passage A, B are separated by the sealing projection 34 for the use as the steam supply port 32 and the steam recovery port 33. Therefore, the blade 30 can be convectively cooled with the steam passing through the passages A, B, and further, the blade 30 can be easily manufactured by precision casting.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は高温タービンの冷却翼に冷却媒体として蒸気を
用いたガスタービン冷却動翼に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a gas turbine cooling rotor blade that uses steam as a cooling medium for the cooling blade of a high-temperature turbine.

(従来の技術) 一般に、発電プラントに利用するガスタービンは第6図
に示すように構成されている。このガスタービンは圧縮
機1で空気吸込路7から吸込まれた空気を圧縮して高圧
にし、この圧縮空気を燃焼器2に案内している。燃焼器
2では流量制御装置6で流量を調整し燃料供給路8より
供給された燃料と圧縮空気とを混合して燃焼させている
。この燃焼器2において燃焼によって発生した高温・高
圧の燃焼ガスはタービン3に送られ、膨張しながら仕事
をした後、排気流路9、煙突5を通って外部へ放出され
る。なお、タービン3の回転軸は発電機等の被駆動機4
の負荷に図示しないカップリングを介して接続される。
(Prior Art) Generally, a gas turbine used in a power generation plant is configured as shown in FIG. This gas turbine uses a compressor 1 to compress air taken in from an air suction passage 7 to high pressure, and guides this compressed air to a combustor 2. In the combustor 2, the flow rate is adjusted by the flow rate control device 6, and the fuel and compressed air supplied from the fuel supply path 8 are mixed and combusted. High-temperature, high-pressure combustion gas generated by combustion in the combustor 2 is sent to the turbine 3, where it performs work while expanding, and is then discharged to the outside through an exhaust flow path 9 and a chimney 5. Note that the rotating shaft of the turbine 3 is connected to a driven machine 4 such as a generator.
is connected to the load via a coupling (not shown).

この種のガスタービンではタービン入口温度を上昇させ
ると、ガスタービンの熱効率が上昇することが知られて
いる。タービン入口温度を上昇させるためにはタービン
の構成部品が高温の燃焼ガスに耐え得る設計とすること
が必要である。このため、従来より耐熱材料や冷却技術
の開発に多大な労力がなされてきた。タービン動翼の冷
却は空気冷却の他、液体冷却や蒸気冷却およびそれらの
組み合わせたものが従来より案出されているが、現在実
用化されているのは空気冷却翼のみである。
It is known that in this type of gas turbine, increasing the turbine inlet temperature increases the thermal efficiency of the gas turbine. In order to increase the turbine inlet temperature, it is necessary that the turbine components be designed to withstand high temperature combustion gases. For this reason, a great deal of effort has been put into developing heat-resistant materials and cooling techniques. In addition to air cooling, liquid cooling, steam cooling, and combinations thereof have been devised for cooling turbine rotor blades, but only air-cooled blades are currently in practical use.

ここで、従来のリターンフロータイブの空気冷却翼を第
7図に示す。この空気冷却翼10は底部から冷却空気を
供給し、翼前縁部側流路11および後縁部側流路12を
通過させて対流冷却を行い、冷却に使用した空気は全て
通路部の主流ガス中に放出されるようになっている。冷
却空気の回収についてこの空気冷却翼10は何等考慮さ
れていない。
Here, a conventional return flow type air cooling blade is shown in FIG. This air cooling blade 10 supplies cooling air from the bottom and performs convection cooling by passing through the blade leading edge side flow path 11 and the trailing edge side flow path 12, and all the air used for cooling is in the mainstream of the passage. It is designed to be released into gas. This air cooling vane 10 does not take any consideration to the recovery of cooling air.

ところで、近年ガスタービンと蒸気タービンを組み合せ
たコンバインドサイクル発電やコジェネレーションが効
率が良いために実用化されてくると、蒸気冷却方式のガ
スタービンの開発に期待が寄せられている。蒸気は空気
に比べて比熱が大きく冷却媒体として優れているものの
、蒸気発生のために多くの付帯設備を必要とすることも
あって、現在まで実用化の研究が遅れていた。
Incidentally, in recent years, as combined cycle power generation and cogeneration, which combine a gas turbine and a steam turbine, have been put into practical use due to their high efficiency, expectations are high for the development of steam-cooled gas turbines. Although steam has a higher specific heat than air and is an excellent cooling medium, research into its practical application has lagged until now, partly because it requires a lot of incidental equipment to generate steam.

しかし、コンバインドサイクル発電やコジェネレーショ
ンの出現により事情が一変した。これはコンバインドサ
イクル発電やコジェネレーションのプラントは、既に蒸
気発生設備を有しているばかりでなく、冷却に使用した
蒸気を回収すれば発電プラント効率を一段と高くするこ
とができるようになっている。第5図にコンバインドサ
イクル発電における空気冷却と蒸気冷却(蒸気は回収)
の場合の発電効率の比較を示す。
However, the situation has completely changed with the advent of combined cycle power generation and cogeneration. This is because combined cycle power generation and cogeneration plants not only already have steam generation equipment, but also can make the power plant even more efficient by recovering the steam used for cooling. Figure 5 shows air cooling and steam cooling in combined cycle power generation (steam is recovered)
A comparison of power generation efficiency is shown below.

従来より提案されている蒸気冷却動翼のうち蒸気回収機
能を有するものは例えば米国特許第3,443.790
号明細書、(1969年)に開示されており、この蒸気
冷却動翼は第8図に示されている。この蒸気冷却動翼2
0はチップ部21にチャンバー22を有する多孔翼であ
り、ルート部23に導入された蒸気は細孔24を通過し
てチップ部21のチャンバー22に導かれ、再び細孔2
5を通ってルート部26に戻り回収される。ここで、蒸
気は細孔25を通過する際に動翼20を冷却するように
なっている。
Among the steam-cooled rotor blades that have been proposed in the past, those with a steam recovery function are disclosed in, for example, U.S. Patent No. 3,443.790.
(1969), and this steam-cooled rotor blade is shown in FIG. This steam cooled rotor blade 2
0 is a porous blade having a chamber 22 in the tip part 21, and the steam introduced into the root part 23 passes through the pores 24, is guided to the chamber 22 of the tip part 21, and then returns to the pore 2.
5 and return to the route section 26 to be collected. Here, the steam cools the rotor blades 20 when passing through the pores 25.

(発明が解決しようとする課題) 従来の蒸気冷却動翼の問題点としては、冷却効率の悪さ
に加え、製作上の困難さを挙げることができる。まず、
冷却効率の悪さについては第一にチップ部のチャンバー
内の流速が低く、チップ部を十分冷却できない。第二に
翼前縁部側が細孔のみの対流冷却では高温化に十分対応
できない。
(Problems to be Solved by the Invention) Problems with conventional steam-cooled rotor blades include poor cooling efficiency and manufacturing difficulties. first,
Regarding the poor cooling efficiency, firstly, the flow velocity in the chamber of the chip section is low, and the chip section cannot be sufficiently cooled. Second, convection cooling with only pores on the leading edge side of the blade cannot adequately cope with high temperatures.

第三に多孔翼による対流冷却自体かもきもと冷却性能が
低く、高温化に対応するためには孔数を増加する必要が
あるが、強度上、孔数の増加は制限がある等の理由によ
る。
Thirdly, convection cooling using perforated blades itself has low cooling performance, and the number of holes needs to be increased in order to cope with higher temperatures, but there is a limit to increasing the number of holes due to strength reasons.

また、製作上の困難さについては、第一に蒸気の供給・
回収のための翼植込みのキリ穴と冷却用の細孔を繋げる
ために、高度の精鋳技術や加工技術を要する。第二に蒸
気の供給・回収のためにロータや翼植込みに多くのキリ
穴加工が必要で製作コストが高い。第三に冷却強化のた
めの孔数を増加することは精鋳技術や加工技術の面から
制限がある。
Regarding manufacturing difficulties, the first problem is the supply of steam and
Advanced casting and processing techniques are required to connect the cut holes in the blades for recovery with the cooling holes. Second, manufacturing costs are high because many drill holes are required to install the rotor and blades in order to supply and recover steam. Thirdly, increasing the number of holes for strengthening cooling is limited by precision casting technology and processing technology.

そこで、本発明は上記事情を考慮してなされたもので、
その目的とするところは、冷却効率が高く、蒸気の回収
が可能であって、製作の容易なガスタービン冷却動翼を
提供することにある。
Therefore, the present invention has been made in consideration of the above circumstances.
The purpose is to provide a gas turbine cooling rotor blade that has high cooling efficiency, allows steam recovery, and is easy to manufacture.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記の目的を達成するために本発明のガスタービン冷却
動翼にあっては、高温タービンの冷却翼に冷却媒体とし
て蒸気を用いたリターンフロー方式のガスタービン冷却
動翼であって、上記冷却媒体の供給口と回収口を翼の上
流側と下流側とに分離する分離体を設けたことを特徴と
する。
(Means for Solving the Problems) In order to achieve the above object, the gas turbine cooling rotor blade of the present invention employs a return flow method for gas turbine cooling using steam as a cooling medium for cooling blades of a high-temperature turbine. The rotor blade is characterized by being provided with a separator that separates the cooling medium supply port and recovery port into an upstream side and a downstream side of the blade.

(作用) 上記の構成を有する本発明において、リターンフロー方
式の動翼は精鋳により容易に製作できるので、蒸気の供
給・回収機能を有するものを容易に製作でき、しかもそ
れらの機能によって蒸気冷却による高温・高効率化、蒸
気回収による高効率化も可能となる。
(Function) In the present invention having the above configuration, the return flow type rotor blade can be easily manufactured by precision casting, so it is possible to easily manufacture one having steam supply and recovery functions, and furthermore, these functions allow steam cooling. It is also possible to achieve high temperatures and high efficiency through steam recovery, as well as high efficiency through steam recovery.

(実施例) 以下に本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図は本発明に係るガスタービン冷却動翼の第1実施
例を示す。このガスタービンの蒸気冷却動翼30は、リ
ターンフロー方式を採用し、その植込部31をロータ4
0に植設しである(第3図参照)。蒸気の供給口32は
翼底部の上流側に、蒸気の回収口33は翼底部の下流側
に各々配設し、翼底部に供給蒸気と回収蒸気とを分離遮
断するために分離体としてのシール用突起34を設けて
いる。
FIG. 1 shows a first embodiment of a gas turbine cooling rotor blade according to the present invention. The steam-cooled rotor blades 30 of this gas turbine adopt a return flow method, and the implanted portion 31 is connected to the rotor 4.
0 (see Figure 3). The steam supply port 32 is provided on the upstream side of the blade bottom, and the steam recovery port 33 is provided on the downstream side of the blade bottom, and a seal as a separator is installed at the blade bottom to separate and cut off the supplied steam and the recovered steam. A projection 34 for use is provided.

この蒸気冷却動翼30は動翼内流路Aの外側に流路Bを
配置し、各流路A、  Hの両端部をシール用突起34
で分離して蒸気の供給口32、蒸気の回収口33として
使用している。ここで、流路の数を増加する場合には、
流路Bの外側にさらに流路C1流路D・・・という具合
に配置すれば、同様の機能が得られる。シール用突起3
4はロータ40側に直接設けることも可能であるが、加
工性を考慮すると、動翼30側に設けたほうが得策であ
る。
This steam-cooled rotor blade 30 has a flow path B arranged outside the flow path A in the rotor blade, and sealing protrusions 34 at both ends of each flow path A and H.
It is separated and used as a steam supply port 32 and a steam recovery port 33. Here, when increasing the number of channels,
A similar function can be obtained by further arranging a channel C1, a channel D, etc. outside the channel B. Seal protrusion 3
4 can be provided directly on the rotor 40 side, but in consideration of workability, it is better to provide it on the rotor blade 30 side.

そして、本実施例では蒸気を上流側底部より供給し、下
流側底部で回収したが、その逆も勿論可能である。
In this embodiment, steam was supplied from the upstream bottom and recovered at the downstream bottom, but the reverse is of course possible.

さらに、蒸気冷却動翼30の前縁部には蒸気排出孔35
を多数穿設して前縁部の吹出し対流冷却を行うようにし
、後縁部にはビンフィン36を設け、ビンフィン冷却を
行うようにしている。
Further, a steam exhaust hole 35 is provided at the leading edge of the steam-cooled rotor blade 30.
A large number of holes are provided to effect convection cooling at the front edge, and a bottle fin 36 is provided at the rear edge to effect bottle fin cooling.

次に、本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

冷却用蒸気は動翼30の供給口32から供給され、この
蒸気は流路A、  Bを経て回収口33より回収される
。したがって、本実施例では動翼30の大部分は流路A
と流路Bを通過する蒸気により対流冷却される。この流
路Aと流路Bにタービュレンスプロモータを設ければ冷
却効果は一段と高まる。
Cooling steam is supplied from the supply port 32 of the rotor blade 30, and this steam passes through channels A and B and is recovered from the recovery port 33. Therefore, in this embodiment, most of the rotor blades 30 are in the flow path A.
and the steam passing through channel B causes convection cooling. If turbulence promoters are provided in the flow paths A and B, the cooling effect will be further enhanced.

また、第1図および第2図に示すように、前縁部では吹
出し対流冷却、後縁部ではビンフィン冷却を用いている
。因みに、前縁部は翼表面の熱伝達率が特に高く冷却を
強化する必要があるので、ここでは冷却効率の良い吹出
し対流冷却を使用し、後縁部は翼の流体性能上の要求か
ら薄く形成されて流路の形成が困難なため、ビンフィン
冷却を用いている。なお、厚肉の翼で後縁まで流路が形
成できる場合や、前縁の冷却が不要の場合は、蒸気を主
流中に廃棄しないで、蒸気の全量を底部より回収して効
率の向上を図ったほうが望ましい。
Further, as shown in FIGS. 1 and 2, blowout convection cooling is used at the leading edge, and bottle fin cooling is used at the trailing edge. Incidentally, since the leading edge has a particularly high heat transfer coefficient on the blade surface and requires enhanced cooling, we used blowout convection cooling with high cooling efficiency, and the trailing edge is thin due to the requirements for the fluid performance of the blade. Since it is difficult to form a flow path, bottle fin cooling is used. In addition, when a flow path can be formed to the trailing edge using a thick-walled blade, or when cooling the leading edge is not required, efficiency can be improved by collecting the entire amount of steam from the bottom instead of discarding it into the mainstream. It is better to aim for it.

このように本実施例によれば、流路A、Bの両端部をシ
ール用突起34で分離して蒸気の供給口32、蒸気の回
収口33として使用しているため、蒸気の供給・回収構
造が著しく簡略化される。また、これらの構造は精鋳に
より一度に製作することが可能で、製造も著しく容易に
なる。
According to this embodiment, both ends of the flow paths A and B are separated by the sealing protrusion 34 and used as the steam supply port 32 and the steam recovery port 33, so that the steam can be supplied and recovered. The structure is significantly simplified. In addition, these structures can be manufactured at once by precision casting, which greatly facilitates manufacturing.

第4図は本発明に係るガスタービン冷却動翼の第2実施
例を示し、前記第1実施例と同一の部分には同一の符号
を付して説明する。この実施例では翼底部を分離体とし
ての分離突起38で分離して翼底部の前面と後面の双方
に蒸気の供給口32a1蒸気の回収033aを配置して
いる。したがって、本実施例のガスタービン冷却動翼に
よれば、前記第1実施例と同様の効果が得られる。その
他の構成および作用は前記第1実施例と同一であるので
その説明を省略する。
FIG. 4 shows a second embodiment of a gas turbine cooling rotor blade according to the present invention, and the same parts as in the first embodiment will be described with the same reference numerals. In this embodiment, the blade bottom is separated by a separation protrusion 38 serving as a separator, and a steam supply port 32a and a steam recovery port 033a are arranged on both the front and rear surfaces of the blade bottom. Therefore, according to the gas turbine cooling rotor blade of this embodiment, the same effects as those of the first embodiment can be obtained. The other configurations and operations are the same as those of the first embodiment, so their explanation will be omitted.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り本発明に係るガスタービン冷却動翼に
よれば、リターンフロー方式を採用し、蒸気の供給口と
回収口を翼の上流側と下流側に分離して蒸気供給・回収
流路を構成したので、精鋳により容易に製作ができると
ともに、蒸気冷却による高温・高効率化、蒸気回収によ
る高効率化を達成できるという効果を奏する。
As explained above, according to the gas turbine cooling rotor blade according to the present invention, the return flow method is adopted, and the steam supply and recovery ports are separated into the upstream and downstream sides of the blade to form the steam supply/recovery flow path. With this structure, it is possible to easily manufacture the device by precision casting, and it is also possible to achieve high temperature and high efficiency through steam cooling, and high efficiency through steam recovery.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るガスタービン冷却動翼の第1実施
例を示す縦断面図、第2図は第1図の■−■線断面図、
第3図は第1図の■方向矢視図、第4図は本発明に係る
ガスタービン冷却動翼の第2実施例を示す縦断面図、第
5図はタービンの入口温度とフンバインド発電プラント
効率との関係を示すグラフ図、第6図はガスタービンの
概略構成を示す模式図、第7図は従来のリターンフロー
タイブの空気冷却動翼を示す縦断面図、第8図は従来の
蒸気冷却動翼を示す斜視図である。 30・・・蒸気冷却動翼、32・・・蒸気の供給口、3
3・・・蒸気の回収口、34・・・シール用突起(分離
体) 35・・・蒸気排出孔、 36・・・ピンフィン、 8・・・分離突起 (分離体)
FIG. 1 is a longitudinal cross-sectional view showing a first embodiment of a gas turbine cooling rotor blade according to the present invention, FIG. 2 is a cross-sectional view taken along the line ■-■ in FIG.
Fig. 3 is a view taken in the direction of arrow ① in Fig. 1, Fig. 4 is a vertical cross-sectional view showing a second embodiment of the gas turbine cooling rotor blade according to the present invention, and Fig. 5 is a diagram showing the turbine inlet temperature and the airflow power generation. A graph showing the relationship with plant efficiency, Fig. 6 is a schematic diagram showing the general configuration of a gas turbine, Fig. 7 is a vertical cross-sectional view showing a conventional return flow type air-cooled rotor blade, and Fig. 8 is a conventional return flow type air-cooled rotor blade. FIG. 2 is a perspective view showing a steam-cooled rotor blade. 30...Steam cooling rotor blade, 32...Steam supply port, 3
3... Steam recovery port, 34... Seal protrusion (separator) 35... Steam exhaust hole, 36... Pin fin, 8... Separator protrusion (separator)

Claims (1)

【特許請求の範囲】[Claims] 高温タービンの冷却翼に冷却媒体として蒸気を用い、リ
ターンフロー方式のガスタービン冷却動翼であって、上
記冷却媒体の供給口と回収口を翼の上流側と下流側とに
分離する分離体を設けたことを特徴とするガスタービン
冷却動翼。
A return flow type gas turbine cooling rotor blade that uses steam as a cooling medium in the cooling blades of a high-temperature turbine, and includes a separator that separates the cooling medium supply port and recovery port into the upstream side and downstream side of the blade. A gas turbine cooling rotor blade characterized in that:
JP6106490A 1990-03-14 1990-03-14 Gas turbine cooling moving blade Pending JPH03264703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6106490A JPH03264703A (en) 1990-03-14 1990-03-14 Gas turbine cooling moving blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6106490A JPH03264703A (en) 1990-03-14 1990-03-14 Gas turbine cooling moving blade

Publications (1)

Publication Number Publication Date
JPH03264703A true JPH03264703A (en) 1991-11-26

Family

ID=13160357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6106490A Pending JPH03264703A (en) 1990-03-14 1990-03-14 Gas turbine cooling moving blade

Country Status (1)

Country Link
JP (1) JPH03264703A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150082944A (en) * 2014-01-08 2015-07-16 한화테크윈 주식회사 Cooling Channel Serpentine for Turbine Blade of Gas Turbine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150082944A (en) * 2014-01-08 2015-07-16 한화테크윈 주식회사 Cooling Channel Serpentine for Turbine Blade of Gas Turbine

Similar Documents

Publication Publication Date Title
EP0955449B1 (en) Gas turbine blade
US8961108B2 (en) Cooling system for a turbine vane
US5640840A (en) Recuperative steam cooled gas turbine method and apparatus
CA2809000C (en) Dual-use of cooling air for turbine vane and method
JP2971386B2 (en) Gas turbine vane
WO2018044571A1 (en) Turbine stator vane with closed-loop sequential impingement cooling insert
US9810070B2 (en) Turbine rotor blade for a turbine section of a gas turbine
CN103573410B (en) Turbo machine
JP3494879B2 (en) Gas turbine and gas turbine vane
US20140060002A1 (en) Regenerative turbine for power generation system
US8376687B2 (en) System and method for cooling steam turbine rotors
JPH1181904A (en) Recoverable steam cooled gas turbine
JP2953842B2 (en) Turbine vane
WO1999036675A1 (en) Stationary blade of gas turbine
JP2000220404A (en) Gas turbine cooling blade
JP2019035384A (en) Steam turbine
US6019573A (en) Heat recovery type gas turbine
JPH1122404A (en) Gas turbine and its rotor blade
JPH03264703A (en) Gas turbine cooling moving blade
JP2818266B2 (en) Gas turbine cooling blade
JPH03264702A (en) Gas turbine cooling moving blade
JP2938506B2 (en) Turbine vane
EP3095962A1 (en) A heat exchanger seal segment for a gas turbine engine
JPH10280908A (en) Stator blade of gas turbine
JPH11200893A (en) Coolant recovery type gas turbine