JPH0326153B2 - - Google Patents

Info

Publication number
JPH0326153B2
JPH0326153B2 JP55114075A JP11407580A JPH0326153B2 JP H0326153 B2 JPH0326153 B2 JP H0326153B2 JP 55114075 A JP55114075 A JP 55114075A JP 11407580 A JP11407580 A JP 11407580A JP H0326153 B2 JPH0326153 B2 JP H0326153B2
Authority
JP
Japan
Prior art keywords
catalyst
oil
pressure
residual oil
benzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55114075A
Other languages
Japanese (ja)
Other versions
JPS5738878A (en
Inventor
Mamoru Yamane
Yasukazu Sato
Yutaka Mukai
Hiromi Ozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP11407580A priority Critical patent/JPS5738878A/en
Publication of JPS5738878A publication Critical patent/JPS5738878A/en
Publication of JPH0326153B2 publication Critical patent/JPH0326153B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)
  • Color Printing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、ポリ塩化ビフエニル(PCB)の代
替品として有用な感圧紙用溶剤を製造する方法に
関する。 従来の技術 一般に、PCBの代替品としては、ビフエニル
のエチル誘導体が用いられている。このビフエニ
ルのエチル誘導体の製造方法としてはビフエニル
とエチルベンゼン或いはポリエチルベンゼン等の
トランスアルキル化反応が採用されている。しか
しながら、この方法は、一般に、アルキルベンゼ
ンを含有する炭化水素油を水素化脱アルキル化し
てベンゼンを製造し、このベンゼンの縮合脱水に
より得たビフエニルを、又ベンゼンのエチル化に
より製造したエチルベンゼン或いはポリエチルベ
ンゼンを原料としているため工程が多岐にわた
り、経済上不利である。 発明が解決しようとする課題 本発明は、上記課題を解決しようとするもの
で、極めて簡単な工程により、経済上有利に感圧
紙用溶剤を製造する方法を提供することを目的と
するものである。 課題を解決するための手段 本発明者は、上記課題を解決すべく鋭意検討し
た結果、アルキルベンゼンを含有する炭化水素油
を水素化脱アルキル化して得られた生成物から、
ベンゼン、トルエン、キシレン等を分離回収した
残りの留分を低級オレフインによりアルキル化し
たものがPCBの代替品として使用でき、しかも
感圧紙用溶剤として優れていることを見い出い
た。 本発明はかかる知見に基づきなされたもので、
本発明の感圧紙用溶剤の製造方法は、アルキルベ
ンゼンを含有する炭化水素油を水素化脱アルキル
化し、ベンゼン、トルエン、キシレンを回収分離
した残油の一部もしくは全部をフリーデル−クラ
フツ触媒もしくは固体酸触媒の存在下に、低級オ
レフインによりアルキル化することから構成され
るものである。 以下に本発明を詳細に説明する。 アルキルベンゼンの水素化脱アルキルプロセス
においては、改質油、或いはエチレンプラントか
ら得られる粗ガソリン、その他の分解ガソリン、
トルエン、キシレン等のアルキルベンゼンを含有
する炭化水素油が原料として用いられる。これら
の原料は、35〜70Kg/cm2・Gの水素加圧下に、
Cr−MO系又はクロミア−アルミナ系等の触媒を
用いて、550〜650℃の温度で接触的に水素化脱ア
ルキル化するか或いは触媒を用いることなしに、
10気圧以上の水素加圧下で、500〜800℃の温度に
より熱的に水素化脱アルキル化する。この脱アル
キル化生成物は、一般にスタビライザーにより、
メタン、エタン等の軽質炭化水素を分離し、必要
に応じ白土処理等を経て精留塔へ導入される。こ
の精留塔にて、ベンゼンが製品として回収され、
場合によつては、トルエン、キシレンも回収され
る。一方、このベンゼン等を回収した残りの釜残
油は、従来は原料として再度リサイクルされてい
た。しかし、本発明においては、このリサイクル
されている釜残油を一部抜き出すことにより、或
いはリサイクルさせることなく得られた釜残油を
低級オレフインによりアルキル化するのである
が、この釜残油は、さらに、トルエン、キシレン
留分等を分離回収して、沸点が140℃℃以上の留
分とすることが好ましい。このベンゼン、トルエ
ン、キシレン等が回収された残油を全て用いるこ
とができるが、所望により、この残油をさらに蒸
留分離してその一部を用いることもできる。 このようにして調製された残油を、フリーデル
−クラフツ触媒、例えば無水塩化アルミニウム、
フツ化水素、硫酸等、或いは固体酸触媒、例えば
石油類等の接触分解に用いられるシリカ−アルミ
ナ触媒、合成ゼオライト触媒或いは天然ゼオライ
ト触媒等の存在下に、低級オレフイン、例えばエ
チレン、プロピレン、ブテン、イソブテン等と接
触反応させる。この場合の反応条件は、通常のア
ルキル化反応と同じである。例えば、無水塩化ア
ルミニウムを触媒として用いた場合は、触媒の量
は残油に対して0.1〜5重量%、反応温度は常温
〜200℃、特には75〜170℃、低級オレフインの量
は0.5〜5モル/残油の条件で、又、固体酸触媒
を用いた場合は触媒の量を、残油に対して0.1〜
5重量%、反応温度を120℃以上、特には140〜
300℃、低級オレフインの量を0.5〜5モル/残油
の条件で行うことが好ましい。 これらの触媒のうちでも、フリーデル−クラフ
ツ触媒は、装置等の腐食面及び使用後の触媒の処
理及び廃棄等に問題が生じ、さらには製品中にご
く微量のハロゲンイオンが残存し、製品にわずか
の着色を生じるため、あまり好ましくないが、反
応条件が固体酸触媒に比べて温和であり、又反応
速度が速い等の利点を有する。尚、シリカ−アル
ミナ、合成ゼオライト、天然ゼオライト等の固体
酸触媒は長期間使用していると活活性が低下する
が、400〜850℃の温度で大気中にて焼成すること
により触媒の再生を行なうことができる。また
850℃以上の温度で触媒を再生すると触媒の活性
が失活する傾向にあり、400℃以下ではほとんど
再生できない。 上記のアルキル化反応における低級オレフイン
との接触は、当該オレフインをガス状で、触媒を
分散させた液状の残油に連続的に吹き込む方法に
より行なうことが好ましい。 このようにして得られたアルキル化された生成
油から触媒を、デカンテーシヨン、遠心分離また
は過分離等の方法により除き、さらに未反応物
とアルキル化油とを分離する。このアルキル化
油、用途に応じて所望の留分に調製し、感圧紙用
溶剤とするのであるが、一般には、沸点が290〜
310℃になるように蒸留分離して調製することが
好ましい。 以下に実施例、比較例を用いて本発明の方法の
効果について具体的に述べる。 実施例 (アルキル化油の調製) 沸点80〜150℃の改質油を50Kg/cm2・Gの水素
圧力下、600℃の温度で、クロミア−アルミナ系
触媒を用いて水素化脱アルキルされた留分を蒸留
により分離して、140℃以上の沸点を有する脱ア
ルキル化油を得た。この脱アルキル化油から蒸留
によつて低沸点留分を除去した。 次に、この低沸点留分を除去した残油を第1表
上欄の触媒及び反応条件の下にフラスコ中で撹拌
しながらオレフインガスを連続的に吹き込み、反
応させた。この結果を第1表下欄に示す。
INDUSTRIAL APPLICATION This invention relates to a method for producing a pressure sensitive paper solvent useful as a replacement for polychlorinated biphenyl (PCB). Prior Art Generally, ethyl derivatives of biphenyl are used as substitutes for PCBs. As a method for producing the ethyl derivative of biphenyl, a transalkylation reaction between biphenyl and ethylbenzene or polyethylbenzene is employed. However, this method generally involves hydrodealkylating a hydrocarbon oil containing alkylbenzene to produce benzene, and then converting biphenyl obtained by condensation dehydration of this benzene into ethylbenzene or polyethylbenzene produced by ethylation of benzene. Since the raw material is , the process is diverse and it is economically disadvantageous. Problems to be Solved by the Invention The present invention aims to solve the above problems, and aims to provide an economically advantageous method for producing a solvent for pressure-sensitive paper through extremely simple steps. . Means for Solving the Problems As a result of intensive studies to solve the above problems, the inventors of the present invention have found that from a product obtained by hydrodealkylation of a hydrocarbon oil containing alkylbenzene,
It was discovered that the remaining fraction after separating and recovering benzene, toluene, xylene, etc., was alkylated with a lower olefin and could be used as a substitute for PCBs, and was also excellent as a solvent for pressure-sensitive paper. The present invention was made based on this knowledge,
The method for producing a solvent for pressure-sensitive paper of the present invention involves hydrodealkylating a hydrocarbon oil containing alkylbenzene, collecting and separating benzene, toluene, and xylene, and converting part or all of the residual oil to a Friedel-Crafts catalyst or a solid. It consists of alkylation with a lower olefin in the presence of an acid catalyst. The present invention will be explained in detail below. In the hydrodealkylation process of alkylbenzene, reformed oil, crude gasoline obtained from an ethylene plant, other cracked gasoline,
Hydrocarbon oil containing alkylbenzene, such as toluene and xylene, is used as a raw material. These raw materials are heated under hydrogen pressure of 35 to 70 kg/cm 2 G.
Catalytic hydrodealkylation at a temperature of 550 to 650°C using a catalyst such as Cr-MO or chromia-alumina, or without using a catalyst.
Hydrodealkylation is carried out thermally at a temperature of 500 to 800°C under hydrogen pressure of 10 atmospheres or more. This dealkylated product is generally stabilized by a stabilizer.
Light hydrocarbons such as methane and ethane are separated and, if necessary, subjected to clay treatment, etc. before being introduced into a rectification column. In this rectification column, benzene is recovered as a product,
In some cases, toluene and xylene are also recovered. On the other hand, the residual oil remaining in the kettle from which this benzene, etc. has been recovered has conventionally been recycled again as a raw material. However, in the present invention, the recycled kettle residual oil is partially extracted or the obtained kettle residual oil is alkylated with a lower olefin. Further, it is preferable to separate and recover toluene, xylene fractions, etc. to obtain a fraction with a boiling point of 140° C. or higher. All of the residual oil from which benzene, toluene, xylene, etc. are recovered can be used, but if desired, this residual oil can be further separated by distillation and a portion thereof can be used. The residual oil thus prepared is treated with a Friedel-Crafts catalyst, such as anhydrous aluminum chloride.
Lower olefins such as ethylene, propylene, butene, Contact reaction with isobutene etc. The reaction conditions in this case are the same as those for normal alkylation reactions. For example, when anhydrous aluminum chloride is used as a catalyst, the amount of catalyst is 0.1 to 5% by weight based on the residual oil, the reaction temperature is room temperature to 200°C, especially 75 to 170°C, and the amount of lower olefin is 0.5 to 5% by weight. Under the condition of 5 mol/residual oil, and if a solid acid catalyst is used, the amount of catalyst is 0.1 to 0.1 to residual oil.
5% by weight, reaction temperature 120℃ or higher, especially 140~
It is preferable to conduct the process at 300°C and the amount of lower olefin in the range of 0.5 to 5 mol/residual oil. Among these catalysts, Friedel-Crafts catalysts have problems with corrosion of the equipment, treatment and disposal of the catalyst after use, and furthermore, very small amounts of halogen ions remain in the product, causing problems with the product. Although it is not very preferable because it causes slight coloring, it has the advantage that the reaction conditions are milder and the reaction rate is faster than that of solid acid catalysts. In addition, the activity of solid acid catalysts such as silica-alumina, synthetic zeolite, and natural zeolite decreases when used for a long period of time, but the catalyst can be regenerated by calcining it in the air at a temperature of 400 to 850°C. can be done. Also
If the catalyst is regenerated at temperatures above 850°C, the activity of the catalyst tends to be deactivated, and at temperatures below 400°C it is almost impossible to regenerate. The contact with the lower olefin in the above alkylation reaction is preferably carried out by continuously blowing the olefin in gaseous form into the liquid residual oil in which the catalyst is dispersed. The catalyst is removed from the alkylated product oil obtained in this manner by a method such as decantation, centrifugation or hyperseparation, and unreacted substances and alkylated oil are further separated. This alkylated oil is prepared into a desired fraction depending on the application and used as a solvent for pressure-sensitive paper, but generally the boiling point is 290-
Preferably, it is prepared by distillation separation at a temperature of 310°C. The effects of the method of the present invention will be specifically described below using Examples and Comparative Examples. Example (Preparation of alkylated oil) A reformed oil with a boiling point of 80 to 150°C was hydrodealkylated using a chromia-alumina catalyst at a temperature of 600°C under a hydrogen pressure of 50 kg/cm 2 ·G. The fraction was separated by distillation to obtain a dealkylated oil with a boiling point above 140°C. The low boiling fraction was removed from this dealkylated oil by distillation. Next, the residual oil from which the low boiling point fraction had been removed was reacted in a flask under the catalyst and reaction conditions listed in the upper column of Table 1 by continuously blowing olefin gas into the flask while stirring. The results are shown in the lower column of Table 1.

【表】 (感圧紙用溶剤としての評価) 実験例3で得られたアルキル化油を分留し、沸
点295〜298℃の留分を得た。この留分について、
感圧紙用溶剤としての評価のため、発色剤の溶解
性、発色性、発色速度、湿度の影響、耐熱性の試
験を行なつた。 発色剤の溶解性はクリスタルバイオレツトラク
トンを試料油に対して8重量%加え、120℃に加
熱溶解した。その後、室温まで冷却し、3日間放
置して析出する発色剤の量を目視により判定し
た。 発色性、発色速度の試験は、通常のゼラチンと
アラビアゴムのコアセルベーシヨンによる方法に
て、発色剤−試料油溶液をマイクロカプセル化
し、厚紙にコーテングして上紙を作成した。これ
に活性白土をコーテングした下紙を重ね、加圧筆
記して発色の鮮明度及び発色速度をチエツクし
た。 湿度の影響については、湿度30、60、80%にそ
れぞれ設定した槽(温度は常温)内に上記と同様
にして作成したマイクロカプセルをコーテングし
た上紙を24時間入れ、上記と同様に発色性及び発
色速度をチエツクした。 耐熱性試験は前記と同様に作成したマイクロカ
プセルをコーテングした上紙を100℃の恒温槽に
24時間入れ、その後の上紙の表面の変色及び前記
と同様の発色性、発色速度の変化をみた。 各試験は、ジフエニルアルカン系の感圧紙用溶
剤として市販されているものと対比しながら行な
つた。これらの結果を第2表に記載する。この表
を見ても明らかなように市販品と何ら遜色は認め
られず、特に本発明のものは溶解性に優れている
ことがわかつた。
[Table] (Evaluation as a solvent for pressure-sensitive paper) The alkylated oil obtained in Experimental Example 3 was fractionally distilled to obtain a fraction with a boiling point of 295 to 298°C. Regarding this fraction,
In order to evaluate the solvent as a pressure-sensitive paper, tests were conducted on the solubility of the coloring agent, coloring properties, coloring speed, influence of humidity, and heat resistance. To determine the solubility of the coloring agent, 8% by weight of crystal violet lactone was added to the sample oil and dissolved by heating at 120°C. Thereafter, it was cooled to room temperature, left to stand for 3 days, and the amount of precipitated color former was determined visually. The color development property and color development speed were tested by microcapsulating a color former-sample oil solution using a conventional method of coacervation of gelatin and gum arabic, and coating it on cardboard to prepare a top paper. A layer of paper coated with activated clay was placed on top of this, and the color was written under pressure to check the sharpness of color development and speed of color development. Regarding the influence of humidity, we put the top paper coated with microcapsules prepared in the same way as above for 24 hours in baths set at 30, 60, and 80% humidity (at room temperature), and the color development was carried out in the same way as above. and the speed of color development was checked. For the heat resistance test, the top paper coated with microcapsules prepared in the same manner as above was placed in a constant temperature bath at 100℃.
After leaving it for 24 hours, the discoloration of the surface of the upper paper and the same changes in coloring properties and coloring speed as described above were observed. Each test was conducted in comparison with commercially available diphenylalkane-based pressure-sensitive paper solvents. These results are listed in Table 2. As is clear from this table, no inferiority was observed to the commercially available products, and it was found that the products of the present invention were particularly excellent in solubility.

【表】 発明の効果 このように本発明は、極めて簡便な方法によ
り、経済上有利に品質上優れた感圧紙用溶剤を製
造できるという格別の効果を有するものである。
[Table] Effects of the Invention As described above, the present invention has the special effect of being able to produce an economically advantageous and excellent quality pressure-sensitive paper solvent by an extremely simple method.

Claims (1)

【特許請求の範囲】[Claims] 1 アルキルベンゼンを含有する炭化水素油を水
素化脱アルキル化し、ベンゼン、トルエン、キシ
レンを回収分離した残油の一部もしくは全部をフ
リーデル−クラフツ触媒もしくは固体酸触媒の存
在下に、低級オレフインによりアルキル化するこ
とを特徴とする感圧紙用溶剤の製造方法。
1 Hydrocarbon oil containing alkylbenzene is hydrodealkylated to collect and separate benzene, toluene, and xylene. Part or all of the residual oil is converted into alkyl benzene by lower olefin in the presence of a Friedel-Crafts catalyst or a solid acid catalyst. A method for producing a solvent for pressure-sensitive paper, characterized in that:
JP11407580A 1980-08-21 1980-08-21 Preparation of electrical insulating oil, solvent for pressure-sensitive paper and heat medium oil Granted JPS5738878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11407580A JPS5738878A (en) 1980-08-21 1980-08-21 Preparation of electrical insulating oil, solvent for pressure-sensitive paper and heat medium oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11407580A JPS5738878A (en) 1980-08-21 1980-08-21 Preparation of electrical insulating oil, solvent for pressure-sensitive paper and heat medium oil

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP1115058A Division JPH01315483A (en) 1989-05-10 1989-05-10 Production of heating medium oil
JP11505789A Division JPH02204905A (en) 1989-05-10 1989-05-10 Manufacture of electrically insulating oil

Publications (2)

Publication Number Publication Date
JPS5738878A JPS5738878A (en) 1982-03-03
JPH0326153B2 true JPH0326153B2 (en) 1991-04-09

Family

ID=14628413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11407580A Granted JPS5738878A (en) 1980-08-21 1980-08-21 Preparation of electrical insulating oil, solvent for pressure-sensitive paper and heat medium oil

Country Status (1)

Country Link
JP (1) JPS5738878A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6116410A (en) * 1984-06-29 1986-01-24 日本石油化学株式会社 Electrically insulating oil
JPS6141593A (en) * 1984-08-06 1986-02-27 Nippon Petrochem Co Ltd Solvent for dye of pressure-sensitive paper
CN115044392B (en) * 2022-06-06 2023-08-01 中建安装集团有限公司 Process and device for improving comprehensive utilization additional value of ethylene cracking inferior tar

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976616A (en) * 1972-11-21 1974-07-24

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4976616A (en) * 1972-11-21 1974-07-24

Also Published As

Publication number Publication date
JPS5738878A (en) 1982-03-03

Similar Documents

Publication Publication Date Title
KR900003336A (en) Process for preparing white oil from heavy alkylate by-products
US3341615A (en) Process for the dehydrohalogenation of halogenated hydrocarbons
US2364719A (en) Hydrogenated liquid hydrocarbons
JP2001294542A (en) Acid catalyst isomerization of substituted diaryl compounds
JPH0326153B2 (en)
US4503269A (en) Isomerization of cresols
JPS6247852B2 (en)
US2329858A (en) Treatment of hydrocarbons
US2734930A (en) Separation of ethylbenzene from crude
JPH01315483A (en) Production of heating medium oil
JPS5950197B2 (en) Processing method for pyrolysis byproduct oil
JP3161556B2 (en) Method for producing high-boiling aromatic solvent
US2361065A (en) Alkylation of aromatic hydrocarbons
US3860668A (en) Alkyl benzene isomerisation process
US2988575A (en) Production of isomeric alkyl benzenes
JPS6141593A (en) Solvent for dye of pressure-sensitive paper
US2795633A (en) Demethylation process
SU887557A1 (en) Method of processing still residue of catalytic alkylation process of benzene with ethylene
US2786876A (en) Demethylation of methylbenzenes
US2402092A (en) Treatment of aromatic hydrocarbons
US2712538A (en) Synthetic resins from hydrocarbon pyrolysis products
US1767302A (en) Manufacture of condensation products from olefines and naphthalene hydrocarbon compounds
JPS5980490A (en) Conversion of olefins to distillate oil and/or lubricating oil products
JPH0444362B2 (en)
US2623076A (en) Isomerization of saturated hydrocarbons with sulfuric acid