JPH03262539A - Method and catalyst for producing aromatic hydrocarbon - Google Patents

Method and catalyst for producing aromatic hydrocarbon

Info

Publication number
JPH03262539A
JPH03262539A JP2059879A JP5987990A JPH03262539A JP H03262539 A JPH03262539 A JP H03262539A JP 2059879 A JP2059879 A JP 2059879A JP 5987990 A JP5987990 A JP 5987990A JP H03262539 A JPH03262539 A JP H03262539A
Authority
JP
Japan
Prior art keywords
platinum
catalyst
weak
compound
gallium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2059879A
Other languages
Japanese (ja)
Inventor
Satoyuki Inui
智行 乾
Akihiko Matsuoka
昭彦 松岡
Yoshimitsu Ishihara
吉満 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Nikko Kyodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nikko Kyodo Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP2059879A priority Critical patent/JPH03262539A/en
Publication of JPH03262539A publication Critical patent/JPH03262539A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To produce an aromatic hydrocarbon in a high conversion rate with high selectivity by bringing an aliphatic hydrocarbon and/or alicyclic hydrocarbon into contact with platinum-containing crystalline gallosilicate obtained by crystallizing a mixture containing a silicon compound and the like. CONSTITUTION:A mixture consisting of a silicon compound, a gallium compound, a platinum compound, an alkali metal salt and water is crystallized to form platinum-containing crystalline gallosilicate having such a structure that aluminum of ZSM-5 type zeolite is substituted with gallium and platinum. This catalyst is used to obtain an aromatic hydrocarbon from a 2-7C aliphatic hydrocarbon and/or alicyclic hydrocarbon in a high conversion rate with high selectivity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、炭素数2〜7の脂肪族炭化水素及び/又は脂
環族炭化水素を主成分とする原料を、白金を含有する結
晶性ガロシリケートと接触させて芳香族炭化水素を製造
する方法及びその触媒に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to converting a raw material mainly composed of an aliphatic hydrocarbon and/or alicyclic hydrocarbon having 2 to 7 carbon atoms into a platinum-containing crystalline material. The present invention relates to a method for producing aromatic hydrocarbons by contacting them with gallosilicate, and a catalyst thereof.

[従来の技術] 石油製品の改質等の目的で脂肪族炭化水素及び/又は脂
環族炭化水素を芳香族炭化水素に転化する多くの方法が
提案されており、その中でゼオライトZSM−5のアル
ミニウムをガリウムで置換した構造を有するガロシリケ
ートと呼ばれるゼオライト触媒あるいはそれに白金を担
持した触媒を用いてパラフィン、オレフィン及び/又は
ナフテンからなる炭化水素を芳香族化合物に転化する方
法が既に知られている(特開昭62−81329号公報
)。
[Prior Art] Many methods have been proposed for converting aliphatic hydrocarbons and/or alicyclic hydrocarbons into aromatic hydrocarbons for the purpose of reforming petroleum products, etc. Among them, zeolite ZSM-5 There is already a known method for converting hydrocarbons consisting of paraffins, olefins, and/or naphthenes into aromatic compounds using a zeolite catalyst called gallosilicate, which has a structure in which aluminum is replaced with gallium, or a catalyst in which platinum is supported on the zeolite catalyst. (Japanese Unexamined Patent Publication No. 62-81329).

[発明が解決しようとする課題] しかしガロシリケートは活性が低いため原料炭化水素の
転化率が低い。これに白金を担持した触媒は活性が高く
、高い転化率を与えるが、エタン、プロパンなどの低級
パラフィンを多く副生ずるため、芳香族炭化水素への選
択率が低い欠点があった。
[Problems to be Solved by the Invention] However, since gallosilicate has low activity, the conversion rate of feedstock hydrocarbons is low. Catalysts with platinum supported on them have high activity and give a high conversion rate, but they have the disadvantage of low selectivity to aromatic hydrocarbons because they produce a lot of lower paraffins such as ethane and propane as by-products.

本発明者らは、炭素数2〜7の脂肪族炭化水素及び/又
は脂環族炭化水素から高選択率でかつ高転化率で芳香族
炭化水素を製造するための触媒毒こついて鋭意検討した
結果、ケイ素化合物、ガリウム化合物および白金化合物
を含む混合物を結晶化させて得られ、ZSM−5型ゼオ
ライト(アルミノシリケート)のアルミニウムをガリウ
ムおよび白金で置換した構造からなる、白金を有する結
晶性ガロシリケートが、活性が高くかつ芳香族選択率が
高い触媒であることを見出した。
The present inventors have conducted intensive studies on catalyst poisoning for producing aromatic hydrocarbons with high selectivity and high conversion rate from aliphatic hydrocarbons and/or alicyclic hydrocarbons having 2 to 7 carbon atoms. As a result, a crystalline gallosilicate containing platinum is obtained by crystallizing a mixture containing a silicon compound, a gallium compound, and a platinum compound, and has a structure in which the aluminum of ZSM-5 type zeolite (aluminosilicate) is replaced with gallium and platinum. was found to be a catalyst with high activity and high aromatic selectivity.

[課題を解決するための手段] すなわち本発明は、 炭素数2〜7の脂肪族炭化水素及び/又は脂環族炭化水
素をケイ素化合物、ガリウム化合物および白金化合物を
含む混合物を結晶化させて得られる、白金を含有する結
晶性ガロシリケートと接触させることを特徴とする芳香
族炭化水素の製造方法及び、 ケイ素化合物、ガリウム化合物、白金化合物、アルカリ
金属塩及び水からなる混合液を、pH9〜12.100
〜220℃の温度で、3〜200時間保持して得られる
、白金を含有する結晶性ガロシリケートを酸型として焼
成するか、または焼成後に酸型としたことからなる芳香
族炭化水素製造用の触媒である。
[Means for Solving the Problems] That is, the present invention provides an aliphatic hydrocarbon and/or alicyclic hydrocarbon having 2 to 7 carbon atoms obtained by crystallizing a mixture containing a silicon compound, a gallium compound, and a platinum compound. A method for producing an aromatic hydrocarbon, which is characterized in that it is brought into contact with a crystalline gallosilicate containing platinum; .100
For the production of aromatic hydrocarbons, the crystalline gallosilicate containing platinum obtained by holding at a temperature of ~220°C for 3 to 200 hours is fired as an acid form, or is made into an acid form after firing. It is a catalyst.

陽イオンを含有する結晶性アルミノシリケートはゼオラ
イトとして天然品および合成品で知られている。アルミ
ノシリケートはSi O4四面体とAl2O4四面体が
酸素原子を共有して架橋し酸素原子に対するアルミニウ
ムおよびケイ素原子の比率が1:2である3次元の骨格
構造を有している。
Crystalline aluminosilicates containing cations are known as zeolites in natural and synthetic forms. Aluminosilicate has a three-dimensional skeletal structure in which Si 2 O 4 tetrahedrons and Al 2 O 4 tetrahedra are crosslinked by sharing oxygen atoms, and the ratio of aluminum and silicon atoms to oxygen atoms is 1:2.

一方本発明で用いる白金を含有する結晶性ガロシリケー
トは、アルミノシリケートZSM−5のアルミニウムを
ガリウムおよび白金で置換した構造を有するもので、ケ
イ素、ガリウムおよび白金原子が酸素を共有して架橋し
結晶性アルミノシリケートと同じ骨格構造を有する。ケ
イ素、ガリウムあるいは白金原子のすべてが必ずしも同
一の結晶構造を構成する必要はなく、それらの1部がそ
れぞれの酸化物あるいはイオンなどの他の形態をとって
共存しても差し支えない。
On the other hand, the platinum-containing crystalline gallosilicate used in the present invention has a structure in which the aluminum of aluminosilicate ZSM-5 is replaced with gallium and platinum, and silicon, gallium, and platinum atoms share oxygen and cross-link to form a crystalline gallosilicate. It has the same skeletal structure as aluminosilicate. All silicon, gallium, or platinum atoms do not necessarily have to constitute the same crystal structure, and some of them may coexist in other forms such as oxides or ions.

本発明の白金を含有する結晶性ガロシリケート中のS 
i / P を原子比あるいは、S i / G a原
子比は特に限定されない、しかし、好適にはSi/pt
の原子比は100〜220の範囲、Si/Gaの原子比
は15〜1000の範囲のものを使用できる。
S in crystalline gallosilicate containing platinum of the present invention
The atomic ratio of i/P or the atomic ratio of Si/Ga is not particularly limited, but is preferably Si/pt.
The atomic ratio of Si/Ga can be in the range of 100 to 220, and the atomic ratio of Si/Ga can be in the range of 15 to 1000.

S i / P tの原子比が100より小さいと、触
媒中の白金の利用効率が低く、一方、同原子比が220
より大きいと触媒の活性が十分でない。
When the atomic ratio of S i / P t is less than 100, the utilization efficiency of platinum in the catalyst is low;
If it is larger, the activity of the catalyst will not be sufficient.

またS i / G aの原子比が15より小さいと結
晶の形成が悪く触媒の経時劣化が速い。一方、同原子比
が1000より大きいと芳香族の選択率が低い。
Furthermore, if the atomic ratio of S i /G a is smaller than 15, crystal formation is poor and the catalyst deteriorates quickly over time. On the other hand, if the atomic ratio is greater than 1000, the aromatic selectivity will be low.

本発明に用いる白金を含有する結晶性ガロシリケートは
ZSM−5型ゼオライトに類似した第1表に示すX線回
折図を有するものが好ましい。
The platinum-containing crystalline gallosilicate used in the present invention preferably has an X-ray diffraction pattern shown in Table 1 similar to ZSM-5 type zeolite.

第  1  表 アルミノジンコシリケートの粉末X線回折格子面間隔(
d値)   相対強度 11.2±0.3強 10.1±0,3強 5.99±0.2弱 5.58±0.1弱 5.02±o、i弱 4.62士0908    弱 4.27±0.08弱 3.85±0.07強 3.72±0.05強 3.65±0.05弱 3.05±0.03弱 2.99±0.03弱 白金を含有する結晶性ガロシリケートは、ケイ素化合物
、ガリウム化合物、白金化合物、アルカリ金属塩、水、
そして場合により有機窒素化合物および酸を混合し、p
H9〜12で、100℃〜220℃の温度に3〜200
時間保って合成することができる。
Table 1 Powder X-ray diffraction lattice spacing of aluminozine cosilicate (
d value) Relative strength 11.2 ± 0.3 strong 10.1 ± 0, 3 strong 5.99 ± 0.2 weak 5.58 ± 0.1 weak 5.02 ± o, i weak 4.62 shi 0908 Weak 4.27±0.08 Weak 3.85±0.07 Strong 3.72±0.05 Strong 3.65±0.05 Weak 3.05±0.03 Weak 2.99±0.03 Weak Platinum Crystalline gallosilicate containing silicon compounds, gallium compounds, platinum compounds, alkali metal salts, water,
Then, optionally, an organic nitrogen compound and an acid are mixed, and p
H9-12, 3-200℃ at a temperature of 100℃-220℃
It can be synthesized over time.

ケイ素化合物の1例としてケイ酸ナトリウム、ケイ酸カ
リウム、シリカあるいはこれら2種以上の混合物などを
用いることができる。
As an example of the silicon compound, sodium silicate, potassium silicate, silica, or a mixture of two or more of these can be used.

ガリウム化合物として硫酸ガリウム、硝酸ガリウム、塩
化ガリウム、水酸化ガリウム、酸化ガリウム、あるいは
これら2種以上の混合物などを用いることができる。
As the gallium compound, gallium sulfate, gallium nitrate, gallium chloride, gallium hydroxide, gallium oxide, or a mixture of two or more of these can be used.

白金化合物として塩化第1白金酸、塩化第2白金酸、あ
るいはこれらのナトリウム塩、カリウム塩、アンモニウ
ム塩、あるいはテトラアミンジクロロ白金、あるいはこ
れら2種以上の混合物などを用いることができる。
As the platinum compound, monochloroplatinic acid, dichloroplatinic acid, their sodium salts, potassium salts, ammonium salts, tetraamine dichloroplatinum, or a mixture of two or more of these can be used.

アルカリ金属塩として、ナトリウム、カリウムの水酸化
物、塩化物、臭化物、硫酸塩、硝酸塩、酢酸塩、あるい
はこれら2種以上の混合物などを用いることができる。
As the alkali metal salt, sodium or potassium hydroxide, chloride, bromide, sulfate, nitrate, acetate, or a mixture of two or more of these can be used.

有機窒素化合物として、テトラプロピルアンモニウム、
テトラブチルアンモニウム、トリプロピルメチルアンモ
ニウムなどの第4級アンモニウムの水酸化物、臭化物、
塩化物、あるいは、トリプロピルアミン、トリブチルア
ミン、モルホリンなどのアミン、トリエタノールアミン
、ジェタノールアミンなどのアミノアルコール、アセト
アミド、プロピオンアミドなどのアミド、メチル尿素、
1,3−ジメチル尿素などのアルキル尿素、アセトニト
リル、プロピオニトリルなどのニトリルあるいはこれら
の2種以上の混合物などを用いることができる。
As organic nitrogen compounds, tetrapropylammonium,
Quaternary ammonium hydroxides, bromides, such as tetrabutylammonium and tripropylmethylammonium,
Chlorides or amines such as tripropylamine, tributylamine, morpholine, amino alcohols such as triethanolamine and jetanolamine, amides such as acetamide and propionamide, methylurea,
Alkylureas such as 1,3-dimethylurea, nitriles such as acetonitrile and propionitrile, or mixtures of two or more thereof can be used.

酸として、硫酸、硝酸、塩酸、酢酸、リン酸、あるいは
これら2種以上の混合物を用いることができる。
As the acid, sulfuric acid, nitric acid, hydrochloric acid, acetic acid, phosphoric acid, or a mixture of two or more of these can be used.

原料としてここに例示したものに限られるものではない
The raw materials are not limited to those exemplified here.

合成された白金を含有するガロシリケートはイオン交換
性であり、陽イオンの大部分をH′−イオンに交換して
用いることができる。交換に先だって合成された白金を
含有する結晶性ガロシリケートを例えば空気中で540
℃で焼成してもよい。
The synthesized platinum-containing gallosilicate is ion-exchangeable and can be used by exchanging most of the cations with H'-ions. Prior to exchange, the synthesized platinum-containing crystalline gallosilicate is heated, e.g.
It may be baked at ℃.

H″″″イオン交換は、硝酸、塩酸、硫酸などの水溶液
に浸けることにより、あるいはアンモニウム塩水溶液に
浸けてアンモニウムイオンに交換したものを焼成するこ
とにより行なうことができる。これらのイオン交換にお
いて、水溶液に浸けて加熱、減圧などにより気体を除く
操作を加えてもよい。
H'''' ion exchange can be carried out by immersing the material in an aqueous solution such as nitric acid, hydrochloric acid, or sulfuric acid, or by immersing it in an aqueous ammonium salt solution and firing the product that has been exchanged with ammonium ions. In these ion exchanges, It may also be immersed in an aqueous solution to remove gas by heating, reducing pressure, or the like.

白金を含有する結晶性ガロシリケートはそのままでも、
あるいは造粒剤を加えて成形しても触媒として用いるこ
とができる。造粒剤としてはシリカ、アルミナ、粘土、
無機塩、有機高分子、界面活性剤など一般に知られてい
るものを使用できる。
Crystalline gallosilicate containing platinum can be used as is,
Alternatively, it can be used as a catalyst by adding a granulating agent and molding it. Granulating agents include silica, alumina, clay,
Generally known materials such as inorganic salts, organic polymers, and surfactants can be used.

このような白金を含有する結晶性ガロシリケートは炭素
数2〜7の脂肪族炭化水素及び/又は脂環族炭化水素か
ら芳香族炭化水素を製造する触媒として用いられるが、
炭素数2〜7の脂肪族炭化水素としては、エタン、プロ
パン、n−ブタン、i−ブタン、n−ペンタン、i−ペ
ンタン、ネオペンタン、n−へキサン、メチルペンタン
、ジメチルブタン、n−へブタン、メチルヘキサン、ジ
メチルペンタンなどの飽和炭化水素、エチレタ、プロピ
レン、ブテン、ブタジェン、ペンテン、ペンタジェン、
ヘキセン、ヘキサジエン、ヘプテン、ヘプタジエン、シ
クロペンテン、メチルシクロペンテン、シクロヘキセン
、メチルシクロヘキセン、ヘクロヘブテン、シクロヘキ
サジエン、メチルシクロヘキサジエンなどの不飽和炭化
水素が含まれる。
Such crystalline gallosilicate containing platinum is used as a catalyst for producing aromatic hydrocarbons from aliphatic hydrocarbons and/or alicyclic hydrocarbons having 2 to 7 carbon atoms.
Examples of aliphatic hydrocarbons having 2 to 7 carbon atoms include ethane, propane, n-butane, i-butane, n-pentane, i-pentane, neopentane, n-hexane, methylpentane, dimethylbutane, n-hebutane. , saturated hydrocarbons such as methylhexane, dimethylpentane, ethyreta, propylene, butene, butadiene, pentene, pentadiene,
Includes unsaturated hydrocarbons such as hexene, hexadiene, heptene, heptadiene, cyclopentene, methylcyclopentene, cyclohexene, methylcyclohexene, heclohebutene, cyclohexadiene, methylcyclohexadiene.

また脂環族炭化水素としては、シクロベンクン、メチル
シクロペンタン、シクロヘキサン、メチルシクロヘキサ
ン、シクロヘプタン、エチルシクロペンクンなどを挙げ
ることができる。
Examples of alicyclic hydrocarbons include cyclobencune, methylcyclopentane, cyclohexane, methylcyclohexane, cycloheptane, and ethylcyclopenkune.

反応に供給される原料は上記の炭素数2〜7の脂肪族炭
化水素及び/又は脂環族炭化水素を少なくとも50重量
%含有するものであり、上記以外の成分、例えばベンゼ
ン、トルエン、炭素数Ca以上の炭化水素、メタノール
、ジメチルエーテルなどが混入していても差しつかえな
い。
The raw material supplied to the reaction contains at least 50% by weight of the above aliphatic hydrocarbons and/or alicyclic hydrocarbons having 2 to 7 carbon atoms, and contains components other than the above, such as benzene, toluene, and carbon atoms. There is no problem even if hydrocarbons of Ca or higher, methanol, dimethyl ether, etc. are mixed.

芳香族化反応は350〜600℃の温度範囲で行なうの
が適当である。反応温度が350℃より低いと芳香族炭
化水素の収率が十分でなく、方、600℃より高いとコ
ーク生成による触媒性能の劣化が速い。 原料の供給速
度は原料の組成、反応温度、触媒の種類によるが、重量
時間空間速度が0.1〜10Hr−’の範囲が適当であ
る。重量時間空間速度が0.1Hr”より小さいと芳香
族炭化水素の製造効率が低く、一方、10Hr−’より
大きいと芳香族炭化水素の収率が十分でない。
The aromatization reaction is suitably carried out at a temperature range of 350 to 600°C. If the reaction temperature is lower than 350°C, the yield of aromatic hydrocarbons will be insufficient, while if it is higher than 600°C, the catalyst performance will deteriorate rapidly due to coke formation. The feed rate of the raw materials depends on the composition of the raw materials, the reaction temperature, and the type of catalyst, but it is appropriate that the weight hourly space velocity is in the range of 0.1 to 10 Hr-'. If the weight hourly space velocity is less than 0.1 Hr'', the production efficiency of aromatic hydrocarbons will be low, while if it is greater than 10 Hr-', the yield of aromatic hydrocarbons will be insufficient.

芳香族化反応の圧力は0〜10 k g / c rr
r・Gの圧力が適当である。10kg/crrf・6以
上の圧力では芳香族炭化水素の収率が高くない。反応原
料である炭素数2〜7の脂肪族炭化水素はそのまま供給
してもよいが、水素、窒素、二酸化炭素とともに供給し
てもよい。
The pressure of aromatization reaction is 0-10 kg/c rr
A pressure of r.G is appropriate. At a pressure of 10 kg/crrf·6 or more, the yield of aromatic hydrocarbons is not high. The aliphatic hydrocarbon having 2 to 7 carbon atoms, which is a raw material for the reaction, may be supplied as it is, or may be supplied together with hydrogen, nitrogen, or carbon dioxide.

[実施例] 以下、実施例により本発明を具体的に説明する。[Example] Hereinafter, the present invention will be specifically explained with reference to Examples.

丈1糺1 蒸留水104mJ2に塩化ナトリウム26g、テトラプ
ロピルアンモニウムプロミド1.9gを溶解したC液に
、蒸留水60m12に硫酸ガリウム1.91g、テトラ
アミンジクロロ白金0.49g、テトラプロピルアンモ
ニウムプロミド5.6g、濃硫酸5.3gを溶かしたA
液と、蒸留水45mβに水ガラス3号69gを溶かした
B液を撹拌しながら同時にかつ連続的に加えた。
Length 1 glue 1 Add 26 g of sodium chloride and 1.9 g of tetrapropylammonium bromide to 104 mJ2 of distilled water, add 1.91 g of gallium sulfate, 0.49 g of tetraamine dichloroplatinum, and 1.9 g of tetrapropylammonium bromide to 60 m12 of distilled water. A in which 5.6g and 5.3g of concentrated sulfuric acid were dissolved.
The solution and Solution B, which was prepared by dissolving 69 g of Water Glass No. 3 in 45 mβ of distilled water, were added simultaneously and continuously while stirring.

その際、混合液のpHがlOに維持されるように水酸化
ナトリウムまたは硫酸を加えて調節した。
At that time, sodium hydroxide or sulfuric acid was added to adjust the pH of the mixture to maintain it at 1O.

この混合液からゲルを遠心分離で回収し、1時間擢漬し
、遠心分離による上澄液と合わせた。混合物をオートク
レーブに移し、1時間で160℃まで昇温し、撹拌しつ
つ引続き160℃ か ら210℃に250分間で昇温
した。放冷して固形物を取出し、水洗し、乾燥後540
℃で焼成して、第1表に示すX線回折図による格子面間
隔を有する白金を含有するガロシリケート18gが得ら
れた。これを硝酸アンモニウム水溶液に浸して陽イオン
をNH4+イオンで置換し、540℃で3.5時間焼成
してH型にし触媒Aを得た。この触μにおける原子比S
 i / P tは220.Si/Gaは20であった
The gel was recovered from this mixture by centrifugation, soaked for 1 hour, and combined with the supernatant obtained by centrifugation. The mixture was transferred to an autoclave and heated to 160°C over 1 hour, and then heated from 160°C to 210°C over 250 minutes while stirring. After cooling, take out the solid matter, wash it with water, and dry it.
18 g of platinum-containing gallosilicate having the lattice spacing according to the X-ray diffraction diagram shown in Table 1 was obtained by firing at .degree. This was immersed in an ammonium nitrate aqueous solution to replace the cations with NH4+ ions, and was calcined at 540° C. for 3.5 hours to form an H-type catalyst A. Atomic ratio S at this contact μ
i/Pt is 220. Si/Ga was 20.

次に触媒Aを充填し500℃に保った反応器に、反応原
料n−ブタンを窒素で20vo1%に希釈し、ガス時間
空間速度2000 Hr −’で流通させ、芳香族化反
応を行なった。反応器出口ガスを採取しガスクロマトグ
ラフィーでその組成を分析し、その分析値よりn−ブタ
ン転化率と各生成物の選択率を以下の式により計算した
Next, the reaction raw material n-butane was diluted with nitrogen to 20 vol % in a reactor filled with catalyst A and maintained at 500° C., and the mixture was passed through the reactor at a gas hourly space velocity of 2000 Hr −′ to carry out an aromatization reaction. The reactor outlet gas was collected and analyzed for its composition by gas chromatography, and from the analyzed values, the n-butane conversion rate and selectivity of each product were calculated using the following equations.

個々の生成物の選択率 n−ブタン転化率と各生成物の選択率を実施例2.3、
比較例1〜3とともに表2に示す。
Selectivity of individual products n-butane conversion and selectivity of each product are shown in Example 2.3.
It is shown in Table 2 together with Comparative Examples 1 to 3.

え五量ヱニュ 実施例1と同じ触媒Aを用い、原料炭化水素をn−ブタ
ンからプロパンに置き換えた以外は実施例1と同様に芳
香族化反応を行ない、プロパンの転化率を算出した。こ
れを実施例2とする。
The aromatization reaction was carried out in the same manner as in Example 1, except that the same catalyst A as in Example 1 was used and the raw hydrocarbon was replaced with propane from n-butane, and the conversion rate of propane was calculated. This is referred to as Example 2.

同様に実施例1におけるn−ブタンをエタンに置き換え
、芳香族化反応を行なった。これを実施例3とする。結
果を表2に示す。
Similarly, n-butane in Example 1 was replaced with ethane, and the aromatization reaction was carried out. This is referred to as Example 3. The results are shown in Table 2.

L艷豊1ニュ テトラアミンジクロロ白金を加えない以外は実施例1と
同じ方法で調製したH型ガロシリケートを触媒りとする
。触媒りをテトラアミンジクロロ白金水溶液に浸して白
金を0.5重量%担持したものを触媒Bとする。
The catalyst was H-type gallosilicate prepared in the same manner as in Example 1 except that no tetraamine dichloroplatinum was added. Catalyst B is prepared by soaking a catalyst in an aqueous tetraamine dichloroplatinum solution to support 0.5% by weight of platinum.

触媒Aの代わりに触媒Bを用いる以外は実施例1と同様
にn−ブタンの芳香族化反応を行なったものを比較例1
とし、実施例2と同様にプロパンの芳香族化反応を行な
ったものを比較例2、実施例3と同様にエタンの芳香族
化反応を行なったものを比較例3とする。結果を表2に
示す。
Comparative Example 1 was obtained by carrying out the aromatization reaction of n-butane in the same manner as in Example 1 except that catalyst B was used instead of catalyst A.
Comparative Example 2 is a sample in which the aromatization reaction of propane was carried out in the same manner as in Example 2, and Comparative Example 3 is in which the aromatization reaction of ethane was carried out in the same manner as in Example 3. The results are shown in Table 2.

触媒Bによる芳香族化反応では転化率は高いが、本発明
の触媒Aに較べて、低級パラフィンの副生が多く、芳香
族炭化水素への選択率が充分でない。さらに触媒Aは触
媒Bに比べて、オレフィンの生成が多く、このオレフィ
ンは、低級パラフィンより芳香族化反応に好ましい原料
であり、接触時間を長くすれば、芳香族化合物の選択率
が向上することが期待できる。
Although the aromatization reaction using Catalyst B has a high conversion rate, compared to Catalyst A of the present invention, more lower paraffins are produced as by-products, and the selectivity to aromatic hydrocarbons is not sufficient. Furthermore, Catalyst A produces more olefins than Catalyst B, and this olefin is a more preferable raw material for the aromatization reaction than lower paraffins, and increasing the contact time improves the selectivity of aromatic compounds. can be expected.

え五皿工二1 反応温度を600℃にする以外は実施例2と同様に触媒
Aを用いてプロパンの芳香族化反応を行なったものを実
施例4とする。同じく、反応温度を550℃、500℃
にしたものをそれぞれ実施例5.6とする。実施例4に
おける転化率および生成物の選択率を実施例7、比較例
4.8とともに表3に示す。また、反応温度と転化率と
の関係を図1のAに示す。
Example 4 is an example in which the aromatization reaction of propane was carried out using Catalyst A in the same manner as in Example 2 except that the reaction temperature was changed to 600°C. Similarly, the reaction temperature was set to 550°C and 500°C.
Examples 5 and 6 are the results obtained in Example 5 and 6. The conversion rate and product selectivity in Example 4 are shown in Table 3 together with Example 7 and Comparative Examples 4.8. Further, the relationship between reaction temperature and conversion rate is shown in A of FIG.

1五皿ユニ1 テトラアミンジクロロ白金0.49 gの代わりに塩化
第2白金酸ナトリウム0.46 gを用いる以外は実施
例1と同じ方法で触媒を調製し、これを触媒Cとする。
A catalyst was prepared in the same manner as in Example 1 except that 0.46 g of sodium dichloroplatinate was used instead of 0.49 g of tetraamine dichloroplatinum, and this was designated as catalyst C.

この触媒のSL/Pt比は100であった。The SL/Pt ratio of this catalyst was 100.

触媒への代わりに触媒Cを用いる以外は実施例4.5.
6と同じ方法でプロパンの芳香族化反応を行なったもの
をそれぞれ実施例7,8.9とする6実施例7における
転化率および生成物の選択率を表3に示す。また、反応
温度と転化率との関係を図1のCに示す。
Example 4.5. but using catalyst C instead of catalyst.
Table 3 shows the conversion rate and product selectivity in Example 7, in which Examples 7, 8, and 9 were obtained by aromatizing propane in the same manner as in Example 6. Further, the relationship between reaction temperature and conversion rate is shown in C of FIG.

比笠藍±ニュ 触媒Bを用いる以外は実施例4,5.6と同じ方法でプ
ロパンの芳香族化反応反応を行なったものをそれぞれ比
較例4,5.6とする。また、反応温度450℃で行な
ったちのを比較例7とする。比較例4における転化率お
よび生成物の選択率を表3に示す、また、反応温度と転
化率との関係を図1のBに示す。
Comparative Examples 4 and 5.6 were obtained by carrying out the aromatization reaction of propane in the same manner as in Examples 4 and 5.6, except that Hikasa Ai±Nu Catalyst B was used. Further, Comparative Example 7 is a reaction conducted at a reaction temperature of 450°C. The conversion rate and product selectivity in Comparative Example 4 are shown in Table 3, and the relationship between reaction temperature and conversion rate is shown in FIG. 1B.

比」し阻1ニニ工」。The ratio is 1 and 1.

触媒りを用いる以外は比較例4,5,6.7と同じ方法
でプロパンの芳香族化反応を行ない、それぞれ比較例8
,9,10.11とする。比較例8における転化率およ
び生成物の選択率を表3に示す、また、反応温度と転化
率との関係を図1のDに示す。
The aromatization reaction of propane was carried out in the same manner as in Comparative Examples 4, 5, and 6.7 except that a catalyst was used, and Comparative Example 8 was obtained.
, 9, 10.11. The conversion rate and product selectivity in Comparative Example 8 are shown in Table 3, and the relationship between reaction temperature and conversion rate is shown in D of FIG.

[発明の効果] 本発明は、白金化合物を加えて結晶化反応を行なって得
られる白金を含有する結晶性ガロシリケートを含有する
触媒を用いたことにより、脂肪族炭化水素及び/又は脂
環族炭化水素から芳香族炭化水素が高い転化率と芳香選
択率で得られる工業的に有利な方法である。
[Effects of the Invention] The present invention uses a catalyst containing crystalline gallosilicate containing platinum, which is obtained by adding a platinum compound and performing a crystallization reaction. This is an industrially advantageous method for obtaining aromatic hydrocarbons from hydrocarbons with a high conversion rate and aromatic selectivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明および従来法の各種触媒によるプロパン
の芳香族化反応における反応温度とプロパン転化率との
関係を示す図である。
FIG. 1 is a diagram showing the relationship between reaction temperature and propane conversion rate in propane aromatization reactions using various catalysts of the present invention and conventional methods.

Claims (1)

【特許請求の範囲】 (1)炭素数2〜7の脂肪族炭化水素及び/又は脂環族
炭化水素をケイ素化合物、ガリウム化合物および白金化
合物を含む混合物を結晶化させて得られる白金を含有す
る結晶性ガロシリケートと接触させることを特徴とする
芳香族炭化水素の製造方法。 (2)白金を含有する結晶性ガロシリケートが下記に示
す粉末X線回折図を有するものである請求項1に記載の
芳香族炭化水素の製造方法。 格子面間隔(d値):相対強度 11.2±0.3:強 10.1±0.3:強 5.99±0.2:弱 5.58±0.1:弱 5.02±0.1:弱 4.62±0.08:弱 4.27±0.08:弱 3.85±0.07:強 3.72±0.05:強 3.65±0.05:弱 3.05±0.03:弱 2.99±0.03:弱 (3)ケイ素化合物、ガリウム化合物、白金化合物、ア
ルカリ金属塩及び水からなる混合液を、pH9〜12、
100〜220℃の温度で、3〜200時間保持して得
られる、白金を含有する結晶性ガロシリケートを酸型と
して焼成するか、または焼成後に酸型としたことからな
る芳香族炭化水素製造用の触媒。
[Scope of Claims] (1) Contains platinum obtained by crystallizing a mixture containing a silicon compound, a gallium compound, and a platinum compound from an aliphatic hydrocarbon and/or alicyclic hydrocarbon having 2 to 7 carbon atoms. A method for producing aromatic hydrocarbons, which comprises bringing them into contact with crystalline gallosilicate. (2) The method for producing aromatic hydrocarbons according to claim 1, wherein the crystalline gallosilicate containing platinum has a powder X-ray diffraction pattern shown below. Lattice spacing (d value): Relative strength 11.2±0.3: Strong 10.1±0.3: Strong 5.99±0.2: Weak 5.58±0.1: Weak 5.02± 0.1: Weak 4.62 ± 0.08: Weak 4.27 ± 0.08: Weak 3.85 ± 0.07: Strong 3.72 ± 0.05: Strong 3.65 ± 0.05: Weak 3.05±0.03: Weak 2.99±0.03: Weak (3) A mixed solution consisting of a silicon compound, a gallium compound, a platinum compound, an alkali metal salt, and water is heated to a pH of 9 to 12.
For the production of aromatic hydrocarbons, the crystalline gallosilicate containing platinum obtained by holding at a temperature of 100 to 220°C for 3 to 200 hours is fired as an acid form, or is made into an acid form after firing. catalyst.
JP2059879A 1990-03-13 1990-03-13 Method and catalyst for producing aromatic hydrocarbon Pending JPH03262539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2059879A JPH03262539A (en) 1990-03-13 1990-03-13 Method and catalyst for producing aromatic hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2059879A JPH03262539A (en) 1990-03-13 1990-03-13 Method and catalyst for producing aromatic hydrocarbon

Publications (1)

Publication Number Publication Date
JPH03262539A true JPH03262539A (en) 1991-11-22

Family

ID=13125877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2059879A Pending JPH03262539A (en) 1990-03-13 1990-03-13 Method and catalyst for producing aromatic hydrocarbon

Country Status (1)

Country Link
JP (1) JPH03262539A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281566A (en) * 1991-04-04 1994-01-25 Institut Francais Du Petrole Catalyst of the galloaluminosilicate type containing gallium, a noble metal of the platinum family and at least one additional metal, and its use in aromatizing hydrocarbons

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281566A (en) * 1991-04-04 1994-01-25 Institut Francais Du Petrole Catalyst of the galloaluminosilicate type containing gallium, a noble metal of the platinum family and at least one additional metal, and its use in aromatizing hydrocarbons
US5456822A (en) * 1991-04-04 1995-10-10 Institut Francais Du Petrole Catalyst of the galloaluminosilicate type containing gallium, a nobel metal of the platinum family and at least on additional metal, and its use in the aromatization of hydrocarbons

Similar Documents

Publication Publication Date Title
CA1181437A (en) Production of aromatics from ethane and/or ethylene
US5227558A (en) Aromatic alkylation process employing steam modified zeolite beta catalyst
US3763260A (en) Hydrocarbon conversion catalyst
US3812199A (en) Disproportionation of paraffin hydrocarbons
CA1128914A (en) Method of preparing improved catalysts and use thereof in hydrocarbon conversion reactions
US4497969A (en) Process for the production of catalysts based on crystalline aluminosilicates and the use of catalyst so produced
JPS60501357A (en) Steam-modified crystalline galloaluminosilicate, method for producing the same, and catalyst comprising steam-modified crystalline galloaluminosilicate
CA1274853A (en) Production of aromatics from ethane and/or ethylene
JPS6345646B2 (en)
JPS6132294B2 (en)
JP3179603B2 (en) Method for isomerizing n-olefin
US4968650A (en) ZSM-5 catalysts having predominantly framework gallium, methods of their preparation, and use thereof
JPS6241574B2 (en)
JPS623090B2 (en)
US4910357A (en) Alkylate upgrading
JPS60222428A (en) Catalytic conversion of hydrocarbon
JPH0376356B2 (en)
US5202513A (en) Process for producing aromatic hydrocarbons
JPH03262539A (en) Method and catalyst for producing aromatic hydrocarbon
US6245704B1 (en) Catalyst with a base of modified MFI zeolite, and its use in the isomerization of a C8 aromatic cut
US4499325A (en) Alkene conversion using AMS-1B crystalline borosilicate
NZ203202A (en) Isomerisation of aromatic c8 feed:zeolite catalyst of crystal size greater than 1 micron containing p+ and mg
JP3110560B2 (en) Method for producing aromatic hydrocarbon and catalyst thereof
JP3153342B2 (en) Method for producing aromatic hydrocarbon
EP0299392B1 (en) Process for production of crystalline galloalumino silicate and process for production of aromatic hydrocarbons