JPH0326241A - Method and device for measuring quality hardening of radiation such as x rays or the like - Google Patents

Method and device for measuring quality hardening of radiation such as x rays or the like

Info

Publication number
JPH0326241A
JPH0326241A JP1162171A JP16217189A JPH0326241A JP H0326241 A JPH0326241 A JP H0326241A JP 1162171 A JP1162171 A JP 1162171A JP 16217189 A JP16217189 A JP 16217189A JP H0326241 A JPH0326241 A JP H0326241A
Authority
JP
Japan
Prior art keywords
ray
equivalent
length
radiation
human body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1162171A
Other languages
Japanese (ja)
Inventor
Hideo Nagai
秀夫 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP1162171A priority Critical patent/JPH0326241A/en
Publication of JPH0326241A publication Critical patent/JPH0326241A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simply measure the quality hardening of X rays by varying one of equivalent substances and measuring transmission X-ray data by a body to be measured consisting of a substance in which an X-ray absorption coefficient is equivalent to a sort organization of the human body, etc., and a substance in which said coefficient is equivalent to a bone and a metal, etc. CONSTITUTION:A BEP of a body BDY to be measured is a dummy bone made of a substance having an X-ray absorption coefficient being equivalent to a bone of the human body, and made like a plate having thickness (w) of a right-angle triangle, and a WP is a cylindrical water container for containing water WT for simulating a soft organization of the human body. X rays irradiates in the direction extending from S1 to S2, and the overall length of the water container WP in this case is LWO, and the longest path length in the X-ray advance direction of the dummy bone BEP is LBO. When a path of S1 S2 is moved in the horizontal direction, path length LB of the dummy bone BEP is varied but path length LW of the water WT is constant, and a variation range of the path length LB is O-LBO. On the other hand, the path length LW of the water WT can be within a range of O-LWO by the quantity of water. By using such a body to be measured, and measuring transmission X-ray data and transmittion X-ray projection data corresponding to a pair of each of the length LW and the length LB, quality hardening of radiant rays such as X rays, etc., to the human body, etc., is derived therefrom.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はX線断層撮影装置(以下X線C′rという)に
おいて発生するX線線質硬化(BeueH1+duiB
)現象の影響を除去するためのX線線質硬化の測定法と
fill定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention deals with the treatment of X-ray hardening (BeueH1 + duiB
) A method for measuring X-ray hardening and a filling device for eliminating the effects of this phenomenon.

(従来の技術) X線CTは被検体の全周に亘ってX線を照射して、被検
体を透過したX線を検出して得たX線データを処理する
ことにより断層撮影を行う装置である。このXmCTの
線源としてX線管を使用することは実用的である反面、
X線管が多色エネルギ一線源であるために単色エネルギ
ー線源による場合とは異なる現象を生ずる。即ち、低い
エネルギーのフォトン程高いエネルギーのフォトンより
も物質による減弱が大きいため、透過する被検体の厚さ
が増加してX線が減弱するつれてそのX線スペクトルは
高いエネルギーの部分が相対的に大きくなり、x′線の
線質が硬化していく。これが線質硬化と呼ばれる現象で
ある。人体内部では、特に骨や金属等の高X線吸収物質
において大きなX線線質硬化を発生する。
(Prior art) X-ray CT is a device that performs tomography by irradiating X-rays around the entire circumference of a subject, detecting the X-rays that have passed through the subject, and processing the obtained X-ray data. It is. While it is practical to use an X-ray tube as a radiation source for XmCT,
Since the X-ray tube is a source of polychromatic energy, different phenomena occur than when using a monochromatic energy source. In other words, photons with lower energy are attenuated by substances more than photons with higher energy, so as the thickness of the object being transmitted increases and the X-rays are attenuated, the becomes larger, and the quality of the x' rays becomes harder. This is a phenomenon called linear hardening. Inside the human body, large X-ray hardening occurs particularly in highly X-ray absorbing substances such as bones and metals.

(発明が解決しようとする課題) ところで、このようなX線を用いた場合に同一X線通過
経路に対する入力X線強度を被検体を透過したX線で除
算した量の対数であるMJ影データは、該X線経路の線
吸収係数の積分値に比例する量とならず、X線線質硬化
の影響を受けて、透過厚に対して、直線でなく非線形特
性を示すようになる。このような非線形特性を有する射
影データ(投影データ〉を用いて画像再構戊を行うと、
特有なアーティファクトが画像に生ずることになる。
(Problem to be Solved by the Invention) By the way, when such X-rays are used, MJ shadow data is the logarithm of the amount obtained by dividing the input X-ray intensity for the same X-ray passage path by the X-rays transmitted through the subject. is not proportional to the integral value of the linear absorption coefficient of the X-ray path, and is affected by the hardening of the X-ray quality and exhibits non-linear rather than linear characteristics with respect to the transmission thickness. When image reconstruction is performed using projection data (projection data) having such nonlinear characteristics,
Unique artifacts will appear in the image.

このX線線質硬化の問題は現Y[の大きな技術課題であ
り、有効な対策の出現が望まれている。
This problem of X-ray hardening is a major technical issue in the current Y[, and an effective countermeasure is desired.

本発明は上記の点に鑑みてなされたもので、その目的は
、X線線質硬化の浦便な711定法と、その測定のため
の装置を実現することにある。
The present invention has been made in view of the above points, and its purpose is to realize a convenient 711 standard method for X-ray hardening and an apparatus for measuring the same.

(課題を解決するための手段) 前記の課題を解決する本発明は、水もしくは同等の液体
又は固体で構成された人体等の軟組織に等価なX線吸収
係数をもつ物質のX線通過経路長を一定とし、骨や金属
等に等価な高X線吸収物質のXll通過経路長をX線経
路によって連続的に又は離散連続に可変にした構造をも
ち、前記人体等の軟組織に等価な物質のX線通過経路長
の変更は前記水もしくは同等の液体又は固体の量を変更
することにより成される構造の被測定体により、同−X
線通過経路上の人体等の軟組織に等価な物質の長さLW
と骨や金属等に等価な高X線吸収物質の長さLBの各々
の対に対応する透過X線データ.透過X線射影データを
測定し、これから人体等の軟組織と骨や金属等の高X線
吸収物質との共存に対するX線等の放射線の線質硬化を
求めることを特徴としたものである。
(Means for Solving the Problems) The present invention solves the above problems by reducing the X-ray passage length of a substance that is made of water or an equivalent liquid or solid and has an X-ray absorption coefficient equivalent to that of soft tissue of the human body. It has a structure in which the Xll passage length of a high X-ray absorbing substance equivalent to bone or metal etc. is kept constant, and the length of the Xll passage path of a high X-ray absorption substance equivalent to bone or metal etc. is varied continuously or discretely depending on the The length of the X-ray passage path can be changed by changing the amount of the water or equivalent liquid or solid.
Length LW of material equivalent to soft tissue of the human body, etc. on the line passage path
Transmitted X-ray data corresponding to each pair of length LB and length LB of a high X-ray absorbing substance equivalent to bone, metal, etc. This method is characterized by measuring transmitted X-ray projection data and determining the radiation hardening of radiation such as X-rays in relation to the coexistence of soft tissues such as those of the human body and highly X-ray absorbing substances such as bones and metals.

上記の披測定体は高X線吸収物質のX線通過経路長を一
定とし、人体等の軟組織に等価な物質のX線通過経路長
をX線通過経路によって連続的又は離散連続に可変とし
た構造をもち、前記高X線吸収物質のX線通過経路長の
変更は高X線吸収物質の量を変更することにより成され
る構造のものを用いることができる 又、上記の測定を行う装置は上記の披測定体と、肢測定
体を透過させて透過X線データを測定するための一体化
されたX線源と検出器及びその付属装置から戒る透過X
線データ測定手段と、該透過X線データ測定手段を必要
に応じ所要の方向に移動させる移動手段と、同一X線通
過経路上の人体等の軟組織に等価な物質の長さLW,骨
や金属等に等価な高X線吸収物質の長さLB,各々の射
影データPw  (LW.L!1).Pa  (LW,
LTI)を用いてそれぞれに対応するX線吸収係数μW
(LW.Le). μs  (LW、LB)を求める演
算手段とを具爾することを特徴としている。
In the above-mentioned body, the length of the X-ray passing path of the highly X-ray absorbing material is constant, and the length of the X-ray passing path of the material equivalent to soft tissue of the human body is variable, either continuously or discretely, depending on the X-ray passing path. A device having a structure in which the length of the X-ray passing path of the high X-ray absorption substance is changed by changing the amount of the high X-ray absorption substance can be used, and an apparatus for performing the above measurement. The above-mentioned X-ray measuring body, an integrated X-ray source and detector for measuring transmitted X-ray data transmitted through the limb measuring body, and their attached equipment are used to transmit transmitted X-rays.
A ray data measuring means, a moving means for moving the transmitted X-ray data measuring means in a required direction as necessary, and a length LW of a material equivalent to soft tissue of a human body or the like on the same X-ray passage path, bone or metal. The length LB of the highly X-ray absorbing material is equivalent to , and each projection data Pw (LW.L!1). Pa (LW,
X-ray absorption coefficient μW corresponding to each using
(LW.Le). It is characterized by comprising a calculating means for calculating μs (LW, LB).

(作用〉 X線吸収係数がそれぞれ人体等の軟組織に等価な物質と
、骨や金属等に等価な物質とから成る披11FJ定体に
より、軟組織又は骨や金属等に等価な物質の何れかを可
変にして透過X線データを取り、X線線質硬化をδ−1
定する。
(Function) By using the 11FJ standard, which consists of a substance whose X-ray absorption coefficient is equivalent to that of soft tissues such as the human body, and a substance equivalent to bones, metals, etc., Adjust the transmission X-ray data to be variable, and set the X-ray quality hardening to δ-1.
Set.

(実施例〉 以下、図面を参照して本発明の実施例を詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

tJ41図は本発明の一実施例の披a?I定休の模式的
構成図で、第2図は第1図の被API定休を川いてX線
線質硬化の測定を行う測定系の説明図である。
Figure tJ41 shows an example of the present invention. This is a schematic block diagram of the I regular holiday, and FIG. 2 is an explanatory diagram of a measurement system for measuring X-ray quality hardening based on the API regular holiday shown in FIG.

第1図において、上部に披i1PI定体BDYのi[面
図を、下部に平『d図を示してある。図中、BEPは人
体の骨を模擬するため骨に等価なX線吸収係数を有する
物質で作られた摸擬ずトで、直角三角形の厚みWの板状
に作られている。WPは人体の軟組織を模擬する水WT
を収容する]11筒形の水容器である。X線はS1から
82の方向に照9・1され、この時の骨の経路長はL,
で、水WTの経路長はL,である。水容器WPの全長は
LWo+模擬骨BEPのX線進行方向の最も長い経路長
はL8。である。
In FIG. 1, the upper part shows the i-plane view of the 1PI constant body BDY, and the lower part shows the flat-plane d view. In the figure, BEP is a simulator made of a material having an X-ray absorption coefficient equivalent to bone in order to simulate the bones of the human body, and is made in the shape of a right triangular plate with a thickness W. WP is water WT that simulates the soft tissue of the human body.
] It is an 11-cylindrical water container. X-rays are emitted in the direction from S1 to 82, and the bone path length at this time is L,
Then, the path length of water WT is L,. The total length of the water container WP is LWo+the longest path length in the X-ray traveling direction of the simulated bone BEP is L8. It is.

S,→S2のバスを水平方向に即ち図の左右方向に移動
すると、模擬骨BEPの経路長L[Iは変化するが水W
Tの経路長LWは一定である。模擬・l’LBEPの経
路長L.の変化範囲は0〜Lnoである。
When the bus of S,→S2 is moved horizontally, that is, in the left-right direction of the figure, the path length L of the simulated bone BEP [I changes, but the water W
The path length LW of T is constant. Simulated l'LBEP path length L. The range of change is 0 to Lno.

一方、水WTの経路長LWは水の量を変化させることに
より0〜LW0の範囲で変化させることができる。
On the other hand, the path length LW of the water WT can be changed in the range of 0 to LW0 by changing the amount of water.

次に、被測定体BDYを用いて行う測定系の摺成を第2
図に示す。図において、第】図と同じ部分には同一の符
号を付してある。図中、XsはX線を発生するX線源、
XはX線の焦点である。コリメータCMIは魚点Xの前
方に置かれ、魚点Xから照射されたX線をシャープに整
形し、不要なX線を遮断する。DETはX線源XSから
照射されるX線を受けてそのX線量に比例する電流を出
力する検出器で、その前にコリメータCM2が置かれて
検出器DETに入射する散乱X線のような不要なX線を
遮断している。X線源XSにはフィルタを付加すること
が多いが、図では省略してある。この測定系では披測定
体BDYを固定したままX線源XS.検出器DET及び
コリメータCM1,CM2を一体として、水平方向に移
動しながら、或いは移動した後,各位置において模擬骨
BEPの経路長L8と水WTの経路長t,wの合計の経
路長に対応ずるX線データを測定する。図において、X
線源XSの焦点Xは直線LL’上を、検出器DETは直
線MM’上を移動する。
Next, the measurement system sliding process using the object to be measured BDY is performed in the second step.
As shown in the figure. In the figure, the same parts as in the figure are given the same reference numerals. In the figure, Xs is an X-ray source that generates X-rays;
X is the focus of the X-rays. The collimator CMI is placed in front of the fish point X, sharply shapes the X-rays emitted from the fish point X, and blocks unnecessary X-rays. DET is a detector that receives X-rays emitted from the X-ray source XS and outputs a current proportional to the amount of X-rays. A collimator CM2 is placed in front of it to detect the scattered X-rays that enter the detector DET. Blocks unnecessary X-rays. Although a filter is often added to the X-ray source XS, it is omitted in the figure. In this measurement system, the X-ray source XS. While or after moving the detector DET and collimators CM1 and CM2 together in the horizontal direction, each position corresponds to the total path length of the simulated bone BEP path length L8 and the water WT path lengths t and w. Measure X-ray data. In the figure,
The focal point X of the radiation source XS moves on the straight line LL', and the detector DET moves on the straight line MM'.

第3図はX線線質硬化を測定するための装置の構成図で
ある。図において、第2図と同等の部分には同一の符号
を付してある。図中、GAは被測定体BDYを収容し、
M1定系を構成するガントリで、X線源XS,検出器D
ET及び各コリメータCMI,CM2を一体として図の
左右方向に水9Lに移動する機閘を持つ装置である。T
Aは天板TP上に披fll1定休BDYをのせて、ガン
トリGAの中央の空間部の所定の位置に移動させるテー
ブルである。天板TPには被測定体BDYの披測定部に
前記の水平移動距離に相当する長さの矩形の孔を設ける
か、X線吸収係数の非常に低い材質の板を使用して、天
板TPが測定値に影響を与えないようにしてある。この
天板TPを第4図に示す。
FIG. 3 is a block diagram of an apparatus for measuring X-ray hardening. In the figure, parts equivalent to those in FIG. 2 are given the same reference numerals. In the figure, GA accommodates the object to be measured BDY,
The gantry that constitutes the M1 fixed system includes an X-ray source XS and a detector D.
This device has a mechanism that moves the ET and the collimators CMI and CM2 together in the left-right direction in the figure toward the water 9L. T
A is a table on which the BDY is placed on the top plate TP and moved to a predetermined position in the central space of the gantry GA. Either provide the top plate TP with a rectangular hole with a length corresponding to the above-mentioned horizontal movement distance at the measuring part of the object to be measured BDY, or use a plate made of a material with a very low X-ray absorption coefficient. The TP was designed not to affect the measured values. This top plate TP is shown in FIG.

図において、第1図と同等の部分には同一の符号を付し
てある。図中、HLは天板TPに設けたX線の水平移動
距離に相当する孔である。
In the figure, parts equivalent to those in FIG. 1 are given the same reference numerals. In the figure, HL is a hole provided in the top plate TP corresponding to the horizontal movement distance of the X-ray.

XRはX線発生制御装置XGCの制御によりX線源XS
に高電圧を供給してX線を発生させる高圧・X線発生制
御装置である。DASはX線源XSから照射され、被測
定体BDYを透過して検出5DETにより検出されたX
線データを受けて、ディジタル信号に変換し、データ処
理装置DPSにデータを送り込むデータ収集装置である
。X線発生制御装置XGC,高圧・X線発生制御装置X
R,データ収集装置DAS等は通常のX線CTに用いら
れているものと変わりはない。データ処理装置DPSは
収集データに対して各種の処理を行い、X線線質硬化の
データ処理を行う。
XR is an X-ray source XS under the control of the X-ray generation control device XGC.
This is a high voltage/X-ray generation control device that supplies high voltage to generate X-rays. DAS is the X-rays irradiated from the X-ray source XS, transmitted through the object to be measured BDY, and detected by the detection 5DET.
This is a data collection device that receives line data, converts it into a digital signal, and sends the data to a data processing device DPS. X-ray generation control device XGC, high voltage/X-ray generation control device X
R, data acquisition device DAS, etc. are the same as those used in normal X-ray CT. The data processing device DPS performs various processing on the collected data, and performs data processing of X-ray quality curing.

DSは高速のデータ・メモリとして使用されるデータ記
憶装置、ADSは磁気ディスク記憶装置のような低速度
ではあるが大容量の補助記憶装置である。
DS is a data storage device used as a high-speed data memory, and ADS is a low-speed but large-capacity auxiliary storage device such as a magnetic disk storage device.

TGCはガン)・りGAの水平方向の移動制御及びテー
ブルTAの移動制御等を行うテーブル・ガントリ制御装
置、SCCは上記の各構成装置の統一的制御を行う撮影
制御装置である。
TGC is a table/gantry control device that controls the horizontal movement of the gun (GA) and table TA, and SCC is a photography control device that performs unified control of each of the above-mentioned constituent devices.

次に、上記のように構成された装置の動作を第5図のフ
ローチャートを参照しながら説明する。
Next, the operation of the apparatus configured as described above will be explained with reference to the flowchart shown in FIG.

ステップl 披)I1定体BDYをテーブルTAに乗せ、これをガン
トリGA内の所定の位置に移動して、第2図に示した測
定系を構成するように披M1定体BDYをセットする。
Step 1) Place the I1 constant body BDY on the table TA, move it to a predetermined position in the gantry GA, and set the M1 constant body BDY so as to configure the measurement system shown in FIG.

この時、水容器WP内の人体軟組織に対応する水WTの
m L w − L w+を適ぜ1な値にする。この状
態で、X線源XSと検出器DETを枯ぶ線は被測定体B
DYの左端に位置している(右端であってもよい)。
At this time, m L w − L w+ of the water WT corresponding to the human soft tissue in the water container WP is appropriately set to a value of 1. In this state, the line that connects the X-ray source XS and detector DET is the object B.
It is located at the left end of DY (or may be at the right end).

ステップ2 撮影開始に従ってX線源XSと検出器DETと各コリメ
ータCMI,CM2は一体となって左端から逐次右へ(
右端から逐次左へ)水平方向に移動しながら、被測定体
BDYの各位置(水WTの経路長LW)(一定)と模擬
骨BEPの経路長LI]の対の経路長を有する位置)で
X線透過データを測定収果する。更にX線の強度に対応
するデータも測定しておく。これらの処理は撮影制御装
置SCCの制御下で、データ収集装置DAS,データ処
理装置DPSの並列動作,並列処理の下に実行される。
Step 2 As the imaging starts, the X-ray source
While moving in the horizontal direction (sequentially from the right end to the left), at each position of the object to be measured BDY (a position having a pair of path lengths: path length LW of water WT (constant) and path length LI of simulated bone BEP) Measure and obtain X-ray transmission data. Furthermore, data corresponding to the intensity of X-rays is also measured. These processes are executed under the control of the imaging control device SCC and under the parallel operation and parallel processing of the data acquisition device DAS and the data processing device DPS.

収集されたデータはデータ記憶装置DSに格納されて、
必要に応じてデータ収集装置DASのオフセット補正,
X線強度補正等の処理を受けた後、補助記憶装置ADS
に格納される。
The collected data is stored in a data storage device DS,
Offset correction of data acquisition device DAS as necessary,
After undergoing processing such as X-ray intensity correction, the auxiliary storage device ADS
is stored in

ステップ3 水WTの量LW,の予定された変更回数が完了したかど
うかをチェックし、終わっていればステップ4に進む。
Step 3 Check whether the scheduled number of changes in the amount LW of water WT has been completed, and if so, proceed to Step 4.

終わっていなければステップ1へ戻ってステップ1とス
テップ2の処理を行うか、ステップ2へ戻ってステップ
2の処理を行う。これを必要な同?繰り返す。即ち、こ
の繰り返し処理は水WTの量LW1を変更(即ち等価軟
組織の経路長LW,を変更)して行うが、この変更は0
≦LWl≦LWM(L曲≦LWo)の範囲で適当な間隔
ΔLW  (一般には微小間隔)毎に行う。このように
して水WTと模擬骨BEPの経路長の対(LW,LR)
に対する透過X線データI (LW ,  LB )を
O≦Lnl≦LBQ+  O≦LW,≦L■の範囲で得
ると共に各測定jに対応ずる入射XI!強度データIo
(j)を得る。
If the process has not been completed, the process returns to step 1 and processes steps 1 and 2, or returns to step 2 and processes step 2. Do you need this? repeat. That is, this repeated process is performed by changing the amount LW1 of water WT (that is, changing the equivalent soft tissue path length LW), but this change is 0.
This is performed at appropriate intervals ΔLW (generally minute intervals) within the range of ≦LWl≦LWM (L song≦LWo). In this way, the pair of path lengths (LW, LR) of water WT and simulated bone BEP
Obtain transmitted X-ray data I (LW, LB) for the range O≦Lnl≦LBQ+ O≦LW,≦L■, and incident XI! corresponding to each measurement j! Strength data Io
We get (j).

1 (LW.Ln),Io(j)はデータ収集装置DA
Sのオフセット処理が必要であれば、オフセット補正処
理を行い、オフセット補正処理済み、且つ、X線強度補
正済みのデータとする。X線強度データIo(j)は、
水WTの経路長1,,−1.w,(一定)の間、即ち0
≦L[ll≦LI]0の測定の間一定であるものとする
1 (LW.Ln), Io(j) is data acquisition device DA
If offset processing of S is necessary, offset correction processing is performed, and the data is treated as data that has undergone offset correction processing and has undergone X-ray intensity correction. The X-ray intensity data Io(j) is
Path length of water WT 1,,-1. w, (constant), that is, 0
≦L[ll≦LI] shall be constant during the measurement of 0.

ステップ4 上記のデータを使用して、以下に示すX線線質硬化の計
算を行う。等価軟組織である水WTの経路長t,wと等
価骨組織である模擬骨BEPの経路艮LBを透過した時
の水WTのX線吸収係数をμw  (LW.LFI)、
模擬骨BEPOX線吸収係数をμB  (LW.LB)
とすると、射影データP・・・ (1) lw (LW . LB ) ・・・ (2) IIs (LW . Le ) ・・・ (3) ここで、ΔLWI ΔLIIは各々水WTの微小経路長
,模擬骨BEPの微小経路長を示す。μ1.μ。をLW
+Llllの各々のデータ対に対して求める。又、次の
λ(LW+Le)をLW,L,の各データ対に対して求
めても良い。
Step 4 Using the above data, perform the X-ray quality hardening calculations shown below. The X-ray absorption coefficient of water WT when passing through the path length t, w of water WT, which is an equivalent soft tissue, and the path length LB of simulated bone BEP, which is an equivalent bone tissue, is μw (LW.LFI),
Simulated bone BEPOX ray absorption coefficient μB (LW.LB)
Then, projection data P... (1) lw (LW.LB)... (2) IIs (LW.Le)... (3) Here, ΔLWI and ΔLII are the minute path lengths of water WT, The micropath length of the simulated bone BEP is shown. μ1. μ. LW
+Lllll for each data pair. Further, the following λ(LW+Le) may be obtained for each data pair of LW and L.

λ(LW,La ) − 1a {LW .L!I}/
 jw (LW+Ll])・・・ (4) ?に又、(2)式.(3)式で求めたμw  (LW、
LB).  μe  (LW.Le)を基にして、L1
の各値に対してt,wを一定にしたときのμ■(LW.
LB)をLBの多項式として近似したり、又は、LWを
一定にしたμa  (LW、LB)からμB (0,O
)を求める補正式をLIIの多項式として近似する等、
近似多項式の各係数を求めることもできる。同様にして
、L8の各値に対してL8を一定にしたμw  (LW
.Le)をt,wの多項式として近似したり、又は、μ
w  (LW.LB)からμw  (0.0)を求める
補正式をLWの多項式として近似する等近似多項式の各
係数を求めることもできる。
λ(LW, La) − 1a {LW. L! I}/
jw (LW+Ll])... (4)? Also, equation (2). μw (LW,
LB). Based on μe (LW.Le), L1
When t and w are held constant for each value of μ■(LW.
LB) as a polynomial in LB, or from μa (LW, LB) with LW constant, μB (0, O
) is approximated as a polynomial of LII, etc.
It is also possible to obtain each coefficient of the approximate polynomial. Similarly, μw (LW
.. Le) as a polynomial in t, w, or μ
It is also possible to obtain each coefficient of an equal approximation polynomial that approximates the correction formula for obtaining μw (0.0) from w (LW.LB) as a polynomial of LW.

尚、本発明は上記実施例に限定されるものではない。第
6図は通常の第3世代(ローテート/ロ−テート方式)
のXilCTに類似した構造の装置による測定系の他の
実施例の図である。図において、m3図と同等の部分に
は同一の符号を付してある。図中、RAは被測定体BD
Yを収容する中心Oの撮影領域である。ファンビームの
X線源X(X,は実際にはX線の焦点X)と検出器群D
ETとは撮影領域RAを挟んで対向して配置されており
、xl[x+と検出器群DETとは一体となって撮影領
域RAの中心0を中心として回転する。即ちX線源Xt
は円周C上を回転するが、検出器群DETはX+を中心
とするIIl孤上に配置されている。X線源Xlは図の
I’l周C上のX,からX.までの間(角度γの範囲;
この範囲は被8−1定体BDYを包含する範囲である)
、又は、X.AからX,までの間を検出器群DETと一
体となって回転しながら、X線の発生と透過X線の測定
を各方向に対して行う。透過X線の測定は透過X線デー
タ1個と同時に不透過X線データであるX線強度データ
1個の測定を各方向に対して行う。第6図に示す方向θ
に対してはd−L Iinθを満足す?検出器D+で透
過Xt9!データを測定する。ここで、dはXlを通る
水WTの面に対する垂線と中心Oとの距離で、LはXt
と中心Oとの距離である。θはーγ/2≦θ≦γ/2の
間で変化する。
Note that the present invention is not limited to the above embodiments. Figure 6 shows the normal 3rd generation (rotate/rotate method)
FIG. 2 is a diagram of another embodiment of a measurement system using a device having a structure similar to XilCT. In the figure, the same parts as in the m3 figure are given the same reference numerals. In the figure, RA is the object to be measured BD
This is an imaging area with a center O that accommodates Y. Fan beam X-ray source X (X is actually the focus X of the X-rays) and detector group D
The detector group DET is arranged to face the detector group DET with the imaging area RA in between, and xl[x+ and the detector group DET rotate together around the center 0 of the imaging area RA. That is, the X-ray source Xt
rotates on the circumference C, and the detector group DET is arranged on the IIl arc centered on X+. The X-ray source Xl is located between X and X on the I'l circumference C in the figure. (range of angle γ;
This range includes the 8-1 constant BDY)
, or X. While rotating together with the detector group DET between A and X, generation of X-rays and measurement of transmitted X-rays are performed in each direction. In the measurement of transmitted X-rays, one transmitted X-ray data and one X-ray intensity data, which is opaque X-ray data, are measured in each direction at the same time. Direction θ shown in Figure 6
Does d−L Iinθ satisfy for? Transmitted by detector D+ Xt9! Measure data. Here, d is the distance between the perpendicular to the surface of water WT passing through Xl and the center O, and L is Xt
and the distance from the center O. θ changes between −γ/2≦θ≦γ/2.

その他の測定条件は既述の通りである。第6図ではコリ
メー夕,フィルタ等は省略してある。
Other measurement conditions are as described above. In FIG. 6, collimators, filters, etc. are omitted.

この測定系で得られる被測定物の透過のデータ1 (L
W+,  Log) , X線強度データIO(j,i
)’に対して射影計算式は次の通りである。(Cは比例
定数) P(LW .La ) = P(LWI,L■)= j
Qf− 110(!,i)/l(LW+1Ln+))(
1)′ {ILL、  lo(i. i)−  C・10(i.
 l)’第7図は本発明の更に他の測定系の実施例であ
る。図において、第2図と同等な部分には同一の符号を
付してある。CM3はX線強度を8−1定する検出器D
ET2の前に設けられたコリメー夕である。第2図に示
した測定法では水WTの長さLl#=LW+(一定)の
間、即ち、0≦LBI≦LI1。の測定の間、X線強度
はio(j)で一定であるとしたが、この条件が満足さ
れない場合には、本実施例のように11$1定系を構成
し、被測定体BDYを透過したX線1 (LW+.  
LBt)とX線強度1o(j,  i)′を同時に測定
し、(1)′式により射影計算を行う。この測定系では
X線源XS1検出器DET,DET2、コリメータCM
I,CM2,CM3は一体となって移動し、各位置で被
測定体BDYを透過したX線強度と入射X線強度のデー
タ対を測定する。検出器DET2はこの測定の間、披測
定体BDYが入射X線経路(X−Ll)を妨げないよう
な位置に設定しておく。
Transmission data of the object to be measured 1 (L
W+, Log), X-ray intensity data IO(j, i
)', the projection calculation formula is as follows. (C is a proportionality constant) P(LW.La) = P(LWI,L■)=j
Qf- 110(!,i)/l(LW+1Ln+))(
1)' {ILL, lo(i. i) - C.10(i.
l)' Fig. 7 is an embodiment of still another measuring system of the present invention. In the figure, parts equivalent to those in FIG. 2 are given the same reference numerals. CM3 is a detector D that determines the X-ray intensity by 8-1.
This is a collimator installed in front of ET2. In the measurement method shown in FIG. 2, the length of water WT is Ll#=LW+ (constant), that is, 0≦LBI≦LI1. During the measurement of Transmitted X-ray 1 (LW+.
LBt) and the X-ray intensity 1o(j, i)' are measured simultaneously, and a projection calculation is performed using equation (1)'. In this measurement system, X-ray source XS1 detector DET, DET2, collimator CM
I, CM2, and CM3 move together and measure data pairs of the X-ray intensity transmitted through the object BDY and the incident X-ray intensity at each position. During this measurement, the detector DET2 is set at such a position that the measuring body BDY does not obstruct the incident X-ray path (X-Ll).

この他に、第7図のようにコリメータCM3,検出器D
ET2を用いて入射X線強度を直接i111J定する代
りに、被ハ1定体BDY透過データI  (LW,,L
BI)の各々の値に対応してX線菅電流XC (j.i
)を測定して、Io(j,i)−a−Xc (Li)と
して(1)′式により射影データを求めるようにする方
法もある。上式において、aは比例定数である。
In addition, as shown in Fig. 7, a collimator CM3, a detector D
Instead of using ET2 to directly determine the incident
X-ray tube current XC (j.i
There is also a method of measuring Io(j,i)-a-Xc (Li) and obtaining projection data using equation (1)'. In the above formula, a is a proportionality constant.

第8図は更に本発明の他の実施例の測定系の図、第9図
はこのi1?+定に用いられる披11?1定体BDYの
平面図である。図において、第1図.第2図と同等の部
分には同一の符号を付してある。この実施例はファンビ
ームXIJ9による高速な測定法を示すもので、Xはフ
ァンビームX線を出すX線の黒点である。被i1−1定
体BDYは、正面形状は第8図に示すように、ファンビ
ームに添うような形状で、上から見た平面形状は第9図
に示すような形状をしている。水容器WPの正面形状は
扇形であり、これに水WTを満たしてある。従って、あ
らゆるX線の経路での経路長はLWで一定である。一方
、模擬骨BEPの経路長はファンビームを形成する各X
線の経路叫に異なっている。X線源XS(X線の焦点X
),検出器群DETはこの相対的位置関係のままで移動
することなく、1回のファンビームの照1・Iにより、
図のLWに対する全経路のX線透過データとX線強度デ
ータを同時に測定する。
FIG. 8 is a diagram of a measurement system of another embodiment of the present invention, and FIG. 9 is a diagram of this i1? FIG. 2 is a plan view of a 11-1 constant body BDY used for positive constants. In the figure, Figure 1. Components equivalent to those in FIG. 2 are given the same reference numerals. This example shows a high-speed measurement method using fan beam XIJ9, where X is a black spot of X-rays that emit fan beam X-rays. The i1-1 constant body BDY has a front shape along the fan beam as shown in FIG. 8, and a planar shape as shown in FIG. 9 when viewed from above. The front shape of the water container WP is fan-shaped, and is filled with water WT. Therefore, the path length of every X-ray path is constant at LW. On the other hand, the path length of the simulated bone BEP is
The route of the line is different to shout. X-ray source XS (X-ray focal point
), the detector group DET remains in this relative positional relationship without moving, and by one fan beam irradiation 1・I,
X-ray transmission data and X-ray intensity data of all paths for the LW shown in the figure are measured simultaneously.

射影の計算は(1)′式により行う。LWの異なるlI
P1定に対しては被測定体BDYの水容器WPの異なる
ものと交換して測定を繰り返す。この方法は、1回のフ
ァンビームの測定で異なるLnの測定を一時に行い得る
が、L.の異なる測定に対しては被測定体BDYを交換
する必要があるという不便さがある。水WTの経路長L
Wを浦便に変化させる構造の例として、第10図.第1
1図に示すものがある。第10図は本実施例の披測定体
BDYの正面図、第11図は被測定体BDYの側面図で
ある。図において、第1図と同等の作用を持つ部分には
同一の符号を付してある。図中、Sはスライス厚で、階
段状構戊の各段の幅はスライス厚Sに略等しく作られて
いる。X線はXDI−XD2の方向(又はその逆方向で
もよい)に向い、第10図.第11図では水WTは斜線
部が選択されている。水WTの異なる各経路長に対して
は模擬骨BEPの経路長は0〜LIloで変化し得る。
Projection calculation is performed using equation (1)'. Different lI of LW
For P1 constant, the water container WP of the object to be measured BDY is replaced with a different one and the measurement is repeated. Although this method allows measurements of different Ln to be performed at the same time in one fan beam measurement, L. There is an inconvenience that it is necessary to exchange the object to be measured BDY for different measurements. Path length L of water WT
Figure 10 shows an example of a structure that changes W to Urabe. 1st
There is one shown in Figure 1. FIG. 10 is a front view of the object to be measured BDY of this embodiment, and FIG. 11 is a side view of the object to be measured BDY. In the figure, parts having the same functions as those in FIG. 1 are given the same reference numerals. In the figure, S is the slice thickness, and the width of each step of the stepped structure is made approximately equal to the slice thickness S. The X-rays are directed in the direction of XDI-XD2 (or the opposite direction may be used), and as shown in FIG. In FIG. 11, the shaded area is selected for the water WT. For each different path length of water WT, the path length of the simulated bone BEP can vary from 0 to LIlo.

第10図において、1回のファンビームの照1・1によ
り経路長LWの水に対して全経路長の模擬・1゜IBE
Pに対するxl透過データとX線強度データを同時に得
ることができるが、水WTの経路長を変化させる時には
、図の紙面に垂直な方向に移動させられる。
In Figure 10, one fan beam illumination 1.1 simulates the total path length of water with path length LW by 1° IBE.
Although xl transmission data and X-ray intensity data for P can be obtained simultaneously, when changing the path length of the water WT, it is moved in a direction perpendicular to the plane of the drawing.

披API定休,測定系を更に次のように変形させること
も可能である。
It is also possible to further modify the measurement system as follows.

(1)第12図は第1図に示した彼測定体BDYに脚を
取り付けて、テーブルTA上に垂直に立てて使用する構
造の被測定体BDYの図である。図において、第1図と
同等の部分には同一の符号を付してある。図中、FTは
披a?1定体BDYに取り付けられた3木の脚である。
(1) FIG. 12 is a diagram of the object to be measured BDY shown in FIG. 1, which has legs attached to it and is used by standing vertically on a table TA. In the figure, parts equivalent to those in FIG. 1 are given the same reference numerals. In the diagram, FT is ? There are three wooden legs attached to one fixed body BDY.

脚は十面図に示すような位置に配置されている。The legs are arranged as shown in the ten-sided diagram.

(I1)被測定体BDYをテーブルTAに載せて測定す
る代りに、1 1111定体BDYを水甲方向の2本の
アームで支持する構造にしても良い。この場合はテーブ
ルTAは不要である。
(I1) Instead of measuring the object BDY by placing it on the table TA, a structure may be adopted in which the 11111 constant body BDY is supported by two arms in the water shell direction. In this case, table TA is not necessary.

(il+)模擬骨BEPを骨と等価な物質とする代りに
各種の金属で構戒することにより、金属と軟組織の共存
下でX線線質硬化の測定ができる。又、水容器WPに注
入する液体は水に限定されず、人体の軟組織を模擬する
各種の溶液を使用することができる。又、水容器WPの
部分は液体を収容する容器でなく、軟組織に等価なX線
吸収係数を有する固体で作ることもできる。
(il+) By using various metals instead of using the simulated bone BEP as a substance equivalent to bone, X-ray hardening can be measured in the coexistence of metals and soft tissues. Further, the liquid injected into the water container WP is not limited to water, and various solutions that simulate the soft tissues of the human body can be used. Furthermore, the water container WP can be made of a solid material having an X-ray absorption coefficient equivalent to that of soft tissue, instead of being a container containing a liquid.

(Iv)被測定体BDYの構造を第1図のものとは逆に
水容器WP(水WT)を三角状にし、摸擬骨BEPを一
定の高さにして、骨によるX線の吸収を一定にし、軟組
織に等価な水WTによるX線の吸収を変化させることも
できる。
(Iv) The structure of the object to be measured BDY is the opposite of that in Figure 1, with the water container WP (water WT) being triangular and the simulated bone BEP being at a constant height to reduce the absorption of X-rays by the bone. It is also possible to keep it constant and change the absorption of X-rays by water WT, which is equivalent to soft tissue.

この場合、模擬骨BEPの高さの変更は披測定体BDY
に取り付ける骨に類似する物質の量を変更することによ
って行われる。
In this case, the change in the height of the simulated bone BEP is
This is done by changing the amount of bone-like material that is attached to the bone.

以上の説明では放射線をX線として説明したがγ線その
他の放射線に対しても本i1P1定法と本ilP1定装
置が応用可能であることは勿論である。
In the above explanation, the radiation is X-rays, but it goes without saying that the present i1P1 method and the present ilP1 constant method can be applied to other radiations such as γ-rays.

(発明の効果) 以上詳細に説明したように本発明によれば、次のような
効果を期待することができて、実用上の効果は大きい。
(Effects of the Invention) As described above in detail, according to the present invention, the following effects can be expected, and the practical effects are great.

(1) X線CTのX II fl)I定法で大きな技
術課題として残されているX線線質硬化の問題に対して
、その基本的課題であるX線線質硬化に対する極めて浦
便なIN−1定法とその11113定装置を実現するこ
とができる。
(1) Regarding the problem of X-ray hardening, which remains a major technical issue in the -1 constant method and its 11113 constant device can be realized.

(11)骨の存γF及び骨と軟組織の混71:によるX
線線質硬化の測定ばかりでなく、金属の存窪及び金属と
軟組織の混窪によるX線線質硬化のδ−1定等その適用
性が広く、方法上の融通性の高い測定法とδt1定装置
とが実現できる。
(11) X due to presence of bone γF and mixture of bone and soft tissue 71:
In addition to the measurement of X-ray hardening, it has wide applicability, such as the δ-1 constant of X-ray hardening due to the presence of metal and mixed depressions of metal and soft tissue, and is a highly flexible measuring method and δt1. A fixed device can be realized.

(III)披測定体の構造. ilPI定系の構或はシ
ンプルで、非常に簡便.高速珪つ正確なX線線質硬化の
測定が可能になる。
(III) Structure of the arytenoid. The structure of the ilPI system is simple and very convenient. High-speed and accurate measurement of X-ray hardening becomes possible.

4. 図面ノfItl)Lp,C説明 第1図は本発明の一実施例の被一一1定休の構造図、第
2図は第1図の披M1定体を川いたil?I定系の図、
第3図は測定装置の構成図、第4図はテーブルの天板の
図、第5図は第3図の測定装置の動作のフローチャ−1
・、第6図は本発明の他の実施例の披測定体を用いたf
llll定の説明図、第7図は本発明の他の実施例によ
る測定の説明図、第8図,第9図は本発明の他の実施例
の被測定体の説明図で、第8図はその正面図、第9図は
その平面図、第■0図,第11図は本発明の更に他の実
施例の被7m定休の説明図で、第10図は正面図、第1
1図はその側面図、第12図は本発明の更に他の実施例
の披測定体の図である。
4. Figure 1 is a structural diagram of the 111 regular holiday according to an embodiment of the present invention, and Figure 2 is an illustration of the structure of the M1 constant in Figure 1. Diagram of I definite system,
Figure 3 is a configuration diagram of the measuring device, Figure 4 is a diagram of the table top, and Figure 5 is a flowchart 1 of the operation of the measuring device in Figure 3.
・, FIG. 6 shows f using a measuring body of another embodiment of the present invention.
FIG. 7 is an explanatory diagram of measurement according to another embodiment of the present invention, and FIGS. 8 and 9 are explanatory diagrams of the object to be measured according to other embodiments of the present invention. 9 is a front view thereof, FIG. 9 is a plan view thereof, FIGS.
1 is a side view thereof, and FIG. 12 is a diagram of a measuring body according to still another embodiment of the present invention.

BDY・・・被測定体    BEP・・・模擬骨CM
I,CM2,CM3・・・コリメータDAS・・・デー
タ収集装置 DET,DET2・・・検出器 DPS・・・データ処理装置 DS・・・データ記憶装置  GA・・・ガントリSC
C・・・撮影制御装置  TA・・・テーブルTGC・
・・テーブル・ガントリ制御装置TP・・・天板   
   WP・・・水容器WT・・・水       X
・・・焦点XGC・・・X線発生制御装置 XR・・・高圧・X線発生制御装置 XS・・・X線源 第 1 図 正面図 第2 図 xS Xli!! 第5 じで 繭 7 図 Uヒ1l検出器 DET凛出器 角年6 ヲ( X焦点 第9 図 \ BDY被》1定体
BDY...Object to be measured BEP...Simulated bone commercial
I, CM2, CM3... Collimator DAS... Data acquisition device DET, DET2... Detector DPS... Data processing device DS... Data storage device GA... Gantry SC
C...Photography control device TA...Table TGC/
...Table gantry control device TP...Top plate
WP...Water container WT...Water X
...Focus XGC...X-ray generation control device XR...High pressure/X-ray generation control device XS...X-ray source 1st figure Front view 2nd figure xS Xli! ! 5th Cocoon 7 Fig.

Claims (6)

【特許請求の範囲】[Claims] (1)水もしくは同等の液体又は固体で構成された人体
等の軟組織に等価なX線吸収係数をもつ物質のX線通過
経路長を一定とし、骨や金属等に等価な高X線吸収物質
のX線通過経路長をX線経路によって連続的に又は離散
連続に可変にした構造をもち、前記人体等の軟組織に等
価な物質のX線通過経路長の変更は前記水もしくは同等
の液体又は固体の量を変更することにより成される構造
の被測定体により、同一X線通過経路上の人体等の軟組
織に等価な物質の長さL_Wと骨や金属等に等価な高X
線吸収物質の長さL_Bの各々の対に対応する透過X線
データ、透過X線射影データを測定し、これから人体等
の軟組織と骨や金属等の高X線吸収物質との共存に対す
るX線等の放射線の線質硬化を求めることを特徴とする
X線等の放射線の線質硬化の測定法。
(1) The X-ray passage length of a substance composed of water or an equivalent liquid or solid that has an X-ray absorption coefficient equivalent to that of soft tissues such as the human body is fixed, and a high X-ray absorption material that is equivalent to bones, metals, etc. has a structure in which the length of the X-ray passage path is varied continuously or discretely depending on the X-ray path, and the length of the X-ray passage of the substance equivalent to the soft tissue of the human body can be changed by using the water or equivalent liquid or By changing the amount of solid material, the length L_W of a material equivalent to soft tissue such as a human body and the height X equivalent to bone, metal, etc. on the same X-ray passage path
The transmitted X-ray data and transmitted X-ray projection data corresponding to each pair of the length L_B of the radiation absorbing material are measured, and from this, the A method for measuring radiation hardening of radiation such as X-rays, characterized by determining radiation hardening of radiation such as X-rays.
(2)骨や金属等に等価な高X線吸収物質のX線通過経
路長を一定とし、人体等の軟組織に等価な物質のX線通
過経路長をX線通過経路によって連続的又は離散連続に
可変とした構造をもち、前記高X線吸収物質のX線通過
経路長の変更は高X線吸収物質の量を変更することによ
り成される構造の被測定体により、同一X線通過経路上
の人体等の軟組織に等価な物質の長さL_Wと骨や金属
等に等価な高X線吸収物質の長さL_Bの各々の対に対
応する透過X線データ、透過X線射影データを測定し、
これから人体等の軟組織と骨や金属等の高X線吸収物質
との共存に対するX線等の放射線の線質硬化を求めるこ
とを特徴とするX線等の放射線の線質硬化の測定法。
(2) The length of the X-ray passage through a substance with high X-ray absorption equivalent to bone or metal is constant, and the length of the X-ray passage through a substance equivalent to soft tissue of the human body is continuous or discrete, depending on the X-ray passage. The length of the X-ray passing path of the high X-ray absorbing material is changed by changing the amount of the high X-ray absorbing material. Measure the transmitted X-ray data and transmitted X-ray projection data corresponding to each pair of the length L_W of a material equivalent to soft tissue of the human body, etc., and the length L_B of a high X-ray absorption material equivalent to bones, metals, etc. death,
A method for measuring radiation hardening of radiation such as X-rays, which is characterized in that the hardening of radiation such as X-rays is determined for the coexistence of soft tissues such as human bodies and high X-ray absorption substances such as bones and metals.
(3)同一X線通過経路上の人体等の軟組織に等価な物
質の長さをL_Wとし骨や金属等に等価な高X線吸収物
質の長さをL_Bとし各々の射影データをP_W(L_
W、L_B)、P_B(L_W、L_B)とするとき、
X線線質硬化に対応する人体等の軟組織に等価な物質の
X線吸収係数μw(L_W、L_B)、骨や金属等に等
価な高X線吸収物質のX線吸収係数μB(L_W、L_
B)を各々{P_W(L_W+ΔL_W、L_B)−P
_W(L_W、L_B)}/ΔL_W、{P_B(L_
W、L_B+ΔL_B)−P_B(L_W、L_B)}
/ΔL_B又はこれから誘導される諸量として求めるこ
とを特徴とする請求項1又は2記載のX線等の放射線の
線質硬化の測定法。
(3) Let L_W be the length of a material equivalent to soft tissue of a human body, etc. on the same X-ray passage path, and L_B be the length of a highly X-ray absorbing material equivalent to bones, metals, etc., and calculate each projection data as P_W(L_
W, L_B), P_B(L_W, L_B),
The X-ray absorption coefficient μW (L_W, L_B) of materials equivalent to soft tissue of the human body, which corresponds to X-ray hardening, and the X-ray absorption coefficient μB (L_W, L_
B) respectively as {P_W(L_W+ΔL_W,L_B)−P
_W(L_W, L_B)}/ΔL_W, {P_B(L_
W, L_B+ΔL_B)-P_B(L_W, L_B)}
3. The method for measuring radiation hardening of radiation such as X-rays according to claim 1 or 2, characterized in that it is determined as /ΔL_B or various quantities derived therefrom.
(4)水もしくは同等の液体又は固体で構成された人体
等の軟組織に等価なX線吸収係数をもつ物質と骨や金属
等に等価な高X線吸収物質とをX線通過経路上に配列し
た構造の被測定体と、該被測定体内を透過した透過X線
データを測定するための一体化されたX線源と検出器及
びその付属装置から成る透過X線データ測定手段と、該
透過X線データ測定手段を必要に応じた所要の方向に移
動させる移動手段と、同一X線通過経路上の人体等の軟
組織に等価な物質の長さL_W、骨や金属等に等価な高
X線吸収物質の長さL_B、各々の射影データP_W(
L_W、L_B)、P_B(L_W、L_B)を用いて
それぞれに対応するX線吸収係数μw(L_W、L_B
)、μB(L_W、L_B)を求める演算手段とを具備
することを特徴とするX線等の放射線の線質硬化測定装
置。
(4) A material composed of water or an equivalent liquid or solid that has an X-ray absorption coefficient equivalent to soft tissue of the human body, etc. and a high X-ray absorption material equivalent to bone, metal, etc. are arranged on the X-ray passage path. an object to be measured having a structure of A moving means for moving the X-ray data measurement means in a required direction as needed, a length L_W of a material equivalent to soft tissue such as a human body on the same X-ray passage path, and a high X-ray equivalent to bone, metal, etc. Length L_B of absorbing material, each projection data P_W(
L_W, L_B) and P_B(L_W, L_B), the corresponding X-ray absorption coefficient μw(L_W, L_B
), μB(L_W, L_B), and calculating means for determining the radiation quality hardening of radiation such as X-rays.
(5)被測定体は水もしくは同等の液体又は固体で構成
された人体等の軟組織に等価なX線吸収係数をもつ物質
のX線通過経路長を一定とし、骨や金属等に等価な高X
線吸収物質のX線通過経路長をX線経路によって連続的
に又は離散連続に可変した構造をもち、前記人体等の軟
組織に等価な物質のX線通過経路長の変更は前記水もし
くは同等の液体又は固体の量を変更することにより成さ
れる構造のものであることを特徴とする請求項4記載の
X線等の放射線の線質硬化測定装置。
(5) The object to be measured is a substance composed of water or an equivalent liquid or solid that has an X-ray absorption coefficient equivalent to that of soft tissues such as the human body, and has a constant X-ray passage length. X
It has a structure in which the X-ray passing path length of the radiation absorbing substance is varied continuously or discretely and continuously depending on the X-ray path, and the changing of the X-ray passing path length of the substance equivalent to the soft tissue of the human body etc. is done by using the water or equivalent material. 5. The radiation hardening measurement device for radiation such as X-rays according to claim 4, characterized in that it has a structure achieved by changing the amount of liquid or solid.
(6)被測定体は骨や金属等に等価な高X線吸収物質の
X線通過経路長を一定とし、人体等の軟組織に等価な物
質のX線通過経路長をX線通過経路によって連続的又は
離散連続に可変にした構造をもち、前記高X線吸収物質
のX線通過経路長の変更は高X線吸収物質の量を変更す
ることにより成される構造のものであることを特徴とす
る請求項4記載のX線等の放射線の線質硬化測定装置。
(6) For the object to be measured, the length of the X-ray passage through a substance with high X-ray absorption equivalent to bone or metal is constant, and the length of the X-ray passage through a substance equivalent to soft tissue such as the human body is continuous by the X-ray passage. It has a structure in which the X-ray passing path length of the high X-ray absorption material is changed by changing the amount of the high X-ray absorption material. The radiation hardening measuring device for radiation such as X-rays according to claim 4.
JP1162171A 1989-06-23 1989-06-23 Method and device for measuring quality hardening of radiation such as x rays or the like Pending JPH0326241A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1162171A JPH0326241A (en) 1989-06-23 1989-06-23 Method and device for measuring quality hardening of radiation such as x rays or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1162171A JPH0326241A (en) 1989-06-23 1989-06-23 Method and device for measuring quality hardening of radiation such as x rays or the like

Publications (1)

Publication Number Publication Date
JPH0326241A true JPH0326241A (en) 1991-02-04

Family

ID=15749370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1162171A Pending JPH0326241A (en) 1989-06-23 1989-06-23 Method and device for measuring quality hardening of radiation such as x rays or the like

Country Status (1)

Country Link
JP (1) JPH0326241A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068397A (en) * 2004-09-03 2006-03-16 Canon Inc Information processor, photography system, method for correcting absorption coefficient and computer program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068397A (en) * 2004-09-03 2006-03-16 Canon Inc Information processor, photography system, method for correcting absorption coefficient and computer program
US7238947B2 (en) 2004-09-03 2007-07-03 Canon Kabushiki Kaisha Medical information processor, image photographing system, and absorption coefficient calibration method
JP4585815B2 (en) * 2004-09-03 2010-11-24 キヤノン株式会社 Information processing apparatus, imaging system, absorption coefficient correction method, and computer program

Similar Documents

Publication Publication Date Title
Doran et al. A CCD-based optical CT scanner for high-resolution 3D imaging of radiation dose distributions: equipment specifications, optical simulations and preliminary results
US5533080A (en) Reduced field-of-view CT system for imaging compact embedded structures
KR100273183B1 (en) Compensator and radiation treatment planning device of radiation treatment device
Walters et al. Attenuation correction in gamma emission computed tomography
Zygmanski et al. The measurement of proton stopping power using proton-cone-beam computed tomography
EP0682497B1 (en) Compact c-arm tomographic bone scanning system
US4442489A (en) Device for computed tomography
CN101336828B (en) Acquisition method and device of CT value correction paper
US7471759B2 (en) Method for estimating the scattered radiation in X-ray tomography
JPH07124150A (en) Method for correcting scattered x-ray, x-ray ct device and multichannel x-ray detecting device
JPH05302979A (en) Simultaneous transmission/emission type focus tomography
GB1578442A (en) Radiography
CN104166962A (en) Cone beam CT scattering correction method by use of scattering nucleus method
US4639941A (en) Radiography
WO2009156898A2 (en) Medical x-ray examination apparatus and method for k-edge imaging
Jones et al. Dosage distribution in rotational cobalt 60 therapy
NL8300039A (en) REFERENCE DETECTION DEVICE FOR MULTIDETECTOR TOMODENS SITOMETER AND TOMODENS SITOMETER INCLUDING SUCH A DEVICE.
JPH0326241A (en) Method and device for measuring quality hardening of radiation such as x rays or the like
WO1997024632A1 (en) Method and apparatus for accurately calibrating an attenuation map for emission computed tomography
Kak et al. Computerized tomography using video recorded fluoroscopic images
US20140125969A1 (en) Apparatus and methods for performing optical tomography on dosimeters for calibrating radiotherapy equipment
US5185775A (en) X-ray apparatus including a homogenizing filter
JP2773358B2 (en) Bone mineral analyzer
JPH03185344A (en) Method and apparatus for analyzing component using x-rays
US4126785A (en) Radiography