JPH03263891A - Semiconductor light-emitting element - Google Patents

Semiconductor light-emitting element

Info

Publication number
JPH03263891A
JPH03263891A JP6325690A JP6325690A JPH03263891A JP H03263891 A JPH03263891 A JP H03263891A JP 6325690 A JP6325690 A JP 6325690A JP 6325690 A JP6325690 A JP 6325690A JP H03263891 A JPH03263891 A JP H03263891A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
reflection
light
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6325690A
Other languages
Japanese (ja)
Inventor
Akira Furuya
章 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6325690A priority Critical patent/JPH03263891A/en
Publication of JPH03263891A publication Critical patent/JPH03263891A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent light which is generated secondarily by light entering from an activation layer to a clad layer or light entering from a clad layer to the outside layer from returning to the activation layer by including a reflection-preventing film between the clad layer and the semiconductor layer and by reducing reflection of naturally radiated light from the clad layer toward the semiconductor layer drastically. CONSTITUTION:A clad layer 2, a reflection-preventing film 3, and a next semiconductor layer 4 which are in contact with an activation layer in sequence are constituted by lamination and the reflection-preventing film 3 is thick enough so that it is substantially transparent to the light emitted the activation layer 1, its reflection index is larger than that of the clad layer 2, and reflection for the emitted light is minimum at a proper angle where an incidence angle from the clad layer 2 is equal to or larger than 60 deg.. Then, the reflection index of the semiconductor layer 4 is larger than that of the reflection-preventing film 3. Also, the reflection index of the semiconductor layer 4 is larger than that of the clad layer 2 and a non-luminous recombination center is doped.

Description

【発明の詳細な説明】 (概 要〕 半導体レーザなどの半導体発光素子に関し、活性層の発
熱を低減させるために、活性層からクラッド層に入った
光や、クラッド層からその外側の層に入った光により二
次的に発生する光が、活性層へ戻るのを抑えるようにす
ることを目的と第1〜第3の半導体発光素子を提案し、
第1の半導体発光素子は、活性層に順次に接するクラッ
ド層と反射防止膜とその次の半導体層の積層構造ををし
、前記反射防止膜は、該前記活性層の発光波長に対し実
質的に透明で屈折率が前記クラッド層よりも大きく、且
つ該クラッド層からの入射角が60°以上の適宜角度に
おいて該発光波長に対する反射が最小となる厚さであり
、前記反射防止膜の次の前記半導体層は、屈折率が該反
射防止膜よりも大きいように構成し、第2の半導体発光
素子は、活性層に順次に接するクラッド層とその次の半
導体層の積層構造を有し、前記クラッド層の次の前記半
導体層は、屈折率が該クラッド層よりも大きく且つ非発
光再結合中心がドープされているように構成し、第3の
半導体発光素子は、活性層に順次に接するクランド層と
反射防止膜とその次の半導体層の積層構造を有し、前記
反射防止膜は、第1の半導体発光素子の反射防止膜3に
準するものであり、前記反射防止膜の次の前記半導体層
は、第2の半導体発光素子のクラッド層の次の半導体層
に準するものであるように構成する。
[Detailed Description of the Invention] (Summary) Regarding semiconductor light emitting devices such as semiconductor lasers, in order to reduce heat generation in the active layer, light that enters the cladding layer from the active layer and light that enters the outer layer from the cladding layer is used to reduce heat generation in the active layer. The present invention proposes first to third semiconductor light-emitting devices for the purpose of suppressing light that is secondarily generated by the light from returning to the active layer,
The first semiconductor light emitting device has a laminated structure of a cladding layer, an antireflection film, and a next semiconductor layer that are in contact with an active layer in sequence, and the antireflection film is substantially equal to the emission wavelength of the active layer. It is transparent and has a refractive index higher than that of the cladding layer, and has a thickness that minimizes the reflection of the emission wavelength at an appropriate angle of incidence from the cladding layer of 60° or more, and has a thickness that is next to the antireflection film. The semiconductor layer is configured to have a higher refractive index than the antireflection film, and the second semiconductor light emitting device has a laminated structure of a cladding layer sequentially in contact with an active layer and a semiconductor layer next to the cladding layer, The semiconductor layer next to the cladding layer is configured to have a larger refractive index than the cladding layer and is doped with non-radiative recombination centers, and the third semiconductor light emitting device is configured such that the semiconductor layer next to the cladding layer has a larger refractive index than the cladding layer and is doped with non-radiative recombination centers. The anti-reflective film has a laminated structure of a layer, an anti-reflective film, and the next semiconductor layer, and the anti-reflective film corresponds to the anti-reflective film 3 of the first semiconductor light emitting element, and The semiconductor layer is configured to be similar to the semiconductor layer next to the cladding layer of the second semiconductor light emitting device.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体レーザなどの半導体発光素子に係り、
特に、活性層の発熱を低減させる構成に関する。
The present invention relates to a semiconductor light emitting device such as a semiconductor laser,
In particular, the present invention relates to a configuration that reduces heat generation in the active layer.

半導体レーザは、光デイスク装置や光通信システムなど
の光源として用いられており、発光領域となる活性層の
温度上昇がしきい値電流(Iい)などの特性に悪影響を
及ぼすので、活性層の発熱を低減させることが重要であ
る。
Semiconductor lasers are used as light sources in optical disk devices, optical communication systems, etc., and increases in the temperature of the active layer, which is the light emitting region, have a negative effect on characteristics such as threshold current (I). It is important to reduce heat generation.

〔従来の技術〕[Conventional technology]

活性層の発熱の一つとして、活性層で発生した自然放出
光を活性層自身が再吸収するメカニズムがある。その再
吸収する光の中には、活性層からクラッド層に入すクラ
ノド層内の反射により活性層に戻る光や、クラッド層か
らその外側の層に入って吸収された光により発生した電
子−ホールのペアが発光して活性層に戻る光があり、そ
の光が活性層の発熱を助長している。
One of the mechanisms by which the active layer generates heat is that the active layer itself reabsorbs spontaneously emitted light generated in the active layer. The reabsorbed light includes light that enters the cladding layer from the active layer and returns to the active layer by reflection within the cladding layer, and electrons generated by light that enters the outer layer from the cladding layer and is absorbed. A pair of holes emits light that returns to the active layer, and this light promotes heat generation in the active layer.

特にGaAs基板に格子整合するGaAs / AlG
a1nP系レーザでは、GaAs / AlGaAs系
レーザやInP /InGaAsP系レーザと比較する
と、クラッド層の熱抵抗が高いために活性層の温度上昇
が甚だしい。そしてこの温度上昇は、レーザにおけるし
きい値電流(Iい)などの特性に悪影響を及ぼしている
Especially GaAs/AlG lattice matched to GaAs substrate
In an a1nP laser, compared to a GaAs/AlGaAs laser or an InP/InGaAsP laser, the temperature of the active layer increases significantly due to the high thermal resistance of the cladding layer. This temperature increase has an adverse effect on characteristics such as threshold current (I) in the laser.

しかしながら従来のレーザでは、この温度上昇を緩和す
るために活性層の発熱を低減させる工夫はあまりなされ
ていない。
However, in conventional lasers, little effort has been made to reduce heat generation in the active layer in order to alleviate this temperature rise.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、半導体レーザなどの半導体発光素子において
、活性層の発熱を低減させるために、活性層からクラッ
ド層に入った光や、クラッド層からその外側の層に入っ
た光により二次的に発生する光が、活性層へ戻るのを抑
えるようにすることを目的とする。
In order to reduce heat generation in the active layer in a semiconductor light emitting device such as a semiconductor laser, the present invention aims to reduce heat generation in the active layer by using light that enters the cladding layer from the active layer and light that enters the outer layer from the cladding layer. The purpose is to suppress the generated light from returning to the active layer.

〔課題を解決するための手段〕[Means to solve the problem]

第1図(a)〜(C)は本発明の原理説明図である。 FIGS. 1(a) to 1(C) are diagrams explaining the principle of the present invention.

上記目的は、第1図(a)を参照して、活性層1に順次
に接するクラッド層2と反射防止膜3とその次の半導体
層4の積層構造を有し、反射防止膜3は、活性層10発
光波長に対し実質的に透明で屈折率がクラッドN2より
も大きく、且つクラッド層2からの入射角が60°以上
の適宜角度において該発光波長に対する反射が最小とな
る厚さであり、半導体層4は、屈折率が反射防止膜3よ
りも大きい本発明の第1の半導体発光素子によって達成
される。
Referring to FIG. 1(a), the above object has a laminated structure of a cladding layer 2, an antireflection film 3, and a semiconductor layer 4 next to the active layer 1, and the antireflection film 3 has the following structure: The active layer 10 is substantially transparent to the emission wavelength, has a refractive index greater than that of the cladding N2, and has a thickness that minimizes reflection for the emission wavelength at an appropriate angle of incidence from the cladding layer 2 of 60° or more. , the semiconductor layer 4 is achieved by the first semiconductor light emitting device of the present invention having a larger refractive index than the antireflection film 3.

また、第1図(b)を参照して、活性層1に順次に接す
るクラッド層2とその次の半導体Ji4aの積層構造を
有し、半導体N4aは、屈折率がクラッド層2よりも大
きく且つ非発光再結合中心がドープされている本発明の
第2の半導体発光素子によって達成される。
Further, with reference to FIG. 1(b), it has a laminated structure of a cladding layer 2 sequentially in contact with an active layer 1 and a semiconductor Ji4a next thereto, and the semiconductor N4a has a refractive index larger than that of the cladding layer 2 and This is achieved by a second semiconductor light emitting device of the present invention in which non-radiative recombination centers are doped.

更に、第1図(C)を参照して、活性層lに順次に接す
るクラッド層2と反射防止膜3とその次の半導体層4a
の積層構造を有し、反射防止膜3は、前記第1の半導体
発光素子の反射防止膜3に準するものであり、半導体層
4aは、前記第2の半導体発光素子の半導体層4aに準
するものである本発明の第3の半導体発光素子によって
達成される。
Furthermore, with reference to FIG. 1(C), a cladding layer 2, an antireflection film 3, and a semiconductor layer 4a next to the active layer 1 are sequentially in contact with the active layer 1.
The anti-reflection film 3 is similar to the anti-reflection film 3 of the first semiconductor light emitting device, and the semiconductor layer 4a is similar to the semiconductor layer 4a of the second semiconductor light emitting device. This is achieved by the third semiconductor light emitting device of the present invention.

(作 用〕 上記第1の半導体発光素子では、半導体層4は、従来の
レーザにおけるクラッド層の次の基板またはコンタクト
層などに該当するものであり、クラッド層2と半導体層
4の間に介在する反射防止膜3は、上記構成により後述
のように、クラッド層2から半導体層4に向かう自然放
出光の反射を大幅に低減させる。
(Function) In the first semiconductor light emitting device, the semiconductor layer 4 corresponds to the substrate or contact layer next to the cladding layer in a conventional laser, and is interposed between the cladding layer 2 and the semiconductor layer 4. The anti-reflection film 3 having the above-mentioned structure significantly reduces the reflection of spontaneously emitted light directed from the cladding layer 2 toward the semiconductor layer 4, as will be described later.

このことから、活性層1からクラッド層2に入った光は
、大部分が半導体層4に抜けて活性層1へ戻るのが抑え
られる。
For this reason, most of the light that has entered the cladding layer 2 from the active layer 1 is prevented from passing through the semiconductor layer 4 and returning to the active layer 1.

上記第2の半導体発光素子では、クラッド層2から半導
体層4aに入った光により二次的に発生する光に対して
、上記非発光際結合中心がその発生を阻止する。これに
より実効的にその光が活性層1に戻るのを抑えている。
In the second semiconductor light emitting device, the non-light-emitting coupling center prevents light from being generated secondarily due to light entering the semiconductor layer 4a from the cladding layer 2. This effectively suppresses the light from returning to the active layer 1.

上記第3の半導体発光素子は、光が活性層1に戻るのを
抑えるのに、第1の半導体発光素子で用いた機能と第2
の半導体発光素子で用いた機能の両方を併用したもので
ある。これによりクラッド512からの戻りと半導体層
4aからの戻りの両方を抑えることができる。
The third semiconductor light emitting device has the function used in the first semiconductor light emitting device and the second semiconductor light emitting device to suppress light returning to the active layer 1.
This device combines both of the functions used in the semiconductor light emitting device. This makes it possible to suppress both the return from the cladding 512 and the return from the semiconductor layer 4a.

[実施例〕 以下本発明の実施例について第2図〜第5図を用いて説
明する。第2図は第1実施例の光出射方向に垂直な断面
図、第3図(a) (b)は第1実施例における反射防
止膜の効果を説明する図、第4図は第2実施例の光出射
方向に垂直な断面図、第5図は第3実施例の光出射方向
に垂直な断面図、である。
[Examples] Examples of the present invention will be described below with reference to FIGS. 2 to 5. FIG. 2 is a cross-sectional view perpendicular to the light emission direction of the first embodiment, FIGS. 3(a) and 3(b) are diagrams explaining the effect of the antireflection film in the first embodiment, and FIG. 4 is a cross-sectional view of the second embodiment. FIG. 5 is a sectional view perpendicular to the light emission direction of the third embodiment.

第2図に示す第1実施例は、先に述べた第1の半導体発
光素子に該当する半導体レーザであり、電流狭窄構造を
拡散領域によって構成した例である。
The first embodiment shown in FIG. 2 is a semiconductor laser corresponding to the first semiconductor light emitting device described above, and is an example in which the current confinement structure is constituted by a diffusion region.

同図において、 11  はInGaP活性層で厚さ0.1μm、12a
はn4AIx Gap−x )o、5lno、sP (
xJ、7)クラッド層、厚さ1μ錆、 13aはn−(Alx Gap−++ )e、5lno
、sP (x=0.1)反射防止膜、厚さ1200人、 14  はn−GaAs基板、幅約300 p m、1
2bはp−(A1. Gap−x )o、5rno、s
P (x=0.7)クラッド層、厚さ1μ−5 13bはp−(Alx Gap−x )o、5lno、
sP (x=0.1)反射防止膜、厚さ1200人、 15  はp−GaAsコンタクト層、厚さ1μm、1
6  は電流狭窄構造を構成するZn拡散領域、幅5μ
m、深さ1.2μm、 17aはn側電極、 17bはn側電極、 であり、活性層11+クラッド層12a十反射防止膜1
3a+基板14と、活性層11+クラッド層12b十反
射防止1]1113b+コンタクト層15のそれぞれが
、第1の半導体発光素子で述べた積層構造を構成してい
る。
In the same figure, 11 is an InGaP active layer with a thickness of 0.1 μm, and 12a
is n4AIx Gap-x )o, 5lno, sP (
xJ, 7) Cladding layer, 1μ thick rust, 13a is n-(Alx Gap-++)e, 5lno
, sP (x=0.1) anti-reflection film, thickness 1200, 14 is n-GaAs substrate, width about 300 pm, 1
2b is p-(A1.Gap-x)o,5rno,s
P (x=0.7) cladding layer, thickness 1μ-5 13b is p-(Alx Gap-x)o, 5lno,
sP (x=0.1) anti-reflection coating, thickness 1200, 15 is p-GaAs contact layer, thickness 1 μm, 1
6 is a Zn diffusion region constituting a current confinement structure, width 5μ
m, depth 1.2 μm, 17a is an n-side electrode, 17b is an n-side electrode, active layer 11 + cladding layer 12a + antireflection film 1
3a + substrate 14, active layer 11 + cladding layer 12b + antireflection 1] 1113b + contact layer 15, respectively, constitute the laminated structure described in the first semiconductor light emitting device.

反射防止膜13a及び13bの厚さを1200人に設定
したのは以下のデータに基づく。
The thickness of the antireflection films 13a and 13b was set to 1200 on the basis of the following data.

即ち、第3図(a)は、活性層11で発生した自然放出
光(波長λ−6700人)がクラッドF112a(12
b)から基板14 (コンタクト層15)に向かう際の
、クラッド層12a (12b)界面における入射角θ
と反射率の関係を示す。Aは反射防止膜13a (13
b)が無い場合であり、その場合の反射率は、入射角θ
がOoから大き(なるに従いほぼOに近いところから漸
増して50″程度までが0.04以下であり、60″を
越えると急激に増大している。
That is, in FIG. 3(a), spontaneous emission light (wavelength λ-6700) generated in the active layer 11 is transmitted to the cladding F112a (12
Incident angle θ at the cladding layer 12a (12b) interface when going from b) to the substrate 14 (contact layer 15)
shows the relationship between reflectance and reflectance. A is an antireflection film 13a (13
b) is absent, and the reflectance in that case is the incident angle θ
is 0.04 or less when the value increases from Oo to approximately 50'', and increases rapidly when the value exceeds 60''.

また・第3図b)は、反射防止膜13a(13b)が無
い場合に上記反射率が大きな入射角θ=80°における
、反射防止膜13a (13b)の厚さと反射率の関係
を示し、その厚さが1200人近傍で反射率が最小とな
っている。
In addition, Figure 3 b) shows the relationship between the thickness of the anti-reflection film 13a (13b) and the reflectance at the incident angle θ = 80° where the reflectance is large in the absence of the anti-reflection film 13a (13b), The reflectance is at its minimum when the thickness is around 1200 people.

そして、第3図(a)におけるBは、反射防止膜13a
(13b)の厚さを1200人にした場合のものである
B in FIG. 3(a) represents the antireflection film 13a.
This is when the thickness of (13b) is set to 1200 people.

その場合の反射率は、入射角θが0がら80’に至る範
囲に渡って0.04以下となっている。
In this case, the reflectance is 0.04 or less over the range of incident angle θ from 0 to 80'.

本発明者は、この第1実施例とそこから反射防止111
に13a及び13bを除去したもの(従来例となるもの
)とについて特性を比較した結果、第1実施例は、しき
い値電流(Iい)が約20%小さ(なり、しきい値電流
の環境温度による変化が約15%低減し、最大光出力が
約40%増大するという特性の改善を見た。これは、直
接的な測定が困難であるが、先に述べた活性層の発熱低
減によるものと考えられる。
The inventor has developed this first embodiment and the antireflection 111 from it.
As a result of comparing the characteristics with the one in which 13a and 13b are removed (conventional example), the threshold current (I) of the first embodiment is about 20% smaller (the threshold current is smaller). Improvements in characteristics were observed, with changes due to environmental temperature being reduced by about 15% and maximum light output increasing by about 40%.Although it is difficult to directly measure this, this is due to the reduction in heat generation in the active layer mentioned earlier. This is thought to be due to

ここで特に述べておきたいことは、ヒートシンクがn側
電極17bの側(基板14と反対の側)に設けられてい
る場合においても、基板14例の光吸収による発熱は電
流狭窄領域の両脇を通ってヒートシンクに放熱され、且
つ上記両脇の幅が大きいことからこの放熱の効率は極め
て良いことである。
What I would like to particularly mention here is that even when the heat sink is provided on the side of the n-side electrode 17b (the side opposite to the substrate 14), heat generation due to light absorption by the substrate 14 occurs on both sides of the current confinement region. Since the heat is radiated to the heat sink through the heat sink and the width of both sides is large, the efficiency of this heat radiation is extremely high.

この点は、以下に説明する第2及び第3実施例において
も同様である。
This point also applies to the second and third embodiments described below.

次に、第4図に示す第2実施例は、先に述べた第2の半
導体発光素子に該当する半導体レーザであり、電流狭窄
構造かりフジ型レーザ構造によって構成された例である
Next, a second embodiment shown in FIG. 4 is a semiconductor laser corresponding to the second semiconductor light emitting device described above, and is an example constructed with a current confinement structure or a Fuji type laser structure.

同図において、 21  はInGaP活性層で厚さ0.1μ閣、22a
はP−(All Ga+−x )o、5rne、sP 
(x=0.7)クラッド層、厚さ1μm、 24aは非発光再結合中心としてZnをドープしたp−
Inx Ga1−x P (x=0.5)光吸収層、Z
nドープ量2×10′″〜I XIO”/d、厚さ0.
1μ■、24  はp−GaAs基板、幅約300μ謡
、22bは電流狭窄構造を構成する凸状ストライブを有
するn−(Alx Ga+−x )o、5Ino、sP
 (xJ、7)クラッド層、ストライブの幅5μM1ス
トライプ領域の厚さ1.0μ−、ストライブ両脇の厚さ
0.2μ霧、25aは非発光再結合中心としてSiをド
ープしたn−In、 Ga1−XP (x=0.5)光
吸収層、Siドープ量2X1.O″〜I XlO19/
c+1、厚さ0.11ex、25bは非発光再結合中心
としてZnをドープしたp−Inx Ga1−x P 
(x□0.5)光吸収層兼電流狭窄層、Znドープ量2
 Xl、0” 〜I XIO”/d、厚さ0.7μM 
〜 26  はn−GaAs コンタクト層、厚さ1μm、
27aはn側電極、 27bはn側電極、 であり、活性層21+クラッド層22a十光吸収層24
aと、活性層21+クラッド層22b十光吸収層25a
、25bのそれぞれが、第2の半導体発光素子で述べた
積層構造を構成している。
In the figure, 21 is an InGaP active layer with a thickness of 0.1μ, and 22a
is P-(All Ga+-x)o, 5rne, sP
(x=0.7) cladding layer, 1 μm thick, 24a is a Zn-doped p-
Inx Ga1-x P (x=0.5) light absorption layer, Z
n doping amount 2×10'''~IXIO''/d, thickness 0.
1μ■, 24 is a p-GaAs substrate with a width of approximately 300μ, 22b is an n-(Alx Ga+-x)o, 5Ino, sP with a convex stripe constituting a current confinement structure.
(xJ, 7) Cladding layer, width of stripe 5μM, thickness of one stripe region 1.0μ-, thickness 0.2μ on both sides of stripe, 25a is n-In doped with Si as a non-radiative recombination center , Ga1-XP (x=0.5) light absorption layer, Si doping amount 2X1. O″〜I XlO19/
c+1, thickness 0.11ex, 25b is p-Inx Ga1-x P doped with Zn as a non-radiative recombination center
(x□0.5) Light absorption layer/current confinement layer, Zn doping amount 2
Xl, 0" ~ IXIO"/d, thickness 0.7 μM
~26 is an n-GaAs contact layer, 1 μm thick,
27a is an n-side electrode; 27b is an n-side electrode;
a, active layer 21 + cladding layer 22b and optical absorption layer 25a
, 25b constitute the laminated structure described in the second semiconductor light emitting device.

本発明者は、この第2実施例と、その光吸収層24a及
び25a、25bに非発光再結合中心をドープしないも
の(従来例となるもの)と、について特性を比較した結
果、第2実施例は、しきい値電流(1th)が約13%
小さくなり、しきい値電流の環境温度による変化が約7
%低減し、最大光出力が約20%増大するという特性の
改善を見た。
As a result of comparing the characteristics of this second embodiment and one in which the light absorption layers 24a, 25a, and 25b are not doped with non-radiative recombination centers (conventional example), the inventor found that the second embodiment For example, the threshold current (1th) is about 13%
The change in threshold current due to environmental temperature is approximately 7
% and the maximum light output increased by about 20%.

次に、第5図に示す第3実施例は、先に述べた第3の半
導体発光素子に該当する半導体レーザであり、電流狭窄
構造が第2実施例と同様にリッジ型レーザ構造によって
構成された例である。
Next, the third embodiment shown in FIG. 5 is a semiconductor laser corresponding to the third semiconductor light emitting device described above, and the current confinement structure is constituted by a ridge type laser structure as in the second embodiment. This is an example.

同図において、第4図と同一符号は同一対象物を示し、 23aはp−(Alx Ga+−* )o、5lno、
sP (x=0.1)反射防止膜、厚さ1200人、 23bはn−(Alx Ga+−x )o、5lno、
sP (X=0.1)反射防止膜、厚さ1200人、 であり、活性層21+クラッド層22a十反射防止膜2
3a十光吸収層24aと、活性層21+クラッド層22
b十反射防止膜23b十光吸収層25aのそれぞれが、
第3の半導体発光素子で述べた積層構造を構成している
。また、活性層21+クラツドl122b +光吸収層
兼電流狭窄層25bが、第2の半導体発光素子で述べた
積層構造を構成している。
In the same figure, the same symbols as in FIG. 4 indicate the same objects, and 23a is p-(Alx Ga+-*)o, 5lno,
sP (x=0.1) antireflection film, thickness 1200, 23b is n-(Alx Ga+-x)o, 5lno,
sP (X=0.1) anti-reflection film, thickness 1200, active layer 21 + cladding layer 22a + anti-reflection film 2
3a, optical absorption layer 24a, active layer 21 + cladding layer 22
Each of the ten antireflection films 23b and the ten light absorption layers 25a is
It constitutes the laminated structure described in the third semiconductor light emitting device. In addition, the active layer 21 + the cladding 122b + the light absorption layer and current confinement layer 25b constitute the laminated structure described in the second semiconductor light emitting device.

本発明者は、この第3実施例と、そこから反射防止膜2
3a、23bを除去し且つその光吸収層24a及び25
a、25bに非発光再結合中心をドープしないもの(従
来例となるもの)と、について特性を比較した結果、第
3実施例は、しきい値電流(Iい)が約15%小さくな
り、しきい値電流の環境温度による変化が約10%低減
し、最大光出力が約25%増大するという特性の改善を
見た。
The present inventor has developed this third embodiment and the antireflection film 2 from it.
3a, 23b and the light absorbing layers 24a and 25
As a result of comparing the characteristics of the third embodiment with those in which non-radiative recombination centers are not doped in a and 25b (conventional example), the threshold current (I) of the third embodiment is approximately 15% smaller; Improvements in characteristics were observed in that the change in threshold current due to environmental temperature was reduced by about 10% and the maximum light output was increased by about 25%.

なお、半導体各層の成分及び寸法が実施例に限定されな
いこと、13aなどで示される反射防止膜の配置が活性
層の上側及び下側に対して任意であること、その反射防
止膜の厚さを設定する際の入射角θが80°に限定され
ないこと、非発光再結合中心をドープする半導体層の配
置が活性層の上側及び下側に対して任意であること、は
上述の説明から容易に理解されよう。
It should be noted that the components and dimensions of each semiconductor layer are not limited to those in the examples, that the arrangement of the antireflection film shown in 13a etc. is arbitrary with respect to the upper and lower sides of the active layer, and that the thickness of the antireflection film is It is easy to understand from the above explanation that the incident angle θ is not limited to 80° and that the semiconductor layer doping the non-radiative recombination center can be placed arbitrarily above and below the active layer. be understood.

また、第1〜第3の半導体発光素子に該当する半導体レ
ーザの何れにおいても、電流狭窄構造の構成に拡散領域
またはりソジ型レーザ構造を任意に採用することができ
ることは、実施例から容易に類推できよう。
Furthermore, it is easy to see from the examples that a diffusion region or a solid-state laser structure can be arbitrarily adopted for the configuration of the current confinement structure in any of the semiconductor lasers corresponding to the first to third semiconductor light emitting devices. It can be analogized to

また、本発明は、半導体レーザに限定されることなく、
半導体発光ダイオード(LED)に適用することも可能
である。その場合は、高出力、低損失なLEDを得るこ
とが可能になる。
Further, the present invention is not limited to semiconductor lasers, but
Application to semiconductor light emitting diodes (LEDs) is also possible. In that case, it becomes possible to obtain a high-output, low-loss LED.

(発明の効果] 以上説明したように本発明によれば、半導体し一ザなど
の半導体発光素子において、活性層の発熱を低減させる
ために、活性層からクラッド層に入った光や、クラッド
層からその外側の層に入った光により二次的に発生する
光が、活性層へ戻るのを抑えることができて、半導体発
光素子の特性を改善させる効果がある。
(Effects of the Invention) As explained above, according to the present invention, in order to reduce heat generation in the active layer in a semiconductor light emitting device such as a semiconductor laser, light entering the cladding layer from the active layer, It is possible to suppress the light that is secondarily generated by the light that has entered the outer layer from returning to the active layer, which has the effect of improving the characteristics of the semiconductor light emitting device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(C)は本発明の原理説明図、第2図は
第1実施例の光出射方向に垂直な断面図、 第3図(a) (b)は第1実施例における反射防止膜
の効果を説明する図、 第4図は第2実施例の光出射方向に垂直な断面図、 第5図は第3実施例の光出射方向に垂直な断面図、 である。 図において、 1.11.21は活性層、 2.12a 、 !2b 、22a 、22bはクラッ
ド層、3.13a 、13b 、23a 、23bは反
射防止膜、4.4aは半導体層、 14は基板で半導体層4に該当するもの、15はコンタ
クト層で半導体層4に該当するもの、24a 、25a
は光吸収層で半導体層4aに該当するもの、 25bは光吸収層兼電流狭窄層で半導体層4aに該当す
るもの、 Aは反射防止膜なしの場合、 Bは反射防止膜ありの場合、 θは入射角、 である。 第1図 第1寅施倒の九ム幇8向は垂直な軸面間第2図 第2大]包イ列の光土4寸方向に垂黴び筒−面図率 今 凹 第1尖施秒’lk:8ffる及坩間立j筺の効早と説明
する間第 3 図 東 図
Figures 1 (a) to (C) are diagrams explaining the principle of the present invention, Figure 2 is a sectional view perpendicular to the light emission direction of the first embodiment, and Figures 3 (a) and (b) are the first embodiment. FIG. 4 is a sectional view perpendicular to the light emission direction of the second embodiment; FIG. 5 is a sectional view perpendicular to the light emission direction of the third embodiment. In the figure, 1.11.21 is the active layer, 2.12a, ! 2b, 22a, 22b are cladding layers, 3.13a, 13b, 23a, 23b are antireflection films, 4.4a is a semiconductor layer, 14 is a substrate corresponding to semiconductor layer 4, 15 is a contact layer and is semiconductor layer 4 Applicable to 24a, 25a
25b is a light absorption layer that corresponds to the semiconductor layer 4a, 25b is a light absorption layer and current confinement layer that corresponds to the semiconductor layer 4a, A is without antireflection film, B is with antireflection film, θ is the angle of incidence, . Figure 1 Figure 1 The 9th corner of the 8th direction is a vertical axial plane. Figure 2 The 8th direction of the 8th direction is the perpendicular axial plane. Figure 3: East map to explain the effectiveness of the 8ff and tsutsuma stand.

Claims (1)

【特許請求の範囲】 1)活性層に順次に接するクラッド層と反射防止膜とそ
の次の半導体層の積層構造を有し、前記反射防止膜は、
該前記活性層の発光波長に対し実質的に透明で屈折率が
前記クラッド層よりも大きく、且つ該クラッド層からの
入射角が60°以上の適宜角度において該発光波長に対
する反射が最小となる厚さであり、 前記反射防止膜の次の前記半導体層は、屈折率が該反射
防止膜よりも大きいことを特徴とする半導体発光素子。 2)活性層に順次に接するクラッド層とその次の半導体
層の積層構造を有し、 前記クラッド層の次の前記半導体層は、屈折率が該クラ
ッド層よりも大きく且つ非発光再結合中心がドープされ
ていることを特徴とする半導体発光素子。 3)活性層に順次に接するクラッド層と反射防止膜とそ
の次の半導体層の積層構造を有し、前記反射防止膜は、
該前記活性層の発光波長に対し実質的に透明で屈折率が
前記クラッド層よりも大きく、且つ該クラッド層からの
入射角が60°以上の適宜角度において該発光波長に対
する反射が最小となる厚さであり、 前記反射防止膜の次の前記半導体層は、屈折率が該反射
防止膜よりも大きく且つ非発光再結合中心がドープされ
ていることを特徴とする半導体発光素子。
[Scope of Claims] 1) It has a laminated structure of a cladding layer, an antireflection film, and a next semiconductor layer that are in contact with an active layer, and the antireflection film is:
A thickness that is substantially transparent to the emission wavelength of the active layer, has a refractive index greater than that of the cladding layer, and has a minimum reflection for the emission wavelength at an appropriate angle of incidence from the cladding layer of 60° or more. A semiconductor light emitting device, wherein the semiconductor layer next to the antireflection film has a refractive index greater than that of the antireflection film. 2) It has a laminated structure of a cladding layer sequentially in contact with an active layer and a next semiconductor layer, and the semiconductor layer next to the cladding layer has a refractive index larger than that of the cladding layer and has non-radiative recombination centers. A semiconductor light emitting device characterized in that it is doped. 3) It has a laminated structure of a cladding layer, an antireflection film, and a next semiconductor layer that are in contact with the active layer, and the antireflection film is:
A thickness that is substantially transparent to the emission wavelength of the active layer, has a refractive index greater than that of the cladding layer, and has a minimum reflection for the emission wavelength at an appropriate angle of incidence from the cladding layer of 60° or more. A semiconductor light emitting device, wherein the semiconductor layer next to the antireflection film has a refractive index larger than that of the antireflection film and is doped with non-radiative recombination centers.
JP6325690A 1990-03-14 1990-03-14 Semiconductor light-emitting element Pending JPH03263891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6325690A JPH03263891A (en) 1990-03-14 1990-03-14 Semiconductor light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6325690A JPH03263891A (en) 1990-03-14 1990-03-14 Semiconductor light-emitting element

Publications (1)

Publication Number Publication Date
JPH03263891A true JPH03263891A (en) 1991-11-25

Family

ID=13224001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6325690A Pending JPH03263891A (en) 1990-03-14 1990-03-14 Semiconductor light-emitting element

Country Status (1)

Country Link
JP (1) JPH03263891A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0753915A2 (en) * 1995-07-14 1997-01-15 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser for pumping light amplifier and method for making the semiconductor laser
JP2005079582A (en) * 2003-08-29 2005-03-24 Osram Opto Semiconductors Gmbh Semiconductor laser with semiconductor chip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0753915A2 (en) * 1995-07-14 1997-01-15 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser for pumping light amplifier and method for making the semiconductor laser
EP0753915A3 (en) * 1995-07-14 1997-07-16 Mitsubishi Electric Corp Semiconductor laser for pumping light amplifier and method for making the semiconductor laser
JP2005079582A (en) * 2003-08-29 2005-03-24 Osram Opto Semiconductors Gmbh Semiconductor laser with semiconductor chip

Similar Documents

Publication Publication Date Title
KR19990045620A (en) Semiconductor laser device
US3911376A (en) Gallium arsenide injection lasers
Qiu et al. Design and fabrication of low beam divergence and high kink-free power lasers
JP2010171183A (en) Semiconductor laser element and semiconductor laser device
US5264715A (en) Emitting with structures located at positions which prevent certain disadvantageous modes and enhance generation of light in advantageous modes
JPH0738196A (en) Surface light emitting element
JP2005327783A (en) Semiconductor laser
US20190372309A1 (en) Large optical cavity (loc) laser diode having quantum well offset and efficient single mode laser emission along fast axis
JPH03263891A (en) Semiconductor light-emitting element
ISHIKAWA et al. Room Temperature CW Operation of Transverse Mode Stabilized InGaAIP Visible Lighe Laser Diodes
US5406575A (en) Semiconductor heterostructure laser
Takayama et al. Low operating current self‐sustained pulsation GaAlAs laser diodes with a real refractive index guided structure
US6493132B1 (en) Monolithic optically pumped high power semiconductor lasers and amplifiers
JP2015026640A (en) Surface emission laser array and method for manufacturing the same
JPH06237011A (en) Optical semiconductor element
KR100682426B1 (en) Semiconductor laser device
Kidoguchi et al. Extremely high quantum efficiency (86%) operation of AlGaInP visible laser diode with lateral leaky waveguide structure
JPH01264275A (en) Semiconductor light-emitting device
JP2006253180A (en) Semiconductor light emitting element
US6643307B2 (en) Semiconductor laser device
US11532923B2 (en) Vertical-cavity surface emitting laser for emitting a single mode laser beam
JPH03225885A (en) Semiconductor multi-layered film
US4989213A (en) Narrow divergence, single quantum well, separate confinement, algaas laser
JPH03105991A (en) Semiconductor laser device
WO2020140701A1 (en) Epitaxial wafer and semiconductor laser