JPH03261029A - High sensitive electron emitter and light receiving device - Google Patents

High sensitive electron emitter and light receiving device

Info

Publication number
JPH03261029A
JPH03261029A JP2059475A JP5947590A JPH03261029A JP H03261029 A JPH03261029 A JP H03261029A JP 2059475 A JP2059475 A JP 2059475A JP 5947590 A JP5947590 A JP 5947590A JP H03261029 A JPH03261029 A JP H03261029A
Authority
JP
Japan
Prior art keywords
light
semiconductor
electric field
semi
insulating semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2059475A
Other languages
Japanese (ja)
Other versions
JP2902708B2 (en
Inventor
Yoshihiko Mizushima
宜彦 水島
Toru Hirohata
徹 廣畑
Tomoko Suzuki
智子 鈴木
Tsuneo Ihara
渭原 常夫
Masaharu Miyazaki
宮崎 雅治
Minoru Aragaki
実 新垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP5947590A priority Critical patent/JP2902708B2/en
Publication of JPH03261029A publication Critical patent/JPH03261029A/en
Application granted granted Critical
Publication of JP2902708B2 publication Critical patent/JP2902708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Abstract

PURPOSE:To hold the emission of thermoelectrons after the irradiation of light is stopped and count it to increase the amount of output charge (sensitiveness) relative to the number of incoming photons by radiating light to a preset half- insulating semiconductor in an electric field of a preset value or more. CONSTITUTION:A half-insulating semiconductor 1-1 mainly composed of GaAs has both sides provided with a mesh-shaped film electrode 1-2 and a Schottky- type electrode 1-3, respectively, across which voltage is applied to cause not less than 1KV/cm electric field in the semiconductor 1-1. Long wave-length light is radiated from an energy gap in the semiconductor 1-1, so that the Fermi level of the semiconductor moves to a conduction band and the emission of thermoelectrons are increased and still remains in a greatly increased state after the irradiation of light is stopped. In this way, electron current which is taken out of the semiconductor into a vacuum is counted at the timing of light irradiation to know its sensitiveness.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高感度な光電子放射体及び受光装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a highly sensitive photoelectron emitter and a photodetector.

〔従来の技術〕[Conventional technology]

光電子放射現象は、様々な素子に応用されてはいるが、
光エネルギーに対する量子効率は低く信号量は少ない。
Although the photoelectron emission phenomenon has been applied to various devices,
The quantum efficiency with respect to optical energy is low and the amount of signal is small.

特に、900 nmより長波長の領域においては、Ag
−〇−Cs(いわゆるSl)光電子放射体しか実用にな
っておらず、この光電子放射体の感度も極めて低い。そ
のために、様々な研究がされているが、光電子放射体の
中で光電子を増倍させる機能が持てれば、感度の上昇に
つながる。
In particular, in the wavelength region longer than 900 nm, Ag
Only the -〇-Cs (so-called Sl) photoelectron emitter is in practical use, and the sensitivity of this photoelectron emitter is also extremely low. To this end, various studies are being conducted, and if the photoelectron emitter has the ability to multiply photoelectrons, it will lead to an increase in sensitivity.

従来技術として増倍機能を有する光電子放射体は実用に
なっていないが、電界効果を利用して表面障壁を低下さ
せる事を期待した光電子放射体が一部において考案され
ている。この技術は、表面付近の強い電界によって生じ
るなだれ増幅によって電子増倍が生じ、増倍された電子
が放射される現象に基づくものであり、公知な現象に基
づくものである。
Although photoelectron emitters having a multiplication function have not been put to practical use in the prior art, some photoelectron emitters have been devised in hopes of lowering the surface barrier by utilizing the electric field effect. This technique is based on a well-known phenomenon in which electron multiplication occurs due to avalanche amplification caused by a strong electric field near the surface, and the multiplied electrons are emitted.

また、従来最も多く用いられているCsSbタイプの光
電子放射体においては、強い光を照射した後に熱電子放
射量が大幅に増加する、いわゆる疲労効果と言われるも
のがあり、公知なことである。
Furthermore, in the CsSb type photoelectron emitter, which has been most commonly used in the past, there is a so-called fatigue effect in which the amount of thermionic radiation increases significantly after being irradiated with strong light, which is well known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、なだれ増幅を利用して光電子を増倍させ
る従来の技術は、なだれ増幅の増倍率が多くて100倍
程度しかないため、光電子放射体の感度は十分に得られ
なかった。また、光電子放射体に架けられる電界強度は
、素子の物性定数をなだれ増倍のためだけに設計してい
る訳ではないため、多くの増倍を期待する事はできない
。更に、なだれ増倍は、信号とノイズとの増倍率が異な
るために、必ずS/Nが劣化してしまう。
However, in the conventional technique of multiplying photoelectrons using avalanche amplification, the multiplication factor of avalanche amplification is only about 100 times at most, so that sufficient sensitivity of the photoelectron emitter could not be obtained. Further, the electric field strength applied to the photoelectron emitter cannot be expected to be multiplied much because the physical property constants of the element are not designed solely for avalanche multiplication. Furthermore, in avalanche multiplication, the signal-to-noise ratio always deteriorates because the multiplication factors of the signal and the noise are different.

また、従来のC5−8bタイプの光電子放射体における
疲労効果での熱電子放射量の増加は、極めて強い光を照
射した時にのみ起る一時的な現象であり、また、この増
加の程度も少ない。
Furthermore, the increase in the amount of thermionic radiation due to the fatigue effect in the conventional C5-8b type photoelectron emitter is a temporary phenomenon that occurs only when extremely strong light is irradiated, and the extent of this increase is also small. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこのような課題を解消するためになされたもの
で、光を照射する光照射手段と、1KV/叩以上の電界
を印加する電界印加手段と、この電界印加の下に光照射
手段から光が照射されることにより素子からの熱電子放
射が光照射前の値より大幅に増加する増幅機能を持たせ
た半絶縁性半導体で構成されたものである。
The present invention has been made to solve these problems, and includes a light irradiation means for irradiating light, an electric field application means for applying an electric field of 1 KV/beat or more, and a light irradiation means for applying the electric field. It is composed of a semi-insulating semiconductor that has an amplification function that, when irradiated with light, thermionic emission from the element increases significantly compared to the value before irradiation with light.

〔作用〕[Effect]

半絶縁性半導体に印加されている高電界のため、半導体
のフェルミレベルのエネルギー位置は上昇し、光照射後
に真空放射される熱電子は十分に増倍される。また、こ
の増倍現象による電流は持続的に流れる。
Due to the high electric field applied to the semi-insulating semiconductor, the Fermi level energy position of the semiconductor increases, and the thermal electrons emitted in vacuum after light irradiation are sufficiently multiplied. Furthermore, the current due to this multiplication phenomenon flows continuously.

〔実施例) 次に、本発明による極めて高感度な光電子放射体の一実
施例について説明する。
[Example] Next, an example of an extremely sensitive photoelectron emitter according to the present invention will be described.

半導体の熱電子放射は、フェルミレベルから熱的に伝導
帯へ励起された電子が、表面障壁の高さで決る脱出確率
に制限されて真空中へと放出される現象である。したが
って、表面障壁がそれほど変らない状況においては、伝
導帯に流れる電子の数を多くすれば、熱電子放射量も増
加する。
Thermionic emission of semiconductors is a phenomenon in which electrons thermally excited from the Fermi level to the conduction band are emitted into vacuum, limited by the escape probability determined by the height of the surface barrier. Therefore, in a situation where the surface barrier does not change much, increasing the number of electrons flowing into the conduction band increases the amount of thermionic radiation.

また、通常の光電子放射現象は、光子エネルギーによっ
て価電子帯から伝導帯へと電子を励起して、伝導帯に流
れる電流量を増加させ、真空へ放射される電子の数を増
加させる現象である。本発明の特徴はこの両現象を組合
せたもので、光照射によってフェルミレベルの位置を伝
導帯近くへ移動させる事によって熱的な電子励起を増加
させ、真空へ放射される電子の量を増加させた事に有る
In addition, the normal photoelectron emission phenomenon is a phenomenon in which photon energy excites electrons from the valence band to the conduction band, increasing the amount of current flowing in the conduction band and increasing the number of electrons emitted into the vacuum. . The feature of the present invention is that it combines both of these phenomena. By moving the Fermi level position closer to the conduction band by light irradiation, thermal electron excitation is increased, and the amount of electrons emitted into the vacuum is increased. There are many things.

光入力によって、取り出される電子量がコントロールさ
れるので、従来の光電子放射現象とは全く異なっている
Since the amount of electrons extracted is controlled by the optical input, it is completely different from conventional photoelectron emission phenomena.

この現象は、従来全く報告されておらず新規の解釈が必
要になる。現在想定されている解釈について、本発明の
実施例を用いて更に詳しく説明する。第1図は、半絶縁
性のGa Asを用いて本発明の光電子放射体を形成し
た例である。
This phenomenon has not been previously reported and requires a new interpretation. The currently assumed interpretation will be explained in more detail using examples of the present invention. FIG. 1 shows an example in which the photoelectron emitter of the present invention is formed using semi-insulating GaAs.

第1図に於て、符号1−1は半絶縁性Ga As半導体
、符号1−2は光入射可能且つ電子放射の妨げにならな
いように作られたメツシュ状薄膜電極或いは島状薄膜電
極である。また、符号1−3はショツトキー性の電極、
例えばW −S i等であり、電子補集用の電極である
。更に、電極1−2は、その表面障壁をさげて電子放射
が生じ易くするようにCs等のアルカリ金属またはアル
カリ酸化物で表面処理されている。電極1−2.1−3
の間には、図に記載された極性で電圧が印加されており
、半導体1−1内に生じる電界は、1KV/ am以上
になっている。
In Fig. 1, the reference numeral 1-1 is a semi-insulating GaAs semiconductor, and the reference numeral 1-2 is a mesh-like thin film electrode or an island-like thin film electrode made to allow light to enter and not interfere with electron emission. . In addition, numerals 1-3 are Schottky electrodes;
For example, it is W-Si, etc., and is an electrode for collecting electrons. Further, the electrode 1-2 is surface-treated with an alkali metal such as Cs or an alkali oxide so as to lower the surface barrier and facilitate electron emission. Electrode 1-2.1-3
A voltage is applied between them with the polarity shown in the figure, and the electric field generated within the semiconductor 1-1 is 1 KV/am or more.

この様に構成された光電子放射体にGa As半導体1
−1のエネルギーギャップより、長波長の光を照射する
。照射された光は、Ga As半導体1−1を透過する
ため、電極1−3に到達する。
A GaAs semiconductor 1 is attached to the photoelectron emitter constructed in this way.
Light with a long wavelength is irradiated from an energy gap of -1. The irradiated light passes through the GaAs semiconductor 1-1 and thus reaches the electrode 1-3.

電極1−3に於ては、光は電子を励起し、GaAs半導
体1−1との間に存在するショットキー障壁を内部エミ
ッションによって越え、G a A s半導体1−1に
電子を注入する。この電子は、電極1−2へ走行してい
く間に、Ga As半導体1−1中に存在する深い準位
に捕獲される。
In the electrode 1-3, the light excites electrons, crosses the Schottky barrier existing between the electrode 1-3 and the GaAs semiconductor 1-1 by internal emission, and injects electrons into the GaAs semiconductor 1-1. These electrons are captured in a deep level existing in the GaAs semiconductor 1-1 while traveling to the electrode 1-2.

電子か捕獲される前、つまり光が照射される前には、’
 G a A s半導体1−1中のフェルミレベルは、
エネルギーギャップの真中に有る。従って、フェルミレ
ベルより伝導帯へ熱的に励起される電子の数は少なく、
結果的に真空へ取りだされる熱電子の数も少ない。しか
し、光照射によって、電子の捕獲が生じた状況に於ては
、フェルミレベルは伝導帯近くに移動しているために、
伝導帯に熱励起される電子の数は多く、熱電子放射量も
多くなる。
Before an electron is captured, that is, before it is irradiated with light, '
The Fermi level in the GaAs semiconductor 1-1 is
Located in the middle of the energy gap. Therefore, the number of electrons thermally excited to the conduction band is smaller than the Fermi level,
As a result, the number of thermoelectrons extracted into the vacuum is also small. However, in a situation where electron capture occurs due to light irradiation, the Fermi level moves close to the conduction band, so
The number of electrons thermally excited in the conduction band is large, and the amount of thermionic radiation is also large.

ところで、フェルミレベルが伝導帯近くに存在する状況
は、Ga As半導体1−1がn型の半導体という全く
別の物質に変化してしまっているので、この状況は持続
する。つまり、もはや光を断っても熱電子放射は大幅に
増加した状態に留る。
By the way, the situation in which the Fermi level exists near the conduction band continues because the GaAs semiconductor 1-1 has changed into a completely different substance, an n-type semiconductor. In other words, even if the light is cut off, thermionic emission remains significantly increased.

結果的に、光を照射する前に比べて熱電子照射は、外部
放射される電子の量が大幅に増加している。
As a result, in the thermionic irradiation, the amount of externally emitted electrons is significantly increased compared to before the light irradiation.

このように放射電子量を光で制御しているため、極めて
感度の良い光電子放射体が形成されていると言える。
Since the amount of emitted electrons is controlled by light in this way, it can be said that an extremely sensitive photoelectron emitter is formed.

現在この新しい現象については上記の様に解釈をしてい
るが、確定している訳ではない。
Currently, this new phenomenon is interpreted as described above, but it is not confirmed.

ところで、この増加した熱電子放射の状況は、半導体1
−1に印加されている電界を断ち、電子注入を断つまで
続く。従って、汎用的な光検出用の光電子放射体には成
らないが、予め光入力のタイミングが分っており、リセ
ット機能を付加できる状況で用いる検出器や、この素子
を他素子化して動かない赤外画像の撮像管へ応用するこ
とが出来る。
By the way, this situation of increased thermionic radiation is caused by the semiconductor 1
This continues until the electric field applied to -1 is cut off and electron injection is cut off. Therefore, it cannot be used as a photoelectron emitter for general-purpose photodetection, but it can be used as a detector in situations where the timing of optical input is known in advance and a reset function can be added, or this element can be made into another element so that it does not operate. It can be applied to image pickup tubes for infrared images.

更には、熱電子放射は持続するので、これを積分するこ
とにより、入射フォトン数に対する出力電荷量、つまり
感度は積分時間を伸ばすことで、いくらでも高くするこ
とが出来る。この増幅作用によってS/Nも大幅に改善
される。これらの応用に関して、半導体の温度を調整し
て、最適状態を選ぶことは出来る。一般的には低温に保
った方が良い結果となる。
Furthermore, since thermionic emission continues, by integrating it, the amount of output charge relative to the number of incident photons, that is, the sensitivity, can be increased as much as possible by extending the integration time. This amplification effect also significantly improves the S/N ratio. For these applications, the temperature of the semiconductor can be adjusted to select the optimum state. In general, keeping it at a low temperature will give better results.

ところで、第1図に示された実施例に於て、Ga As
のエネルギーギャップより単波長の光を入射した場合に
は、電極1−2の近傍で吸収されてしまい、殆どトラッ
プされずに電極1−2に流れ込む為に、この熱電子放射
増加作用を生じない。
By the way, in the embodiment shown in FIG.
When light of a single wavelength is incident from the energy gap of .

単波長側での利用に対しては、電極1−3を透明電極に
するなどして光を電極1−3側から入射すれば良い。こ
の場合には、価電子帯からの励起による光電子が最初の
トラップ電子になる。
For use on the single wavelength side, the electrode 1-3 may be made a transparent electrode and light may be incident from the electrode 1-3 side. In this case, a photoelectron due to excitation from the valence band becomes the first trapped electron.

上記実施例の説明の中において、最初にトラップされる
光電子の発生方法や、電子放射の為の表面障壁を低下さ
せる表面処理などは本特許の本質ではなく応用に過ぎな
い。本特許の本質は、光照射により電子トラップを発生
させフェルミレベルを上昇させ熱電子放射が大幅に増加
すること、及びその増加が光照射を断った後も続くこと
を発見し、これを光電子放射体に応用したことにある。
In the description of the above embodiments, the method of generating photoelectrons that are initially trapped, the surface treatment that lowers the surface barrier for electron emission, etc. are not the essence of this patent, but are merely applications. The essence of this patent is that the discovery that light irradiation generates electron traps and increases the Fermi level, resulting in a significant increase in thermionic emission, and that this increase continues even after the light irradiation is cut off. It is applied to the body.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、半絶縁性半導体に
印加されている高電界のため、半導体のフェルミレベル
のエネルギー位置は上昇し、光照射後に熱電子は十分に
増倍される。また、この増倍現象による電流は持続的に
流れる。
As explained above, according to the present invention, due to the high electric field applied to the semi-insulating semiconductor, the Fermi level energy position of the semiconductor increases, and thermionic electrons are sufficiently multiplied after light irradiation. Furthermore, the current due to this multiplication phenomenon flows continuously.

このため、限られた条件ではあるが赤外光照11によっ
て、高い量の電子放射を得ることか出来る。
Therefore, although under limited conditions, it is possible to obtain a high amount of electron emission using the infrared light irradiation 11.

この事は、赤外光に対する良い光電子放射面か実現され
ていない現在、様々なデバイスに応用することか出来る
This can be applied to a variety of devices, even though good photoelectron emitting surfaces for infrared light have not yet been realized.

] 0] 0

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による光電子放射体の構成図
である。 1−1・・・Ga As半導体、1−2・・・メツシュ
電極または島状電極、1−3・・・ショツトキー性電極
FIG. 1 is a block diagram of a photoelectron emitter according to an embodiment of the present invention. 1-1...GaAs semiconductor, 1-2...Mesh electrode or island electrode, 1-3...Schottky electrode.

Claims (1)

【特許請求の範囲】 1、光を照射する光照射手段と、1KV/cm以上の電
界を印加する電界印加手段と、この電界印加の下に前記
光照射手段から光が照射されることにより素子からの熱
電子放射が光照射前の値より大幅に増加する増幅機能を
持たせたことを特徴とする半絶縁性半導体で構成された
高感度光電子放射体。 2、半絶縁性半導体はGaAsを主とする半導体によっ
て構成されたことを特徴とする請求項1記載の高感度光
電子放射体。 3、半絶縁性半導体は表面がアルカリ金属またはアルカ
リ酸化物で処理されたことを特徴とする請求項1または
請求項2記載の高感度光電子放射体。 4、光を照射する光照射手段と、1KV/cm以上の電
界を印加する電界印加手段と、この電界印加の下に前記
光照射手段から光が照射されることにより素子からの熱
電子放射が光照射前の値より大幅に増加する増幅機能を
持たせた半絶縁性半導体と、この半絶縁性半導体の光電
子放射面を用いてクロックタイミング毎にこの半絶縁性
半導体をリセットするリセット手段と、前記半絶縁性半
導体から真空中へ取り出した電子流を積算する手段とを
有することを特徴とする受光装置。
[Scope of Claims] 1. A light irradiation means that irradiates light, an electric field application means that applies an electric field of 1 KV/cm or more, and an element that is irradiated with light from the light irradiation means while applying this electric field. A high-sensitivity photoelectron emitter made of a semi-insulating semiconductor, characterized by having an amplification function that greatly increases thermionic emission from a semi-insulating semiconductor compared to the value before irradiation with light. 2. The highly sensitive photoelectron emitter according to claim 1, wherein the semi-insulating semiconductor is composed of a semiconductor mainly composed of GaAs. 3. The highly sensitive photoelectron emitter according to claim 1 or 2, wherein the surface of the semi-insulating semiconductor is treated with an alkali metal or an alkali oxide. 4. A light irradiation means for irradiating light, an electric field application means for applying an electric field of 1 KV/cm or more, and thermionic emission from the element is caused by irradiation of light from the light irradiation means while applying this electric field. a semi-insulating semiconductor having an amplification function that greatly increases the value before the light irradiation; a reset means for resetting the semi-insulating semiconductor at each clock timing using a photoelectron emitting surface of the semi-insulating semiconductor; A light-receiving device comprising: means for integrating the electron flow extracted from the semi-insulating semiconductor into a vacuum.
JP5947590A 1990-03-09 1990-03-09 High-sensitivity photoelectron emitter and light receiving device Expired - Fee Related JP2902708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5947590A JP2902708B2 (en) 1990-03-09 1990-03-09 High-sensitivity photoelectron emitter and light receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5947590A JP2902708B2 (en) 1990-03-09 1990-03-09 High-sensitivity photoelectron emitter and light receiving device

Publications (2)

Publication Number Publication Date
JPH03261029A true JPH03261029A (en) 1991-11-20
JP2902708B2 JP2902708B2 (en) 1999-06-07

Family

ID=13114368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5947590A Expired - Fee Related JP2902708B2 (en) 1990-03-09 1990-03-09 High-sensitivity photoelectron emitter and light receiving device

Country Status (1)

Country Link
JP (1) JP2902708B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013366A1 (en) * 2000-08-07 2002-02-14 Norio Akamatsu Solar ray energy conversion apparatus
JP2007080799A (en) * 2005-09-16 2007-03-29 Hamamatsu Photonics Kk Photo cathode and electron tube

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4939033B2 (en) 2005-10-31 2012-05-23 浜松ホトニクス株式会社 Photocathode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002013366A1 (en) * 2000-08-07 2002-02-14 Norio Akamatsu Solar ray energy conversion apparatus
JP2007080799A (en) * 2005-09-16 2007-03-29 Hamamatsu Photonics Kk Photo cathode and electron tube

Also Published As

Publication number Publication date
JP2902708B2 (en) 1999-06-07

Similar Documents

Publication Publication Date Title
KR102402975B1 (en) A photovoltaic cathode comprising an array of field emitters on a silicon substrate with a boron layer
US6917058B2 (en) Semiconductor photocathode
KR102161724B1 (en) Photocathode including silicon substrate with boron layer
JP2668285B2 (en) Improved electron transfer III-V semiconductor photocathode
JPH05235396A (en) Semiconductor photoreceptor
JP3413241B2 (en) Electron tube
US7030406B2 (en) Semiconductor photocathode and photoelectric tube using the same
JP3524249B2 (en) Electron tube
JPH05234501A (en) Photoelectron emitting surface and electron tube using the same
JPH03261029A (en) High sensitive electron emitter and light receiving device
JP2011138684A (en) Transmission-type photoelectric cathode and measuring device equipped therewith
JP2798696B2 (en) Photoelectron emitter
JPH02234323A (en) Photoelectron radiator
JPH05282991A (en) Photoelectron emission plane
JP3078903B2 (en) Electron multiplying semiconductor device and composite device using the same
US6633125B2 (en) Short wavelength infrared cathode
JP3323636B2 (en) Photoelectron emission cathode, photoelectric conversion electron tube and spectrum measuring device
JPH05110051A (en) Electron emission device
JPH03222484A (en) Semiconductor photodetector and threshold value logic amplifier
JPH02252271A (en) Semiconductor device
JPH065199A (en) Photoelectron emitting surface
JPS63174249A (en) Light receiving device
JPS62232975A (en) Photoconducting detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees