JPH0326251Y2 - - Google Patents

Info

Publication number
JPH0326251Y2
JPH0326251Y2 JP1985006433U JP643385U JPH0326251Y2 JP H0326251 Y2 JPH0326251 Y2 JP H0326251Y2 JP 1985006433 U JP1985006433 U JP 1985006433U JP 643385 U JP643385 U JP 643385U JP H0326251 Y2 JPH0326251 Y2 JP H0326251Y2
Authority
JP
Japan
Prior art keywords
water
cooling water
water jacket
cooling
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985006433U
Other languages
Japanese (ja)
Other versions
JPS61122322U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985006433U priority Critical patent/JPH0326251Y2/ja
Publication of JPS61122322U publication Critical patent/JPS61122322U/ja
Application granted granted Critical
Publication of JPH0326251Y2 publication Critical patent/JPH0326251Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 この考案は内燃機関の冷却装置とりわけ水冷式
の冷却装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to improvements in cooling systems for internal combustion engines, particularly water-cooled cooling systems.

従来の技術 一般に自動車用内燃機関の水冷式冷却装置とし
て強制循環加圧方式が多用されており、その一例
として第5図に示すようなインライン方式のもの
がある。
BACKGROUND OF THE INVENTION In general, a forced circulation pressurization system is often used as a water cooling system for an automobile internal combustion engine, and one example is an in-line system as shown in FIG.

概略を説明すれば、機関1のシリンダブロツク
2とシリンダヘツド3の内部に、連通孔4を介し
て連通するウオータジヤケツト5,6が夫々形成
されており、該各ウオータジヤケツト5,6で吸
熱した冷却水は通常運転時には、ウオータポンプ
7の作用により冷却水導出通路8を介してラジエ
ータ9に圧送されてここで放熱し、更に冷却水導
入通路12を介してシリンダブロツク側のウオー
タジヤケツト5へ強制的に導入されてシリンダヘ
ツド側のウオータジヤケツト6へと流動して機関
各部を冷却している。一方、冷間始動時等の低水
温時には、機関適正作動温度を保持するサーモス
タツト10の作動により冷却水導出通路8が閉塞
されるため、冷却水はラジエータ9を経由せずに
バイパス通路11を経由して各ウオータジヤケツ
ト5,6に循環するようになつている(自動車工
学全書第4巻ガソリンエンジン・(株)山海堂・昭和
55年7月20日発行・P359〜P360参照)。
Briefly, water jackets 5 and 6 are formed inside the cylinder block 2 and cylinder head 3 of the engine 1, respectively, and communicate with each other through a communication hole 4. During normal operation, the coolant that has absorbed heat is pumped to the radiator 9 via the coolant outlet passage 8 by the action of the water pump 7, where it radiates heat, and is further transferred to the water jacket on the cylinder block side via the coolant introduction passage 12. 5 and flows into the water jacket 6 on the cylinder head side to cool various parts of the engine. On the other hand, when the water temperature is low such as during a cold start, the cooling water outlet passage 8 is blocked by the operation of the thermostat 10 that maintains the engine's proper operating temperature, so the cooling water is routed through the bypass passage 11 without passing through the radiator 9. The water is circulated through the water jackets 5 and 6 (Automotive Engineering Complete Book Volume 4 Gasoline Engine, Sankaido Co., Ltd., Showa
Published July 20, 1955, see pages 359-360).

考案が解決しようとする問題点 ところで、内燃機関にあつては、周知のように
爆発燃焼の繰り返しによりシリンダヘツド3及び
シリンダブロツク2のアツパ・デツキ2a付近が
最も高温に晒されており、この付近の冷却が十分
に行なわれなければならない。一方、シリンダブ
ロツク2のロア・デツキ2b付近では、爆発燃焼
による直接的な影響を受けないため常時比較的低
温状態を保つており、上記シリンダヘツド3等ほ
どの十分な冷却が要求されない。
Problems that the invention aims to solve By the way, in the case of internal combustion engines, as is well known, the vicinity of the upper deck 2a of the cylinder head 3 and cylinder block 2 is exposed to the highest temperature due to repeated explosions and combustion; must be sufficiently cooled. On the other hand, the area near the lower deck 2b of the cylinder block 2 is not directly affected by explosive combustion and therefore remains relatively low temperature at all times, and does not require as much cooling as the cylinder head 3 and the like.

しかしながら、上記従来の冷却装置にあつて
は、ラジエータ9で十分に冷却された冷却水のほ
とんどが図中矢印で示すように、まずシリンダブ
ロツク2のロア・デツキ2b付近のウオータジヤ
ケツト5内に流入して該ロア・デツキ2b付近を
十分に吸熱・冷却した後にシリンダヘツド側のウ
オータジヤケツト6へ上昇流入するため、最も冷
却の必要なシリンダヘツド3付近の冷却作用が不
十分となる。この結果、過熱によるノツキング現
象を起こして燃焼効率の低下をもたらし、燃費が
悪化する。しかも、シリンダブロツク2のロア・
デツキ2b付近が不必要に冷却されて過冷却状態
となり、第2図に示すようにアツパ・デツキ2a
とロア・デツキ2bの温度差が大きくなる。この
ため、温度分布の不均一化による摩擦損失や燃費
の悪化を招来し、特特に多気筒機関では機関の前
後端部付近と中央付近でも温度差が大きくなり、
上記各問題点を招来している。また、実開昭58−
149517号公報に記載された考案のように、シリン
ダブロツク側ウオータジヤケツト内を貫通配置さ
れたウオータダクト及び該ウオータダクトの下流
端に設けられた感温式開閉弁を介してシリンダヘ
ツド側ウオータジヤケツト内に冷却水の大部分を
直接導入するものも提供されてはいる。しかし、
この考案は、冷間始動時にのみ冷却水の大部分を
直接シリンダヘツド側ウオータジヤケツト内の流
入させて暖機、暖房性能を向上させることを目的
とし、暖機完了後の通常運転時には感温式開閉弁
を閉成して、シリンダヘツド側ウオータジヤケツ
トへの冷却水の流入を遮断する一方、シリンダブ
ロツク側ウオータジヤケツトの下端部内に冷却水
を流入させるようになつている。このため、前記
従来と同様な通常運転時におけるシリンダヘツド
の十分な冷却効果が得られない等の問題を招来し
ている。
However, in the conventional cooling system described above, most of the cooling water that has been sufficiently cooled by the radiator 9 first flows into the water jacket 5 near the lower deck 2b of the cylinder block 2, as shown by the arrow in the figure. After flowing in and sufficiently absorbing heat and cooling the vicinity of the lower deck 2b, it rises and flows into the water jacket 6 on the cylinder head side, so that the cooling effect in the vicinity of the cylinder head 3, which is most in need of cooling, becomes insufficient. As a result, a knocking phenomenon occurs due to overheating, resulting in a decrease in combustion efficiency, resulting in poor fuel efficiency. Moreover, the lower cylinder block 2
The area around the deck 2b is unnecessarily cooled and becomes supercooled, and as shown in FIG.
The temperature difference between the lower deck 2b and the lower deck 2b increases. This leads to friction loss and deterioration of fuel efficiency due to uneven temperature distribution, and especially in multi-cylinder engines, there is a large temperature difference between the front and rear ends and the center of the engine.
This has led to each of the above problems. Also, Utsukai Showa 58-
As in the invention described in Japanese Patent No. 149517, the water jacket on the cylinder head side is connected to the cylinder head side through a water duct that extends through the water jacket on the cylinder block side and a temperature-sensitive on-off valve provided at the downstream end of the water duct. Some systems have been proposed which introduce most of the cooling water directly into the bucket. but,
This idea aims to improve warm-up and heating performance by allowing most of the cooling water to flow directly into the water jacket on the cylinder head side only during a cold start. The on-off valve is closed to block the flow of cooling water into the water jacket on the cylinder head side, while allowing the water to flow into the lower end of the water jacket on the cylinder block side. For this reason, problems such as the inability to obtain a sufficient cooling effect of the cylinder head during normal operation, similar to the above-mentioned prior art, have arisen.

問題点を解決するための手段 この考案は上記従来の問題点に鑑み案出された
もので、内燃機関のシリンダブロツク内に形成さ
れた第1のウオタージヤケツトと、シリンダヘツ
ド内に形成された第2のウオタージヤケツトと、
上記第1と第2のウオタージヤケツトを連通させ
る連通路と、一端部が上記第2のウオタージヤケ
ツトのウオータポンプ側前端部に接続されている
と共に、他端部がラジエータの下部に接続された
冷却水導入通路と、一端部が上記第2のウオター
ジヤケツトの後端部に接続されていると共に、他
端部がラジエータの上部に接続された冷却水導出
通路とを備え、少なくとも機関通常運転時に上記
冷却水導出通路からラジエータ内に流入した機関
冷却水を、上記冷却水導入通路を介して第2のウ
オータジヤケツト内に常時強制循環させる一方、
該第2のウオータジヤケツト内の機関冷却水を上
記連通路を介して第1のウオータジヤケツト内で
自然対流させたことを特徴としている。
Means for Solving the Problems This invention was devised in view of the above-mentioned conventional problems, and includes a first water jacket formed in the cylinder block of an internal combustion engine, and a first water jacket formed in the cylinder head. a second water jacket;
A communication path that communicates the first and second water jackets, one end of which is connected to the water pump side front end of the second water jacket, and the other end of which is connected to the lower part of the radiator. comprising a connected cooling water introduction passage, and a cooling water outlet passage whose one end is connected to the rear end of the second water jacket and whose other end is connected to the upper part of the radiator, At least during normal operation of the engine, the engine cooling water that has flowed into the radiator from the cooling water outlet passage is constantly forcedly circulated into the second water jacket via the cooling water introduction passage;
The engine cooling water in the second water jacket is characterized by natural convection in the first water jacket via the communication passage.

作 用 上記構成を有するこの考案によれば、暖機完了
後の通常運転時には、ウオータポンプの作用によ
りラジエータから機関に流入される冷却水は、冷
却水導入通路を介して直接シリンダヘツド側ウオ
ータジヤケツト内に導入され、そのまま該シリン
ダヘツド側ウオータジヤケツトの前端部から後端
部に流動して熱交換作用を十分に行なつた後、冷
却水導出通路の開口から取り出されて該冷却水導
出通路を介してラジエータに導かれる。このよう
に、シリンダヘツド側ウオータジヤケツト内のみ
に強制循環されるため、高温に晒されるシリンダ
ヘツド及びシリンダブロツクのアツパ・デツキ付
近が十分に冷却されることになる。
According to this invention having the above configuration, during normal operation after warm-up is completed, the cooling water flowing into the engine from the radiator by the action of the water pump is directly transferred to the water jet on the cylinder head side via the cooling water introduction passage. After being introduced into the cylinder head water jacket and flowing from the front end to the rear end of the water jacket on the cylinder head side to perform a sufficient heat exchange action, it is taken out from the opening of the cooling water outlet passage and the cooling water is discharged. It is led to the radiator through a passage. In this way, since the water is forced to circulate only within the water jacket on the cylinder head side, the cylinder head and the vicinity of the upper deck of the cylinder block, which are exposed to high temperatures, are sufficiently cooled.

一方、シリンダブロツク側ウオータジヤケツト
内の冷却水は、強制循環されることなく温度変化
に伴なう自然対流により上下に流動し、連通孔を
介してシリンダヘツド側ウオータジヤケツト内で
熱交換を行ないシリンダブロツクを冷却してい
る。これにより、シリンダブロツクの上下位置及
び各気筒間での温度差がなくなり全体の温度分布
が略均一になり、この結果機関各部の摩擦損失等
が低減されるのである。
On the other hand, the cooling water in the water jacket on the cylinder block side is not forced to circulate, but instead flows up and down due to natural convection as the temperature changes, and heat exchange occurs within the water jacket on the cylinder head side via the communication holes. The cylinder block is cooled down. This eliminates temperature differences between the upper and lower positions of the cylinder block and between each cylinder, making the overall temperature distribution approximately uniform, and as a result, friction loss in each part of the engine is reduced.

実施例 以下、この考案の一実施例を図面に基づいて詳
述する。
Embodiment Hereinafter, an embodiment of this invention will be described in detail based on the drawings.

第1図はこの考案を4気筒の内燃機関に適用し
たインライン方式の冷却装置の断面図であつて、
図中11は機関本体、12はシリンダブロツク1
3側の第1のウオータジヤケツト、14はシリン
ダヘツド15側の第2のウオータジヤケツト、1
6は上記両ウオータジヤケツト12,14を連通
する連通路たる連通孔、17は機関本体11の前
端側に設けられたウオータポンプ、18はラジエ
ータであつて、該ラジエータ18と上記シリンダ
ヘツド側ウオータジヤケツト14間には冷却水循
環用の冷却水導入通路19と冷却水導出通路20
が夫々配設されている。すなわち、上記冷却水導
入通路19は、一端部19aが上記ウオータポン
プ17側のシリンダヘツド側ウオータジヤケツト
14の前端部14aに接続されていると共に、他
端部19bが上記ラジエータ18のロア・タンク
18aに接続されている。一方、上記冷却水導出
通路20は、一端部20aが上記シリンダヘツド
側ウオータジヤケツト14の後端部14bに接続
されていると共に、他端部20bがラジエータ1
8のアツパ・タンク18bに接続されている。
Figure 1 is a cross-sectional view of an in-line cooling system in which this invention is applied to a four-cylinder internal combustion engine.
In the figure, 11 is the engine body, 12 is the cylinder block 1
The first water jacket on the 3 side, 14 the second water jacket on the cylinder head 15 side, 1
Reference numeral 6 denotes a communication hole that is a communication path that communicates the water jackets 12 and 14, 17 is a water pump provided on the front end side of the engine body 11, and 18 is a radiator, which connects the radiator 18 and the water on the cylinder head side. Between the jackets 14 are a cooling water introduction passage 19 and a cooling water outlet passage 20 for circulating cooling water.
are arranged respectively. That is, one end 19a of the cooling water introduction passage 19 is connected to the front end 14a of the water jacket 14 on the cylinder head side of the water pump 17, and the other end 19b is connected to the lower tank of the radiator 18. 18a. On the other hand, one end 20a of the cooling water outlet passage 20 is connected to the rear end 14b of the cylinder head side water jacket 14, and the other end 20b is connected to the radiator 1.
It is connected to No. 8 Atsupa tank 18b.

尚、図中21は上記ラジエータ18をバイパス
するバイパス通路であつて、このバイパス通路2
1は、上流端が上記冷却水導出通路20の他端部
20b付近に接続され、下流端が冷却水導入通路
19の一端部19a付近に接続されている。22
は上記冷却水導出通路20の途中に配設され、か
つ冷却水の温度に応じてバイパス通路21を開閉
するサーモスタツトである。
In addition, 21 in the figure is a bypass passage that bypasses the radiator 18, and this bypass passage 2
1 has an upstream end connected to the vicinity of the other end 20b of the cooling water outlet passage 20, and a downstream end connected to the vicinity of the one end 19a of the cooling water introduction passage 19. 22
A thermostat is disposed in the middle of the cooling water outlet passage 20 and opens and closes the bypass passage 21 according to the temperature of the cooling water.

したがつて、上記構成を有するこの実施例によ
れば、まず、機関の冷間始動時には、サーモスタ
ツト21がバイパス通路21を開成する一方冷却
水導出通路20の他端部20bとラジエータ18
との連通を遮断するため、ウオータポンプ17の
作用によつて流動する冷却水は、ラジエータ18
への流入が阻止されて冷却水導入通路19からシ
リンダヘツド側ウオータジヤケツト14に流入
し、ここから冷却水導出通路20、バイパス通路
21を経て再び冷却水導入通路19に流入する。
したがつて、冷却水の循環経路が短縮化されて、
シリンダヘツド側ウオータジヤケツト14へ実質
的な冷却水流入量が減少し、これによつて冷却水
温の立上りが良好となり、暖機、暖房性能が向上
する。
Therefore, according to this embodiment having the above configuration, first, when the engine is cold started, the thermostat 21 opens the bypass passage 21 while the other end 20b of the cooling water outlet passage 20 and the radiator 18 are opened.
In order to cut off the communication with the radiator 18, the cooling water flowing by the action of the water pump 17 is
The cooling water is prevented from flowing into the cylinder head side water jacket 14 from the cooling water introduction passage 19, and from there flows into the cooling water introduction passage 19 again via the cooling water outlet passage 20 and the bypass passage 21.
Therefore, the cooling water circulation path is shortened,
The substantial amount of cooling water flowing into the water jacket 14 on the cylinder head side is reduced, which improves the rise in the cooling water temperature and improves warm-up and heating performance.

そして、暖機完了後の通常運転時には、サーモ
スタツト21がバイパス通路21を閉成すると共
に、冷却水導出通路20とラジエータ18とを連
通させるため、ウオータポンプ17の作用によつ
てラジエータ18から送られてきた冷却水は、図
中実線矢印で示すように冷却水導入通路19を介
してシリンダヘツド側ウオータジヤケツト14内
に直接流入して該ウオータジヤケツト14の前端
部14aから後端部14b方向に流動しながら熱
交換を行ない、その後鎖線矢印のように冷却水導
出通路20の一端部20a側開口23から取り出
されてラジエータ18に戻され、シリンダヘツド
側ウオータジヤケツト14のみに強制循環され
る。この結果、シリンダヘツド15及びシリンダ
ブロツク13のアツパ・デツキ13a付近が十分
に冷却され、過熱によるノツキング現象が防止さ
れ燃焼効率及び燃費の同上が十分に図れる。
During normal operation after completion of warm-up, the thermostat 21 closes the bypass passage 21, and in order to communicate the cooling water outlet passage 20 and the radiator 18, the action of the water pump 17 causes the water to be supplied from the radiator 18. As shown by the solid line arrow in the figure, the cooling water flows directly into the cylinder head side water jacket 14 through the cooling water introduction passage 19 and flows from the front end 14a to the rear end 14b of the water jacket 14. After that, the cooling water is taken out from the opening 23 on the one end 20a side of the cooling water outlet passage 20 as shown by the chain arrow, returned to the radiator 18, and forcedly circulated only in the water jacket 14 on the cylinder head side. Ru. As a result, the cylinder head 15 and the vicinity of the upper deck 13a of the cylinder block 13 are sufficiently cooled, the knocking phenomenon due to overheating is prevented, and combustion efficiency and fuel efficiency can be sufficiently improved.

一方、シリンダブロツク側ウオータジヤケツト
12内の冷却水は、強制循環されず単に熱変化に
伴なう自然対流により冷却作用を行なう。即ち、
高温の冷却水が連通孔16内に導かれ、該ウオー
タジヤケツト12内の冷却水と熱交換を行なつて
再び下降し、シリンダブロツク13全体を冷却す
る。したがつて、第2図に示すようにシリンダブ
ロツク13のロア・デツキ13b付近が過冷却さ
れることがなく、また上記シリンダヘツド15側
の冷却作用と相俟つてアツパ・デツキ13aとロ
ア・デツキ13b付近の温度差が僅んどなくな
り、略1400〜150℃位になつている。この温度分
布の均一化特に各気筒間の温度の均一化により、
摩擦損失の低減が図れ熱ひずみに対して有利とな
るばかりか、燃費の向上をも助長できることにな
る。
On the other hand, the cooling water in the water jacket 12 on the cylinder block side is not forced to circulate, but simply performs its cooling action by natural convection accompanying thermal changes. That is,
High temperature cooling water is introduced into the communication hole 16, exchanges heat with the cooling water in the water jacket 12, and descends again to cool the entire cylinder block 13. Therefore, as shown in FIG. 2, the area around the lower deck 13b of the cylinder block 13 is not overcooled, and together with the cooling effect on the cylinder head 15 side, the upper deck 13a and the lower deck are cooled. The temperature difference near 13b has slightly disappeared and is now about 1400 to 150°C. By making this temperature distribution uniform, especially the temperature between each cylinder,
Not only can friction loss be reduced, which is advantageous against thermal distortion, but it can also help improve fuel efficiency.

また、シリンダブロツク13は冷却水の自然対
流により冷却されるものであり、ウオータジヤケ
ツト12内の良好な水回りを確保する必要がない
ので、第3図及び第4図に示すようにウオータジ
ヤケツト12の隔壁間に補強リブ30を形成する
ことが可能となる。したがつて、シリンダブロツ
ク13の剛性が著しく向上し、機関騒音の十分な
低減が図れる。
In addition, the cylinder block 13 is cooled by natural convection of cooling water, and there is no need to ensure a good water circulation within the water jacket 12. Therefore, the water jacket 13 is cooled as shown in FIGS. It becomes possible to form reinforcing ribs 30 between the partition walls of the butt 12. Therefore, the rigidity of the cylinder block 13 is significantly improved, and engine noise can be sufficiently reduced.

考案の効果 以上の説明で明らかなように、この考案に係る
内燃機関の冷却装置によれば、少なくとも通常運
転時においては、ラジエータで冷却された冷却水
を直接シリンダヘツド側の第2のウオータジヤケ
ツト内のみに強制循環させるので、高温に晒され
るシリンダヘツド及びシリンダブロツクの上部付
近が十分に冷却される。このため、過熱によるノ
ツキング現象が確実に防止され、燃焼効率及びそ
れによる燃費の良好化が図れる。
Effects of the invention As is clear from the above explanation, according to the cooling system for an internal combustion engine according to the invention, at least during normal operation, the cooling water cooled by the radiator is directly supplied to the second water jet on the cylinder head side. Since the cylinder is forced to circulate only within the bucket, the cylinder head and the upper part of the cylinder block, which are exposed to high temperatures, are sufficiently cooled. Therefore, the knocking phenomenon caused by overheating is reliably prevented, and combustion efficiency and thereby fuel efficiency can be improved.

また、シリンダブロツク側は、冷却水の強制循
環ではなく自然対流により冷却されるので、シリ
ンダブロツク全体の温度分布が略均一となり、摩
擦損失の低減が図れ燃費の良好化が一層助長され
ると共に、熱ひずみに対しても極めて有利とな
る。
In addition, since the cylinder block side is cooled by natural convection rather than forced circulation of cooling water, the temperature distribution throughout the cylinder block is approximately uniform, reducing friction loss and further improving fuel efficiency. It is also extremely advantageous against thermal strain.

また、本考案は、冷却水を単にシリンダヘツド
側のみに循環供給させて主にシリンダヘツドの冷
却を行なうものであるから、冷却効率の向上が図
れラジエータの小型化及びウオータポンプの小容
量化が可能となり、ラジエータ等のレイアウトの
自由度が増加すると共に、コストの面で有利とな
る。
In addition, the present invention mainly cools the cylinder head by simply circulating cooling water to the cylinder head side, which improves cooling efficiency and allows for smaller radiators and water pumps with smaller capacities. This increases the degree of freedom in the layout of radiators, etc., and is advantageous in terms of cost.

尚、本考案をボトムバイバス方式等による冷却
装置に適用することも実施に応じ十分可能であ
る。
Incidentally, it is also possible to apply the present invention to a cooling device using a bottom-by-bus system or the like, depending on the implementation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案に係る内燃機関の冷却装置の
実施例を示す概略図、第2図は従来の冷却装置と
本実施例の冷却装置によるシリンダライナ壁温の
温度分布状態を比較して示す特性図、第3図は本
実施例に供されるシリンダブロツクを示す平面
図、第4図は第3図の−線断面図、第5図は
従来の冷却装置を示す概略図である。 11……機関本体、12……シリンダブロツク
側ウオータジヤケツト、13……シリンダブロツ
ク、14……シリンダヘツド側ウオータジヤケツ
ト、14a……前端部、14b……後端部、15
……シリンダヘツド、16……連通孔、17……
ウオータポンプ、18……ラジエータ、18a…
…ロアタンク(下部)、18b……アツパ・タン
ク(上部)、19……冷却水導入通路、19a…
…一端部、19b……他端部、20……冷却水導
出通路、20a……一端部、20b……他端部。
Fig. 1 is a schematic diagram showing an embodiment of the cooling system for an internal combustion engine according to this invention, and Fig. 2 shows a comparison of the temperature distribution state of the cylinder liner wall temperature between a conventional cooling system and the cooling system of this embodiment. FIG. 3 is a plan view showing the cylinder block used in this embodiment, FIG. 4 is a sectional view taken along the line -- in FIG. 3, and FIG. 5 is a schematic diagram showing a conventional cooling device. 11... Engine body, 12... Cylinder block side water jacket, 13... Cylinder block, 14... Cylinder head side water jacket, 14a... Front end, 14b... Rear end, 15
...Cylinder head, 16...Communication hole, 17...
Water pump, 18...Radiator, 18a...
...Lower tank (lower part), 18b...Atsupa tank (upper part), 19...Cooling water introduction passage, 19a...
...one end, 19b...other end, 20...cooling water outlet passage, 20a...one end, 20b...other end.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] シリンダブロツク内に形成された第1のウオー
タジヤケツトと、シリンダヘツド内に形成された
第2のウオータジヤケツトと、上記第1と第2の
ウオータジヤケツトを連通させる連通路と、一端
部が上記第2のウオータジヤケツトのウオータポ
ンプ側前端部に接続されると共に、他端部がラジ
エータの下部に接続された冷却水導入通路と、一
端部が上記第2のウオータジヤケツトの後端部に
接続されると共に、他端部がラジエータの上部に
接続された冷却水導出通路とを備え、少なくとも
機関通常運転時に上記冷却水導出通路からラジエ
ータ内に流入した機関冷却水を、上記冷却水導入
通路を介して上記第2のウオータジヤケツト内に
常時強制循環させる一方、該第2のウオータジヤ
ケツト内の機関冷却水を上記連通路を介して上記
第1のウオータジヤケツト内で自然対流させたこ
とを特徴とする内燃機関の冷却装置。
A first water jacket formed in the cylinder block, a second water jacket formed in the cylinder head, a communication passage for communicating the first and second water jackets, and one end thereof a cooling water introduction passage connected to the water pump side front end of the second water jacket and the other end connected to the lower part of the radiator; and one end connected to the rear end of the second water jacket. and a cooling water outlet passage whose other end is connected to the upper part of the radiator, and at least the engine cooling water that has flowed into the radiator from the cooling water outlet passage during normal operation of the engine is connected to the cooling water introduction passage. The engine cooling water in the second water jacket is constantly forcedly circulated through the passage through the second water jacket, while the engine cooling water is caused to naturally convect within the first water jacket through the communication passage. A cooling device for an internal combustion engine characterized by:
JP1985006433U 1985-01-21 1985-01-21 Expired JPH0326251Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985006433U JPH0326251Y2 (en) 1985-01-21 1985-01-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985006433U JPH0326251Y2 (en) 1985-01-21 1985-01-21

Publications (2)

Publication Number Publication Date
JPS61122322U JPS61122322U (en) 1986-08-01
JPH0326251Y2 true JPH0326251Y2 (en) 1991-06-06

Family

ID=30483866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985006433U Expired JPH0326251Y2 (en) 1985-01-21 1985-01-21

Country Status (1)

Country Link
JP (1) JPH0326251Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635824B2 (en) * 1985-01-29 1994-05-11 マツダ株式会社 Cylinder head cooling structure
JP6390650B2 (en) * 2016-03-23 2018-09-19 マツダ株式会社 Cooling water passage structure of internal combustion engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58149517U (en) * 1982-03-31 1983-10-07 いすゞ自動車株式会社 Engine cooling water circulation system

Also Published As

Publication number Publication date
JPS61122322U (en) 1986-08-01

Similar Documents

Publication Publication Date Title
JP6056741B2 (en) Multi-cylinder engine cooling system
JP6036668B2 (en) Multi-cylinder engine cooling structure
KR0177334B1 (en) Cooling system of an internal combustion engine
JP6079594B2 (en) Multi-cylinder engine cooling structure
JP4375261B2 (en) Cylinder head and water-cooled engine using the same
US6830016B2 (en) System and method for cooling an engine
GB2245703A (en) Engine cooling system
KR930004768B1 (en) Cooling system for v-type engine
JP4239623B2 (en) Engine cooling system
JP3407582B2 (en) Automotive engine cooling water piping
JPH0326251Y2 (en)
JP3344288B2 (en) Cooling water circulation structure of internal combustion engine
JPH0742550A (en) Cooling device for engine with supercharger
JP4578415B2 (en) Heat exchanger arrangement structure for V-type internal combustion engine
JP3817798B2 (en) Engine cooling system
JP3885260B2 (en) Engine cooling system
JP2993214B2 (en) Engine cooling system
JPS6114588Y2 (en)
JP3104538B2 (en) Internal combustion engine cooling system
JPH0128290Y2 (en)
JPH0639085Y2 (en) Engine cylinder block structure
RU2031215C1 (en) Combined cooling system for motorcycle internal combustion engine
JP2012002164A (en) Cooling device of internal combustion engine
KR100332956B1 (en) Engine Cooling System And Method In Vehicles
JPS641451Y2 (en)