JPH03263591A - Radiator for cooling element and manufacture thereof - Google Patents
Radiator for cooling element and manufacture thereofInfo
- Publication number
- JPH03263591A JPH03263591A JP5995990A JP5995990A JPH03263591A JP H03263591 A JPH03263591 A JP H03263591A JP 5995990 A JP5995990 A JP 5995990A JP 5995990 A JP5995990 A JP 5995990A JP H03263591 A JPH03263591 A JP H03263591A
- Authority
- JP
- Japan
- Prior art keywords
- loop
- heat
- predetermined
- container
- radiator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 238000001816 cooling Methods 0.000 title claims description 19
- 238000000034 method Methods 0.000 claims abstract description 24
- 238000007493 shaping process Methods 0.000 claims abstract description 5
- 239000011162 core material Substances 0.000 claims description 15
- 239000012530 fluid Substances 0.000 claims description 11
- 238000004804 winding Methods 0.000 claims description 9
- 238000009423 ventilation Methods 0.000 claims description 5
- 239000007788 liquid Substances 0.000 abstract 1
- 230000017525 heat dissipation Effects 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 238000009415 formwork Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 201000009240 nasopharyngitis Diseases 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 210000005239 tubule Anatomy 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0266—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
イ8発明の目的
[産業上の利用分野]
本発明はヒートパイプの構造及びその製造方法に関する
もので特に素子冷却用放熱器として適用されるループ型
細管ヒートパイプの構造及びその製造方法に関する。Detailed Description of the Invention A.8 Objective of the Invention [Field of Industrial Application] The present invention relates to the structure of a heat pipe and its manufacturing method, and in particular to the structure of a loop-type thin tube heat pipe applied as a radiator for cooling elements. and its manufacturing method.
[従来の技術]
電子機器に用いられる各種半導体素子に代表される小型
発熱素子のヒートパイプによる冷却は共通のコールドプ
レート上に複数の素子を搭載し、該コールドプレートを
ヒートパイプにより冷却するのが通例であった。これは
個々の素子に搭載可能な小型ヒートパイプが市場になか
ったことによる。[Prior Art] Cooling of small heating elements, such as various semiconductor elements used in electronic devices, using heat pipes is accomplished by mounting a plurality of elements on a common cold plate and cooling the cold plate with the heat pipe. It was customary. This is because there were no small heat pipes on the market that could be mounted on individual elements.
昨今ループ型細管ヒートパイプ特開昭63−31849
3号の出現により素子の個別冷却が可能となりつつある
。第6図(イ)正面図(ロ)側面図に示した如き従来形
のループ型細管ヒートパイプ式放熱器は40mmX40
mmの素子表面から3 m/s程度の冷却風で70Wの
熱量を除去する高い能力があるにも係わらずその複雑な
製造工程によって高価格なものとなり普及が進んでいな
い、第6図において1はループ型細管ヒートパイプの放
熱部、2は同受熱部、3は発熱素子、6はループの端末
連結部である。用いられる細管の直径は0.8mm〜1
.6閣mである場合が多い。Recently, loop type thin tube heat pipe JP-A-63-31849
With the advent of No. 3, individual cooling of elements is becoming possible. The conventional loop type thin tube heat pipe type radiator shown in Figure 6 (a) Front view (B) Side view is 40mm x 40mm.
Although it has a high ability to remove 70 W of heat from the surface of an element with a cooling air flow of about 3 m/s, its complicated manufacturing process makes it expensive and it has not become popular. 2 is a heat dissipating part of the loop-type thin tube heat pipe, 2 is a heat receiving part thereof, 3 is a heating element, and 6 is a terminal connecting part of the loop. The diameter of the thin tube used is 0.8 mm to 1
.. In many cases, there are six cabinets.
[発明が解決しようとする問題点]
第6図に例示したループ型細管ヒートパイプ式放熱器は
受放熱部間の温度差により作動液が高速でループ内を循
環し放熱部の温度を上昇せしめ能率よ(冷却風内に熱量
を放出する。小型且つ高性能であるにも係わらず普及が
遅れている原因は低価格化が困難なその構造と構造上避
けて通れない複雑な製造工程にあった。第7図〜第11
図にその製造工程の特徴を示す。[Problems to be Solved by the Invention] In the loop type thin tube heat pipe type radiator illustrated in FIG. 6, the working fluid circulates in the loop at high speed due to the temperature difference between the heat receiving and radiating parts, increasing the temperature of the heat radiating part. Efficiency (releases heat in the cooling air) Despite its small size and high performance, its widespread use has been slow due to its structure, which makes it difficult to reduce its price, and its complicated manufacturing process, which is unavoidable due to the structure. Figures 7 to 11
The figure shows the characteristics of the manufacturing process.
第7図 曲率半径数+nmの屈曲部と直線部とからなる
螺旋体の成形工程である。屈曲部の曲率半径が小さいの
で細管が漬れる怖れがあり高速的げが困難である。又直
線部と屈曲部の巻取速度が大幅に異なる為全体として高
速度で捲回することが出来ない所にも問題点がある。FIG. 7 is a process for forming a helical body consisting of a bent part and a straight part with a radius of curvature of +nm. Since the radius of curvature of the bent part is small, there is a risk of the thin tube becoming swamped, making it difficult to aim at high speed. Another problem is that the winding speed of the straight portion and the bent portion is significantly different, making it impossible to wind the winding at a high speed as a whole.
第8図 螺旋体を蛇行形状に展開する工程である。1タ
ーン毎に螺旋体車側か蛇行体側の何れかに捻回な与える
必要があり、高速化も自動化も困難で大きな問題点とな
っている。Fig. 8 This is the process of developing the spiral body into a meandering shape. For each turn, it is necessary to apply a twist to either the helical vehicle side or the meandering body side, which is a major problem as it is difficult to increase speed and automate it.
第9図 整列工程であり、直線部における放熱部1 (
破線の外側)に直角方向の捻回な与えて細管間隔を縮少
せしめる。自動化の不可能な問題工程である。図におい
て4,5は夫々細管の両端末である。Figure 9: Alignment process, heat dissipation section 1 in the straight section (
(outside the broken line) to reduce the spacing between the tubules. This is a problematic process that cannot be automated. In the figure, 4 and 5 are both ends of the thin tube.
第10図 受熱部2となる部分を形成する工程であり細
管の所定の部分において熱伝導性の良好な接着材により
隣接細管と相互に接着して受熱部平板2を形成する。接
着に際しては平面状態を良好ならしめ又寸法精度を良好
ならしめる為、型枠を使用する。この工程も多大の時間
を消費する問題工程である。FIG. 10 This is a step of forming a portion that will become the heat receiving portion 2. A predetermined portion of the thin tube is bonded to adjacent thin tubes using an adhesive having good thermal conductivity to form the heat receiving portion flat plate 2. When bonding, a formwork is used to ensure a good flat surface and dimensional accuracy. This step is also a problematic step that consumes a lot of time.
第11図 放熱部成形工程である。放熱部細管1を対流
風の流れる部分内に配列せしめ多管式放熱部を形成する
。細管の1本1本を曲げて配列せしめる手作業であり困
難な問題工程である。上記の各工程を完了の後細管の両
端末4,5を連結管6にて気密に連結して、ループ型細
管コンテナとして完成せしめた後、所定の作動液循環手
段を配設し、所定の作動液の所定量を封入して素子用の
ループ型細管ヒートパイプ式放熱器が完成する。Fig. 11 is a process for forming the heat dissipation part. The thin tubes 1 of the heat dissipation section are arranged in a portion where convection air flows to form a multi-tubular heat dissipation section. This is a difficult and problematic process, as it requires manual labor to bend and arrange each thin tube one by one. After completing each of the above steps, the ends 4 and 5 of the capillary are airtightly connected with the connecting pipe 6 to complete the loop-type capillary container, and then a predetermined working fluid circulation means is installed and a predetermined A predetermined amount of working fluid is sealed to complete a loop-type capillary heat pipe type heat radiator for the device.
第7図〜第11図の総ての工程が非能率で且つ自動化困
難であり問題点となっている作業工程であり、何れも価
格上昇の原因となっている。All of the steps shown in FIGS. 7 to 11 are inefficient, difficult to automate, and pose problems, and all of them are causes of price increases.
口0発明の構成
[問題点解決の為の手段]
素子冷却用放熱器の基本であるループ型細管ヒートパイ
プの基本構造及び製造方法に変更はないが、放熱器の形
状を変更し、それに従ってその成形工程を大幅に変更す
る。変更された放熱器の形状は第1図(イ)正面図(ロ
)側面図に例示の如くであり、ループ型細管コンテナは
円形又は角形のコイル状に形成されてあり、コイルを形
成する各螺旋リングはその一部分において所定の接着手
段により隣接する各螺旋リングの相似的に同一な部分と
順次相互に接着され該相互接着部分は全体として方形の
平板に形成されて受熱部として形成されてあり、コイル
を形成する各螺旋リングの残余の部分は放熱フィン群1
として構成されてあることを特徴としている。図におい
て3は発熱素子であって受熱部2と所定の手段により接
着されである。6は細管コンテナの両端末を連結してル
ープを構成せしめる連結管である。矢印は放熱の為の対
流風の流れを示している。Structure of the Invention [Means for Solving the Problems] The basic structure and manufacturing method of the loop-type thin tube heat pipe, which is the basis of the heat radiator for cooling elements, remains unchanged, but the shape of the radiator is changed and the following changes are made. The molding process will be significantly changed. The shape of the modified radiator is as illustrated in FIG. 1 (a) front view and (b) side view. A portion of the spiral ring is sequentially bonded to a similar portion of each adjacent spiral ring by a predetermined bonding means, and the mutually bonded portion is formed into a rectangular flat plate as a whole and is formed as a heat receiving portion. , the remaining part of each spiral ring forming the coil is the radiation fin group 1
It is characterized by being structured as In the figure, reference numeral 3 denotes a heating element, which is bonded to the heat receiving section 2 by a predetermined means. Reference numeral 6 denotes a connecting tube that connects both ends of the thin tube container to form a loop. The arrows indicate the flow of convective wind for heat radiation.
上述の如き形状の放熱器はその形状変化に伴って、その
成形工程も大幅な変更が必要となる。その成形工程には
第3図、第4図及び第5図に例示の如き次の3工程が含
まれることを特徴としている。As the shape of the heat radiator as described above changes, the molding process also needs to be significantly changed. The molding process is characterized by including the following three steps as illustrated in FIGS. 3, 4, and 5.
第1の工程(第3図)
ループ型細管ヒートパイプのコンテナ用細管1を所定の
断面形状の芯材7の外周にコイル状に巻回する工程。The first step (FIG. 3) is the step of winding the container capillary tube 1 of the loop-type capillary heat pipe around the outer periphery of the core material 7 having a predetermined cross-sectional shape.
第2の工程(第4図)
細管lが芯材7の外周に巻回されである状態のままで、
コイルを形成する各螺旋リングの一部分において、所定
の接着手段によって隣接する各螺旋リングの相似的に同
一な部分と順次相互に接着し該相互接着部分が全体的に
は方形の板面2をなす様接着せしめる工程。Second step (Fig. 4) While the thin tube l is wound around the outer periphery of the core material 7,
A portion of each helical ring forming the coil is sequentially adhered to a similar and identical portion of each adjacent helical ring by a predetermined adhesive means, and the mutually bonded portion forms a rectangular plate surface 2 as a whole. The process of bonding.
第3の工程(第5図)
該方形板面を平滑平板に成形すると共に、成形の前又は
後に芯材7を除去すると共に細管コイル1の形状を通風
容易な形状に整形する工程。Third step (FIG. 5) A step of forming the rectangular plate surface into a smooth flat plate, removing the core material 7 before or after forming, and shaping the thin tube coil 1 into a shape that allows easy ventilation.
[作用]
(放熱器形状の作用)
(a)放熱部の曲率半径が大きいから放熱部の整形が容
易であり通風容易な状態に整形することが容易なだけで
なく第2図(イ)(ロ)に例示の如く放熱部の高さ、幅
等を自由に調整することが可能であり、発熱素子の大小
各種に対応して変形させることが出来る。[Function] (Function of the shape of the radiator) (a) Since the radius of curvature of the heat radiating part is large, it is easy to shape the heat radiating part, and it is not only easy to shape the heat radiating part to a state where ventilation is easy. As shown in (b), the height, width, etc. of the heat dissipation section can be freely adjusted, and can be deformed to correspond to various sizes of heat generating elements.
(b)作動液の循環流が急激なターンを繰返すことなく
総て同一方向に且つ同一曲率で循環するから、作動液流
に圧力損失が少なくなり、作動液の循環速度が速くなり
、放熱能力が改善される。(b) Since the circulating flow of the working fluid circulates in the same direction and with the same curvature without repeating sudden turns, the pressure loss in the working fluid flow is reduced, the circulating speed of the working fluid is increased, and the heat dissipation capacity is improved. is improved.
(C)後述する如く放熱器の成形が極めて容易になる。(C) As will be described later, the molding of the heat sink becomes extremely easy.
(成形工程の作用)
第1の工程
細管のコイル巻は高速度で実施することが出来る。コイ
ル巻作業は市販のコイル巻機の適用が可能であり、自動
化も容易である。(Effect of the forming process) The coil winding of the thin tube in the first process can be carried out at high speed. A commercially available coil winding machine can be used for the coil winding work, and automation is also easy.
第2の工程
接着工程は第1の工程完了のまま芯材を除去することな
〈実施することが可能で従来の如く接着作業の為の細管
整列は不要となり、又接着部形状の正確さを得る為の型
枠の必要も無くなる。又接着作業の自動化も容易である
。The second step, the bonding step, can be carried out without removing the core material while the first step is completed, eliminating the need for thin tube alignment for bonding as in the past, and improving the accuracy of the bonded part shape. There is no need for formwork to obtain it. Furthermore, it is easy to automate the bonding work.
第3の工程
芯材装着のままで接着部の方形平面の平滑化加工は容易
であり、芯材除去の後の通風容易化整形も従来に比較し
て極めて容易である。Third step: It is easy to smooth the rectangular plane of the bonded portion while the core material is still attached, and shaping to facilitate ventilation after removing the core material is also extremely easy compared to the conventional method.
[実施例]
ループ型細管ヒートパイプのコンテナ用細管として外径
1mm内径0.8mmの細管を用いて素子冷却用放熱機
の製作を、本発明に係る製造方法を用いて、実施した。[Example] A radiator for cooling an element was manufactured using a thin tube having an outer diameter of 1 mm and an inner diameter of 0.8 mm as a container thin tube of a loop-type thin tube heat pipe using the manufacturing method according to the present invention.
第1の工程は第3図例示の如き断面形状の外径50m+
n平坦切削幅40mmのテフロンTFEからなる芯材を
用いて実施した。芯材に巻回したコイルのターン数は密
巻きで40ターンであった。曲率半径が大きいので第6
図の従来構造のものに比べて細管変形の恐れもなく、製
造ロスもなく、高速度で巻回を完了した。所要時間は数
秒に過ぎなかった。The first step is to create a cross-sectional shape with an outer diameter of 50 m+ as shown in Figure 3.
The experiment was conducted using a core material made of Teflon TFE with a flat cutting width of 40 mm. The number of turns of the coil wound around the core material was 40 turns in close winding. Because the radius of curvature is large, the sixth
Compared to the conventional structure shown in the figure, there was no risk of thin tube deformation, no manufacturing loss, and winding was completed at high speed. It only took a few seconds.
第2の工程はPb−5n半田により実施して40+nm
X40mmの方形接着部(受熱面)を形成した。芯材の
TFHの耐熱性、及び断熱性により芯材の平坦部におけ
る半田接着も極めて容易で数秒で工程は完了した。第3
の工程における方形接着部の平滑化は予め250℃に加
熱しておいたアルミ厚板平面に3秒間押圧したのみで完
了した。芯材の除去はテフロンTFEの滑り性の良好さ
によって極めて容易であった0通風を良好ならしめる放
熱部細管の整形も予め用意した工具により螺旋リングを
一つ置きに一斉に一回押圧したのみで完了した。これ等
の3工程の開始から完了迄の時間は余裕時間を入れても
1個当り約5分に過ぎなかった。第7図〜第11図の従
来法の工程に1個当り120分を要したのに比較すると
比較にならない短時間作業であった。The second step was performed with Pb-5n solder to 40+nm
A rectangular adhesive part (heat receiving surface) with a size of 40 mm was formed. Due to the heat resistance and heat insulation properties of the core material TFH, solder bonding on the flat portion of the core material was extremely easy, and the process was completed in a few seconds. Third
Smoothening of the rectangular bonded area in the process was completed by simply pressing for 3 seconds against the flat surface of a thick aluminum plate that had been preheated to 250°C. Removal of the core material was extremely easy due to the good slipperiness of Teflon TFE.The shaping of the heat dissipating tubes for good ventilation was also done by pressing every other helical ring once at the same time using a tool prepared in advance. It was completed. The time from start to completion of these three steps was only about 5 minutes per piece, including allowance time. Compared to the conventional process shown in FIGS. 7 to 11, which required 120 minutes per piece, the work was an incomparably short time.
第3工程の完了後細管端末を相互に連結し、更に作動液
循環手段としての逆止弁を配設し、所定量の作動液を封
入して、第1図例示の如き素子冷却用放熱器を完成せし
めた。完成放熱器の受熱面に40+mX40mmの放熱
面を有するヒータを低温半田により接着し、風速3 t
agsの風洞内で温度上昇試験を実施した。周囲温度2
5℃にてヒータと受熱平面との接着面温度を65℃にて
安定せしめるヒータの電気入力は80Wであった。即ち
該放熱器の全熱抵抗はR=0.5℃/Wであった。After the third step is completed, the ends of the thin tubes are connected to each other, a check valve is provided as a working fluid circulation means, a predetermined amount of working fluid is sealed, and a heat radiator for cooling an element as illustrated in FIG. completed. A heater with a heat dissipating surface of 40+m x 40 mm was bonded to the heat receiving surface of the completed heat sink using low temperature solder, and a wind speed of 3 t was applied.
A temperature rise test was conducted in the AGS wind tunnel. Ambient temperature 2
The electrical input to the heater was 80 W to stabilize the temperature of the adhesive surface between the heater and the heat receiving plane at 65° C. at 5° C. That is, the total thermal resistance of the heat sink was R=0.5° C./W.
第6図の構造に製作した同等大きさの従来構造のループ
型細管ヒートパイプ式放熱器の全熱抵抗がR=0.57
℃/Wであったのに対し性能的にも大幅な改善がなされ
たことが分かった。The total thermal resistance of a loop-type capillary heat pipe type radiator of the same size and conventional structure manufactured with the structure shown in Figure 6 is R = 0.57.
℃/W, it was found that there was a significant improvement in performance.
ハ1発明の効果
本発明に係る素子冷却器の構造は小型放熱器即ち単体素
子冷却用のループ型細管ヒートパイプの性能を大幅に改
善することを可能にする。更にその新規な構造は本発明
に係る新規な製造方法を可能にする。この新規な製造方
法は従来のループ型細管ヒートパイプ式素子放熱器を製
造するに要する加工時間を画期的に削減するもので、そ
れは従来の実用化に程遠いものであった製造コストを一
気に実用的コストまで引下げる大きな効果を発揮する。C1. Effects of the Invention The structure of the device cooler according to the present invention makes it possible to significantly improve the performance of a small heat sink, that is, a loop-type capillary heat pipe for cooling a single device. Furthermore, the novel structure enables a novel manufacturing method according to the invention. This new manufacturing method dramatically reduces the processing time required to manufacture conventional loop-type thin tube heat pipe type element heat sinks, and it brings the manufacturing costs, which were far from practical use, to practical use. It has the great effect of reducing costs to the lowest possible level.
更に本発明に係る素子冷却用放熱器の製造方法における
3工程は各工程共容易に自動化装置を製作することの出
来る製造方法であり、自動化大量生産方式に移行するこ
とにより更に大幅な製造コストの低減が見込まれる。Furthermore, each of the three steps in the method for manufacturing a heat sink for device cooling according to the present invention is a manufacturing method that can easily manufacture automated equipment, and by shifting to an automated mass production method, the manufacturing cost can be further reduced. Expected to decrease.
第1図は本発明に係る素子冷却用放熱器の構造を示す略
図である。
(イ)正面図 (ロ)側面図
第2図:t#(() 、 ([1)は夫々第1図放熱器
の使用例を示す正面図である。
第3図は本発明に係る素子冷却用放熱器の製造方法の第
1工程を示す斜視図である。
第4図は同上第2工程を示す正面断面図である。
第5図は同上第3工程を示す正面図である。
第6図は従来型のループ型細管ヒートパイプ式放熱器(
素子冷却用放熱器)を示す略図である。
(イ)正面図 (ロ)側面図
第7図、第8図、第9図、第10図、及び第11図は順
次第6図の素子冷却用放熱器の製造工程を示す略図であ
る。
1・・・ループ型細管ヒートパイプの放熱部又は同上放
熱部に相当する細管
2・・・受熱部又は受熱部に相当する方形平板3・・・
発熱素子
4・・・細管の両端末の一端
5・・・細管の両端末の一端
6・・・連結管
7・・・芯材FIG. 1 is a schematic diagram showing the structure of a heat sink for cooling an element according to the present invention. (A) Front view (B) Side view Figure 2: t#(() and ([1) are respectively front views showing usage examples of the heat sink in Figure 1. Figure 3 is an element according to the present invention. It is a perspective view which shows the 1st process of the manufacturing method of the cooling radiator. FIG. 4 is a front sectional view which shows the 2nd process same as the above. FIG. 5 is a front view which shows the 3rd process same as the above. Figure 6 shows a conventional loop-type capillary heat pipe heat sink (
2 is a schematic diagram showing a heat sink for cooling an element. (A) Front view (B) Side view FIGS. 7, 8, 9, 10, and 11 are schematic diagrams showing the manufacturing process of the element cooling radiator shown in FIG. 6 in order. 1... Thin tube corresponding to the heat radiating part of the loop-type thin tube heat pipe or the heat radiating part 2... Rectangular flat plate 3 corresponding to the heat receiving part or the heat receiving part...
Heating element 4... One end of both ends of the thin tube 5... One end of both ends of the thin tube 6... Connecting tube 7... Core material
Claims (2)
細管コンテナが形成されてあり、該コンテナ内を作動液
が所定の手段により所定の方向に循環して、コンテナの
受熱部から放熱部に向って熱量を運搬するループ型細管
ヒートパイプにより構成されてあり、ループ型細管コン
テナは円形又は角形のコイル状に形成されてあり、コイ
ルを形成する各螺旋リングはその一部分において所定の
接着手段により隣接する各螺旋リングの相似的に同一な
部分と順次相互に接着され、該相互接着部分は全体とし
て方形の平板に形成されて受熱部として構成されてあり
、核螺旋リングの残余の部分は全体として放熱フィン群
として構成されてあることを特徴とする素子冷却用放熱
器。(1) Both ends of the capillary are connected airtight to each other to form a loop-type capillary container, and the working fluid is circulated in a predetermined direction by a predetermined means within the container, dissipating heat from the heat receiving part of the container. The loop-type capillary container is formed into a circular or square coil shape, and each spiral ring forming the coil has a predetermined bond at a part thereof. The mutually bonded portions are sequentially bonded to the similar identical portions of each adjacent helical ring by means, and the mutually bonded portions are formed as a whole into a rectangular flat plate and configured as a heat receiving portion, and the remaining portions of the core helical ring are 1. A radiator for cooling an element, characterized in that the whole is configured as a group of radiating fins.
を相互に気密に連結してループ型細管コンテナを形成し
、該ループ型細管コンテナ内に所定の作動液循環手段を
配設し、然る後ループ型細管コンテナ内に所定量の作動
液を封入してなるループ型細管ヒートパイプにより構成
される素子冷却用放熱器の製造方法であって、ループ型
細管ヒートパイプ製造作業における、細管を所定の形状
に成形する工程の中に、所定の断面形状の芯材の外周に
細管をコイル状に巻回する第1の工程とその状態のまま
、コイルを形成する各螺旋リングの一部分において、所
定の接着手段により隣接する各螺旋リングの相似的に同
一な部分と順次相互に接着し、該相互接着部分が全体的
には方形の板面をなす様接着せしめる第2の工程と該方
形接着部を平滑平板に成形すると共にその前後の何れか
の時点で芯材を除去すると共に細管コイルの形状を通風
容易な形状に整形する第3工程の3工程を含んでいるこ
とを特徴とする素子冷却用放熱器の製造方法。(2) After forming the capillary into a predetermined shape, both ends of the capillary are airtightly connected to each other to form a loop-type capillary container, and a predetermined working fluid circulation means is provided within the loop-type capillary container. A method for manufacturing an element cooling radiator constituted by a loop-type thin-tube heat pipe in which a predetermined amount of working fluid is then sealed in a loop-type thin-tube container, the method comprising: During the process of forming the thin tube into a predetermined shape, there is a first step of winding the thin tube into a coil around the outer periphery of a core material with a predetermined cross-sectional shape, and then, in that state, each spiral ring forming the coil is a second step of sequentially adhering similar parts of each adjacent spiral ring to one another using a predetermined adhesion means so that the mutually bonded parts form a rectangular plate surface as a whole; It is characterized by including three steps: a third step of forming the rectangular bonded part into a smooth flat plate, removing the core material at any point before or after that, and shaping the shape of the thin tube coil into a shape that facilitates ventilation. A method for manufacturing a heat sink for cooling an element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5995990A JPH03263591A (en) | 1990-03-13 | 1990-03-13 | Radiator for cooling element and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5995990A JPH03263591A (en) | 1990-03-13 | 1990-03-13 | Radiator for cooling element and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03263591A true JPH03263591A (en) | 1991-11-25 |
Family
ID=13128206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5995990A Pending JPH03263591A (en) | 1990-03-13 | 1990-03-13 | Radiator for cooling element and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03263591A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102712027A (en) * | 2009-10-21 | 2012-10-03 | 冰管有限公司 | Method for manufacturing a heat-pipe-type heat-dissipating device |
-
1990
- 1990-03-13 JP JP5995990A patent/JPH03263591A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102712027A (en) * | 2009-10-21 | 2012-10-03 | 冰管有限公司 | Method for manufacturing a heat-pipe-type heat-dissipating device |
JP2013506811A (en) * | 2009-10-21 | 2013-02-28 | アイスパイプ コーポレーション | Manufacturing method of heat pipe type heat dissipation device |
US8578606B2 (en) | 2009-10-21 | 2013-11-12 | Icepipe Corporation | Manufacturing method of heat pipe type heat-dissipating device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03263591A (en) | Radiator for cooling element and manufacture thereof | |
CN106288902B (en) | Weave the preparation method of class capillary wick and the heat conducting pipe using the liquid-sucking core | |
JP2854717B2 (en) | Heat exchanger incorporating Peltier element and method of manufacturing the same | |
US7275409B1 (en) | Method for manufacturing a heat pipe having an enlarged portion | |
US3489448A (en) | Method of making aluminum heat exchangers | |
US4821389A (en) | Method of making a pin fin heat exchanger | |
JP2006132850A (en) | Cooling unit and its manufacturing method | |
JPH04243153A (en) | Heat sink and its manufacture | |
US20020074114A1 (en) | Finned heat exchange tube and process for forming same | |
JPS5952195A (en) | Heat exchanger | |
EP1273377A3 (en) | Manufacturing method of heat exchanger | |
JP3959428B2 (en) | Stereo heat pipe radiator | |
JPH0441276B2 (en) | ||
JPH10185466A (en) | Heat pipe type heat sink | |
JPH0328690A (en) | Zigzag loop type fine tube heat pipe and manufacture thereof | |
JP2596720Y2 (en) | Heat sink for semiconductor devices | |
US2869222A (en) | Refrigerating apparatus | |
CN217178983U (en) | Spiral evaporator and deep cooling drawer | |
JPH01256793A (en) | Heat exchanger | |
KR100378055B1 (en) | Coolant tube of heat exchanger and processing method thereof | |
JP2001056191A (en) | Manufacture of heat exchanger | |
JP2709709B2 (en) | Manufacturing method of ceramic heat exchanger | |
CN218097307U (en) | Air temperature type heat exchanger | |
JP2002062061A (en) | Heat exchanger with tubes and manufacturing method of the same | |
JPS603932A (en) | Production of heat exchanger |