JPH03263510A - Slag disposal device of surface melting furnace - Google Patents

Slag disposal device of surface melting furnace

Info

Publication number
JPH03263510A
JPH03263510A JP6149690A JP6149690A JPH03263510A JP H03263510 A JPH03263510 A JP H03263510A JP 6149690 A JP6149690 A JP 6149690A JP 6149690 A JP6149690 A JP 6149690A JP H03263510 A JPH03263510 A JP H03263510A
Authority
JP
Japan
Prior art keywords
furnace
slag
exhaust gas
separated
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6149690A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Nakamura
中村 勝好
Hiroshi Shimizu
清水 洽
Hidenori Takiguchi
滝口 秀則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP6149690A priority Critical patent/JPH03263510A/en
Publication of JPH03263510A publication Critical patent/JPH03263510A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gasification And Melting Of Waste (AREA)

Abstract

PURPOSE:To obtain slag of high strength and good quality by providing a separated furnace of a specified construction right below the slag boat of a surface melting furnace. CONSTITUTION:In a surface melting furnace 1 the furnace body is formed by fitting an inner cylinder 2 slidably into an outer cylinder 3 and in a separated furnace 17 that is provided below the outer cylinder 3 a cylindrical furnace space 18 extending horizontally is formed. The molten slag 5 flows tangentially into the furnace space 18 with the exhaust gas 19 from a slag boat 6 and flows in a revolving flow along the internal circumferential face of the separated furnace 17 and stay in a laminar state along the inner face, and is separated from the exhaust gas 19. Further, the unburned combustion gas in the exhaust gas 19 burns in the furnace space 18 with a high load and at the same time the radiation heat in the main combustion chamber 15 is radiated so that the temperature in the furnace is maintained at a high temperature (1400-1500 deg.C) that is required for holding the fluidity of the slag 5. With this arrangement the slag that is taken out of the separated furnace 17 and solidifies is dense, and it has high strength and good quality, and a low NOx in the exhaust gas is provided in the complete high-load combustion of the unburned gas.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、下水汚泥の乾燥ケーキや焼却炉の焼却残渣を
溶融処理する表面溶融炉のスラグ処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a slag treatment apparatus for a surface melting furnace for melting a dried cake of sewage sludge or incineration residue from an incinerator.

従来の技術 従来、焼却残渣や乾燥汚泥ケーキを溶融処理する表面溶
融炉においては、スラグボー1−の下方に二次燃焼室を
形成するとともに、二次燃焼室に連通しで煙道を設け、
二次燃焼室において排ガスを二段燃焼させながらスラグ
ポートより滴下される溶融スラグと排ガスとを分離し、
二次燃焼室を通って落下する溶融スラグの液滴を水封し
たコンベア上で受は止めて取り出す方式と、スラグポー
トより滴1−する溶融スラグの液滴を一旦ダンバーで受
は止めて空気冷却を行った後にコンベア上に落下させる
方式とがあった。
Conventional technology Conventionally, in a surface melting furnace for melting incineration residue or dried sludge cake, a secondary combustion chamber is formed below the slag bowl 1-, and a flue is provided in communication with the secondary combustion chamber.
The molten slag dripping from the slag port is separated from the exhaust gas while performing two-stage combustion of the exhaust gas in the secondary combustion chamber.
One method is to stop the droplets of molten slag falling through the secondary combustion chamber on a water-sealed conveyor and take them out, and the other is to stop the droplets of molten slag falling from the slag port with a damper and then take them out. There was a method in which the material was cooled and then dropped onto a conveyor.

発明が解決し7ようとする課題 しかし、上記した表面溶融炉においては、二次燃焼室に
おける排ガスの滞留時間が短いために、二段燃焼による
排ガスの低NOx化を十分に行うことができない問題が
あった。また、二次燃焼室におりる炉内温度は二次燃焼
室での燃焼による発熱量と主燃焼室からスラグポートを
通して照射さゼる輻射熱とによって維持されるが、従来
のような水冷方式においは輻射熱が二次燃焼室を通過し
、コンベアを水封している水の蒸発熱とL/て吸収され
、この熱損失のために炉内温度が低下し、二次燃焼室の
内壁およびスラグポートの下端開口に付着したスラグが
凝固する問題があった。
Problems to be Solved by the Invention However, in the surface melting furnace described above, the residence time of the exhaust gas in the secondary combustion chamber is short, so there is a problem that it is not possible to sufficiently reduce NOx in the exhaust gas through two-stage combustion. was there. In addition, the temperature inside the furnace in the secondary combustion chamber is maintained by the heat generated by combustion in the secondary combustion chamber and the radiant heat irradiated from the main combustion chamber through the slag port, but in the conventional water cooling system, The radiant heat passes through the secondary combustion chamber and is absorbed by the heat of evaporation of the water sealing the conveyor. Due to this heat loss, the temperature inside the furnace decreases, and the inner wall of the secondary combustion chamber and the slag There was a problem in which slag adhering to the bottom opening of the port solidified.

そして、水冷の方式において処理されるスラグは、溶融
スラグが急冷されるために、小塊のポーラス状をなして
壊れやすく、微粒状に崩壊する問題があった。また、空
冷の方式においてはスラグが大きな塊となって固化する
ので、スラグの塊をコンベアで搬送可能な程度の大きさ
に破砕する必要があった。
The slag treated in the water-cooling method has a problem in that, because the molten slag is rapidly cooled, it becomes porous and fragile, and disintegrates into fine particles. In addition, in the air cooling system, the slag solidifies into large lumps, so it was necessary to crush the slag lumps into a size that can be transported by a conveyor.

本発明は上記課題を解決するもので、強度が大きく、か
つ適当な形をなす良質のスラグを得ることができる表面
溶融炉のスラグ処理装置を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a slag processing apparatus for a surface melting furnace that can obtain high-quality slag that has high strength and an appropriate shape.

課題を解決するための手段 上記課題を解決するために本発明は、表面式溶融炉のス
ラグポートの直下に、スラグポートの下端開口から滴下
する溶融スラグを捕集する分離炉を煙道に連通して配置
するとともに、分離炉の内部に形成される炉空間を水平
方向に延びる円筒状に形成し、溶融スラグとともにスラ
グポートから排出される排ガスが炉空間に接線方向から
流入するようにスラグポートと分離炉を連通させた構成
としたものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a separation furnace that connects a flue directly below the slag port of a surface melting furnace to collect the molten slag dripping from the lower end opening of the slag port. At the same time, the furnace space formed inside the separation furnace is formed into a horizontally extending cylindrical shape, and the slag port is arranged so that the exhaust gas discharged from the slag port along with the molten slag flows into the furnace space from the tangential direction. The structure is such that the separation furnace is in communication with the separation furnace.

作用 上記した構成により、スラグポートから滴下される溶融
スラグは排ガスとともに分離炉の炉空間内に接線方向か
ら流入し、分離炉の内周面に沿って旋回流となって流動
する。このため、旋回流によってサイクロンと同様の作
用が生じ、比重の大きい液滴状の溶融スラグが分離炉の
内面に沿って層状に滞留し、排ガスと分離される。
Operation With the above-described configuration, the molten slag dripped from the slag port flows tangentially into the furnace space of the separation furnace together with the exhaust gas, and flows as a swirling flow along the inner peripheral surface of the separation furnace. Therefore, the swirling flow causes an effect similar to that of a cyclone, and droplet-shaped molten slag with a large specific gravity stays in a layer along the inner surface of the separation furnace and is separated from the exhaust gas.

そして、旋回流によって排ガス中の未燃焼ガスが炉空間
内で高負荷燃焼するとともに、分離炉の内周面に滞留す
る溶融スラグに対して表面溶融炉の主燃焼室における輻
射熱がスラグポートを通して照射され、分離炉における
炉内温度がスラグの流動性を保に必要な高温度に維持さ
れる。
The swirling flow combusts the unburned gas in the exhaust gas under high load in the furnace space, and the radiant heat in the main combustion chamber of the surface melting furnace irradiates the molten slag remaining on the inner peripheral surface of the separation furnace through the slag port. The temperature inside the separation furnace is maintained at a high temperature necessary to maintain the fluidity of the slag.

このことにより、分離炉の内周面に層状に滞留する溶融
スラグの流動性の経時低下が防止されるとともに、溶融
スラグが脱泡を行うに要する十分な時間と、温度が確保
されるので、分離炉より取り出して固化したスラグはポ
ーラス状とならず、適性冷却速度を与えられて緻密で大
きな強度を有する良質なものとなる。さらに、被溶融物
の未燃分が分離炉内に流入したとしても、炉内温度が高
温に維持されることにより、未燃分は完全燃焼スラグ化
される。
This prevents the fluidity of the molten slag remaining in layers on the inner peripheral surface of the separation furnace from decreasing over time, and also ensures sufficient time and temperature for the molten slag to defoam. The slag taken out from the separation furnace and solidified does not become porous, but is given an appropriate cooling rate and becomes dense and of high quality with great strength. Furthermore, even if the unburned content of the material to be melted flows into the separation furnace, the temperature inside the furnace is maintained at a high temperature, so that the unburned content is completely converted into slag.

また、高負荷燃焼による未燃ガスの完全燃焼によって排
ガスの低NOX化が図られる。
Additionally, the complete combustion of unburned gas through high-load combustion reduces the amount of NOx in the exhaust gas.

実施例 以下本発明の一実施例を図面に基づいて説明する。第1
図〜第2図において、表面溶融炉1は内筒2と外筒3を
遊嵌させて炉体が形成されており、内筒2の底部をなし
て炉天井部4が形成されるとともに、外筒3の底部には
溶融スラグ5を排出するためのスラグポート6が形成さ
れている。また、内筒2は固定フレーム7に対して昇降
自在に設けられており、内筒2を支持する昇降フレーム
8と固定フレーム7の間には内筒昇降装置9が介装され
ている。さらに、外筒3は固定フレーム7に受ローラI
Oを介して鉛直な軸心まわりに回転自在に支持されてお
り、外筒3と固定フレーム7の間には外筒3を回転駆動
するための駆動装置IIが介装されている。
EXAMPLE An example of the present invention will be described below based on the drawings. 1st
2, a surface melting furnace 1 has a furnace body formed by loosely fitting an inner cylinder 2 and an outer cylinder 3, and a furnace ceiling 4 is formed as the bottom of the inner cylinder 2. A slag port 6 for discharging the molten slag 5 is formed at the bottom of the outer cylinder 3. Further, the inner cylinder 2 is provided to be able to rise and fall freely with respect to the fixed frame 7, and an inner cylinder lifting device 9 is interposed between the lifting frame 8 that supports the inner cylinder 2 and the fixed frame 7. Further, the outer cylinder 3 is attached to the fixed frame 7 with a receiving roller I.
The outer cylinder 3 is rotatably supported around a vertical axis via an outer cylinder 3, and a drive device II for rotationally driving the outer cylinder 3 is interposed between the outer cylinder 3 and the fixed frame 7.

そして、固定フレーム7には内筒2と外筒3の間に形成
される炉空間に連通して投入装置112が設けられてお
り、投入装置12は下水汚泥の乾燥ケーキなどからなる
被溶融物13を炉内に投入するためのもので、二重ダン
パー構造を有している。また、炉空間に投入された被溶
融物13は内筒2の周囲に環状に滞留し、スラグポート
6の周囲に安息角をなす逆円錐状の傾斜面14を形成す
る。そして、傾斜面14と炉天井部4とによって主燃焼
室15が形成されるとともに、主燃焼室15に火炎を放
射する複数の主燃焼バーナ16が炉天井部4に設けられ
ている。
A charging device 112 is provided on the fixed frame 7 so as to communicate with the furnace space formed between the inner cylinder 2 and the outer cylinder 3. 13 into the furnace, and has a double damper structure. Further, the material to be melted 13 charged into the furnace space accumulates in an annular shape around the inner cylinder 2, and forms an inverted conical inclined surface 14 having an angle of repose around the slag port 6. A main combustion chamber 15 is formed by the inclined surface 14 and the furnace ceiling 4, and a plurality of main combustion burners 16 that radiate flames into the main combustion chamber 15 are provided in the furnace ceiling 4.

そして、外筒3の下方にはスラグポート6の直下に位置
して分離炉17が設けられており、分離炉17の内部に
は水平方向に延びる円筒状の炉空間18が形成されてい
る。また、分離炉I7とスラグボ・−トロは、溶融スラ
グ5とともにスラグポート6から排出される排ガス19
が炉空間18に接線方向から流入するように連通されて
いる。さらに、炉空間I8は先細り状に形成されており
、分離炉17の先端側にはスラグ排出口20が形成され
るとともに、補助バーナ21が設けられている。
A separation furnace 17 is provided below the outer cylinder 3 and located directly below the slag port 6, and a cylindrical furnace space 18 extending horizontally is formed inside the separation furnace 17. In addition, the separation furnace I7 and the slag port 19 are connected to the exhaust gas 19 discharged from the slag port 6 together with the molten slag 5.
is communicated with the furnace space 18 so as to flow into the furnace space 18 from a tangential direction. Further, the furnace space I8 is formed in a tapered shape, and a slag discharge port 20 is formed at the front end side of the separation furnace 17, and an auxiliary burner 21 is provided.

そして、分離炉17は排煙口22を通して煙道23に連
通し、煙道23は排ガス処理装置24に連通しており、
煙道23の内部は負圧に維持されている。また、分離炉
17には排煙口22の開[コ周幹部に位置して円筒状の
ガイド筒25が設けられるとともに、空気供給口2Gが
形成されている。
The separation furnace 17 communicates with a flue 23 through a smoke exhaust port 22, and the flue 23 communicates with an exhaust gas treatment device 24.
The inside of the flue 23 is maintained at negative pressure. Further, the separation furnace 17 is provided with a cylindrical guide tube 25 located at the circumference of the opening of the smoke exhaust port 22, and an air supply port 2G is formed.

以下、Jc記構成にお0る作用に・ついて説明′する。The effects of the Jc configuration will be explained below.

投入装置12から炉空間に被溶融物13を投入し2、炉
天井部4の下方に主燃焼室15を形成する。そして、主
燃焼バーナ16により被溶融物13に点火して空気比0
.8〜・0.9で燃焼させ、以後主燃焼バーナIGによ
る加熱および被溶融物13の自燃による加熱によってX
fユ燃焼室15における燃焼m1η′を1300〜□ 
1500℃に維持する。燃焼温度の制御は、主燃焼バ一
一−J−IGの燃料制御を行うか、もしくは内筒昇降装
置9による内筒2の昇降によって主燃焼室15の空間容
積を変化させることにより行われる。
A material to be melted 13 is charged into the furnace space from a charging device 12, and a main combustion chamber 15 is formed below the furnace ceiling 4. Then, the main combustion burner 16 ignites the material 13 to be melted and the air ratio becomes 0.
.. X
The combustion m1η' in the fyu combustion chamber 15 is set to 1300~□
Maintain at 1500°C. The combustion temperature is controlled by controlling the fuel of the main combustion chamber 1-J-IG or by changing the space volume of the main combustion chamber 15 by raising and lowering the inner cylinder 2 using the inner cylinder lifting device 9.

そして、通常運転状態において、被溶融物13は主燃焼
室15に接する傾斜面14の表面側から溶融し2、溶融
した溶融スラグ5が傾斜面14に沿って流下し、スラグ
ポート6から分離炉18に滴下される。また、傾斜面1
4には、駆動装置1Nによる外筒3の回転により内筒2
の下端周囲から切り崩される被溶融物13が連続的に供
給される。
Under normal operating conditions, the material to be melted 13 is melted from the surface side of the inclined surface 14 in contact with the main combustion chamber 15 2, and the molten slag 5 flows down along the inclined surface 14 and flows from the slag port 6 into the separation furnace. 18. Also, the inclined surface 1
4, the inner cylinder 2 is rotated by the rotation of the outer cylinder 3 by the drive device 1N.
A material to be melted 13 is continuously supplied to be cut down from around the lower end of the melting material.

そして、スラグポート6から滴下される溶融スラグ5は
排ガス19とともに分離炉17の炉空間18内に接線力
向からづイクロン流入速度゛に近い15−2015−2
Oで流入し、分離炉17の内周面に沿って旋回流となっ
て流動する。このとき、ガイド筒25は排ガス19を炉
空間18の内周面に沿うように案内するとともに、炉空
間18に流入した排ガスI9が直接煙道に流入すること
を抑止する。
The molten slag 5 dripped from the slag port 6 enters the furnace space 18 of the separation furnace 17 together with the exhaust gas 19 from the tangential force direction at an inflow velocity close to 15-2015-2
It flows in as a swirling flow along the inner circumferential surface of the separation furnace 17. At this time, the guide tube 25 guides the exhaust gas 19 along the inner peripheral surface of the furnace space 18 and prevents the exhaust gas I9 that has flowed into the furnace space 18 from directly flowing into the flue.

ぞし、で、旋回流によってサイクロンと同様の作用が生
じ、比重の大きい液滴状の溶融スラグ5が分離炉I7の
内面に沿って層状に滞留し、排ガス19と分離される。
Then, the swirling flow causes an action similar to a cyclone, and the molten slag 5 in the form of droplets with a large specific gravity stays in a layer along the inner surface of the separation furnace I7 and is separated from the exhaust gas 19.

さらに、旋回流によって排ガス19中の未燃焼ガスがサ
イクロンバーナのように炉空間18内で高負荷燃焼する
とともに、分離炉17の内周面に滞留する溶融スラグ5
に対して主燃焼室15における輻射熱がスラグポート6
を通して照射され、分離炉17における炉内温度がスラ
グ5の流動性を保に必要な高温度(1400〜1500
℃)に維持される。このとき、高負荷燃焼に必要であれ
ば、空気供給口26から少量の空気を供給するとともに
、補助パーサ2Iから燃料を供給する。
Further, due to the swirling flow, unburned gas in the exhaust gas 19 is burned under high load in the furnace space 18 like a cyclone burner, and the molten slag 5 remains on the inner peripheral surface of the separation furnace 17.
The radiant heat in the main combustion chamber 15 is
irradiated through the separation furnace 17, the furnace temperature in the separation furnace 17 is at a high temperature (1400 to 1500) necessary to maintain the fluidity of the slag 5.
℃). At this time, if necessary for high-load combustion, a small amount of air is supplied from the air supply port 26 and fuel is supplied from the auxiliary parser 2I.

このとにより、分離炉I7の内周面に層状に滞留する溶
融スラグ5の流動性の経時低下が防止されるとともに、
溶融スラグ5が脱泡を行うに要する十分な時間と、温度
が確保されるので、分離炉17より取り出して固化した
スラグはポーラス状とならす、適性冷却速度をうえられ
て緻密で大きな強度を有する良質なものとなる。さらに
、被溶融物I3の未燃分が分離炉17内に流入し、たと
し、ζも、炉内温度が高温度に維楯されることにより、
未燃分は完全燃焼スラグ化される。また、高負荷燃焼に
よる未燃ガスの完全燃焼によって排ガスの低NO8化が
図られる。
This prevents the fluidity of the molten slag 5 that remains in layers on the inner peripheral surface of the separation furnace I7 from decreasing over time, and
Since sufficient time and temperature are ensured for the molten slag 5 to degas, the slag taken out from the separation furnace 17 and solidified becomes porous and has an appropriate cooling rate, making it dense and strong. It will be of good quality. Furthermore, suppose that the unburned content of the material to be melted I3 flows into the separation furnace 17, and ζ is also maintained at a high temperature by keeping the temperature inside the furnace high.
The unburned matter is completely burned and turned into slag. Furthermore, the complete combustion of unburned gas through high-load combustion reduces NO8 in the exhaust gas.

第3図は本発明の他の実施例を示すのであり、先の実施
例と同様の作用を行う部材については同一番号を付して
説明を省略する。第3図においでは、排煙「コ22の上
方に位置する分離炉17の壁面31が分離炉17の先端
側、つまりスラグ排出口20側に傾斜しており、この壁
面31の傾斜にJ、ってスラグポート6から流入する排
ガス22を炉空間18に案内し、煙道23への直接的な
流入を抑止する。
FIG. 3 shows another embodiment of the present invention, and members that perform the same functions as those in the previous embodiment are given the same reference numerals and their explanations will be omitted. In FIG. 3, the wall surface 31 of the separation furnace 17 located above the flue gas 22 is inclined toward the tip side of the separation furnace 17, that is, toward the slag discharge port 20. The exhaust gas 22 flowing in from the slag port 6 is guided into the furnace space 18 and prevented from directly flowing into the flue 23.

第4図は本発明のさらに他の実施例を示すものであり、
煙道23が分離炉17の先端側に連通して設けられてお
り、排煙口22の開[1周縁部は環杖に盛り土4がった
返り部32に形成されている。この返り部32によって
分離炉17の内周面に滞留する溶融スラグ5の煙道への
流出を防止するとともに、旋回流となって炉空間!8を
流動する排ガス19の流出を阻害して滞留時間を長くす
る。
FIG. 4 shows still another embodiment of the present invention,
A flue 23 is provided to communicate with the tip side of the separation furnace 17, and the opening of the smoke exhaust port 22 is formed at the periphery of the embankment 4 into a curved part 32. The return portion 32 prevents the molten slag 5 that remains on the inner circumferential surface of the separation furnace 17 from flowing out into the flue, and creates a swirling flow in the furnace space! The outflow of the exhaust gas 19 flowing through the exhaust gas 8 is inhibited to lengthen the residence time.

また、第5図に示すように、返り部32を円筒体33で
形成しても良い。この場合には、溶融スラグ5および排
ガス19の抑止がより確実に行われる。
Further, as shown in FIG. 5, the bent portion 32 may be formed of a cylindrical body 33. In this case, the molten slag 5 and exhaust gas 19 can be suppressed more reliably.

発明の効果 以上述べたように本発明によれば、分離炉の炉内空間を
円筒状に形成し、排ガスおよび溶融スラグを旋回流動さ
せることにより、比重の大きい液滴状の溶融スラグを分
離炉の内面に沿って層状に滞留させて排ガスから分離し
、排ガス中の未燃焼ガスを炉空間内で高負荷燃焼させる
とともに、主燃焼室における輻射熱をスラグポートを通
して溶融スラグに照射して分離炉における炉内温度をス
ラグの流動性を保に必要な高温度に維持することができ
、分離炉に滞留する溶融スラグの流動性の経時低下を防
止するとともに、溶融スラグが脱泡を行うに要する十分
な時間と、温度を確保して緻密で大きな強度を有する良
質なスラグを得ることができる。また、炉内温度を高温
に維持することによって被溶融物の未燃分を完全燃焼ス
ラグ化することができる。
Effects of the Invention As described above, according to the present invention, the inner space of the separation furnace is formed into a cylindrical shape, and the flue gas and molten slag are made to flow in a swirling manner. The unburned gas in the exhaust gas is combusted in a high load in the furnace space, and the molten slag is irradiated with radiant heat from the main combustion chamber through the slag port to separate it from the exhaust gas. The temperature inside the furnace can be maintained at a high temperature necessary to maintain the fluidity of the slag, preventing the fluidity of the molten slag staying in the separation furnace from decreasing over time, and keeping the temperature high enough for the molten slag to defoam. It is possible to obtain high-quality slag that is dense and has great strength by ensuring a suitable time and temperature. Further, by maintaining the temperature inside the furnace at a high temperature, the unburned content of the material to be melted can be completely converted into slag.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す全体構成図、第2図は
第1図のA−A矢視断面図、第3図は本発明の他の実施
例を示す全体構成図、第4図は本発明のさらに他の実施
例を示す全体構成図、第5図は本発明のさらに他の実施
例を示す全体構成図である。 1・・・表面溶融炉、2・・・内筒、3・・・外筒、5
・・・溶融スラグ、6・・・スラグポート、13・・・
被溶融物、17・・・分離炉、18・・・炉内空間。
FIG. 1 is an overall configuration diagram showing one embodiment of the present invention, FIG. 2 is a sectional view taken along the line A-A in FIG. FIG. 4 is an overall configuration diagram showing still another embodiment of the present invention, and FIG. 5 is an overall configuration diagram showing still another embodiment of the invention. 1...Surface melting furnace, 2...Inner cylinder, 3...Outer cylinder, 5
... Molten slag, 6... Slag port, 13...
Material to be melted, 17... Separation furnace, 18... Furnace interior space.

Claims (1)

【特許請求の範囲】[Claims] 1、表面式溶融炉のスラグポートの直下に、スラグポー
トの下端開口から滴下する溶融スラグを捕集する分離炉
を煙道に連通して配置するとともに、分離炉の内部に形
成される炉空間を水平方向に延びる円筒状に形成し、溶
融スラグとともにスラグポートから排出される排ガスが
炉空間に接線方向から流入するようにスラグポートと分
離炉を連通させたことを特徴とする表面溶融炉のスラグ
処理装置。
1. Directly below the slag port of the surface melting furnace, a separation furnace is placed in communication with the flue to collect the molten slag dripping from the lower end opening of the slag port, and a furnace space is formed inside the separation furnace. A surface melting furnace characterized in that the slag port is formed into a cylindrical shape extending in the horizontal direction, and the slag port and the separation furnace are communicated so that the exhaust gas discharged from the slag port together with the molten slag flows into the furnace space from a tangential direction. Slag processing equipment.
JP6149690A 1990-03-13 1990-03-13 Slag disposal device of surface melting furnace Pending JPH03263510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6149690A JPH03263510A (en) 1990-03-13 1990-03-13 Slag disposal device of surface melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6149690A JPH03263510A (en) 1990-03-13 1990-03-13 Slag disposal device of surface melting furnace

Publications (1)

Publication Number Publication Date
JPH03263510A true JPH03263510A (en) 1991-11-25

Family

ID=13172762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6149690A Pending JPH03263510A (en) 1990-03-13 1990-03-13 Slag disposal device of surface melting furnace

Country Status (1)

Country Link
JP (1) JPH03263510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3124863A4 (en) * 2014-03-26 2017-11-01 Kubota Corporation Surface melting furnace and method for operating surface melting furnace

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244113A (en) * 1988-08-05 1990-02-14 Tsukishima Kikai Co Ltd Method and device of removing floating dust in high temperature atmosphere

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244113A (en) * 1988-08-05 1990-02-14 Tsukishima Kikai Co Ltd Method and device of removing floating dust in high temperature atmosphere

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3124863A4 (en) * 2014-03-26 2017-11-01 Kubota Corporation Surface melting furnace and method for operating surface melting furnace

Similar Documents

Publication Publication Date Title
US5014631A (en) Cyclone furnace
CN105541076B (en) A kind of municipal sludge vertical drying burning facility
JPH03263510A (en) Slag disposal device of surface melting furnace
JPS6118086B2 (en)
CN210267927U (en) Alloy heating furnace
JPH0730898B2 (en) Incinerator for special waste
JPH054565B2 (en)
JPH0774689B2 (en) Method for slag conversion of hydrous sludge
CN205368098U (en) Vertical stoving incinerator of municipal sludge
JP3575785B2 (en) Method and apparatus for treating fall ash in secondary combustion chamber
GB2034445A (en) Fluidised bed combustion apparatus
JPS6240607B2 (en)
JPH01234712A (en) Processing unit for incineration and coal ashes
JPS621549Y2 (en)
JPS5842747Y2 (en) Combustible waste processing equipment
JPS621551Y2 (en)
JPH08595Y2 (en) Damper structure of slag slag device
JP3851031B2 (en) Melting furnace
JP3430870B2 (en) Combustible waste treatment equipment
KR820001572B1 (en) Incinerator
JP2001201035A (en) Burner type ash fusing facility
JPS6119309Y2 (en)
JPH05215464A (en) Scrap melting and separating device
JPS6349128B2 (en)
JPH0579225U (en) Incineration ash melting treatment device