JPH03260635A - Formation of partial polarization inversion region - Google Patents

Formation of partial polarization inversion region

Info

Publication number
JPH03260635A
JPH03260635A JP2060544A JP6054490A JPH03260635A JP H03260635 A JPH03260635 A JP H03260635A JP 2060544 A JP2060544 A JP 2060544A JP 6054490 A JP6054490 A JP 6054490A JP H03260635 A JPH03260635 A JP H03260635A
Authority
JP
Japan
Prior art keywords
substrate
absorbing film
regions
polarization
heat absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2060544A
Other languages
Japanese (ja)
Inventor
Ippei Sawaki
一平 佐脇
Kazunori Miura
和則 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2060544A priority Critical patent/JPH03260635A/en
Publication of JPH03260635A publication Critical patent/JPH03260635A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3558Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/3775Non-linear optics for second-harmonic generation in an optical waveguide structure with a periodic structure, e.g. domain inversion, for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3548Quasi phase matching [QPM], e.g. using a periodic domain inverted structure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To form partial polarization inversion regions to prevent the generation of an optical damage or a fluctuation in the refractive index in optical waveguides by partially heating the heat absorbing film on a substrate to a Curie point or above, then lowering the temp. of the film to room temp. to generate a polarization inversion. CONSTITUTION:The heat absorbing film 2 or the pattern part of the heat absorb ing film is provided on the substrate consisting of a ferroelectric material in at least the range where the partial polarization inversion regions 4 are to be formed. This substrate is heated up to the temp. right below the Curie point and further, the regions of the heat absorbing film 2 of the range where the partial polarization inversion regions 4 are to be formed, i.e., the partial heating regions 3, are heated partially to the Curie point or above; thereafter, the temp. of the substrate 1 is lowered. Since the ferroelectric material has a pyroelectric effect, the regions partially heated by a laser beam at the time of the temp. fall are subjected to the polrization inversion. The partial polarization inversion regions 4 which do not exert adverse influence are formed as the optical waveguides if the heat absorbing film 2 is removed and washed by suitable treating liquids.

Description

【発明の詳細な説明】 〔概要〕 部分的分極反転領域の形成方法に関し、レーザ光の第2
高調波を発生させるために、強誘電体上に光損傷が小さ
く低損失の分極反転型先導波路を作成する際に用いる部
分的分極反転領域の形成方法を改善することを目的とし
、強誘電体からなる基板上の少なくとも部分的分極反転
領域を形成する範囲に熱吸収膜または熱吸収膜パターン
部を設ける工程と、前記基板をキューリ点直下まで加熱
する工程と、前記加熱された基板上の熱吸収膜の所望の
領域、または、熱吸収膜パターン部を少なくとも含む領
域をレーザ光照射して、部分的分極反転領域の形成範囲
をキューリ点以上に加熱する工程と、前記基板の温度を
下げたのち、前記熱吸収膜または熱吸収膜パターン部を
除去する工程とを少なくとも含むように部分的分極反転
領域の形成方法を構成する。
[Detailed Description of the Invention] [Summary] Regarding a method for forming a partially polarization inverted region,
The purpose of this project is to improve the method for forming partially polarized regions used to create a polarization-inverted leading waveguide with small optical damage and low loss on a ferroelectric material in order to generate harmonics. a step of providing a heat absorbing film or a heat absorbing film pattern portion in a range forming at least a partially polarization inverted region on a substrate, a step of heating the substrate to just below the Curie point, and a step of heating the substrate to a point just below the Curie point; A step of irradiating a desired region of the absorption film or a region including at least the heat absorption film pattern portion with a laser beam to heat the formation range of the partially polarization inverted region to a temperature higher than the Curie point, and lowering the temperature of the substrate. Afterwards, the method for forming a partially polarization inverted region is configured to include at least the step of removing the heat absorbing film or the heat absorbing film pattern portion.

〔産業上の利用分野〕[Industrial application field]

本発明は、光損傷に強く変換効率が高い光導波路型第2
高調波発生素子用の分極反転型光導波路を作成するため
の部分的分極反転領域の形成方法に関する。
The present invention provides an optical waveguide type second waveguide that is resistant to optical damage and has high conversion efficiency.
The present invention relates to a method for forming a partially polarized region for creating a polarized optical waveguide for a harmonic generating element.

近年、レーザ、とくに、半導体レーザ(LD)がレーザ
プリンタやレーザスキャナ、あるいは、光ディスクなど
の光源として広く用いられるようになってきた。しかし
、その一方で記憶容量の拡大や取り扱いの利便のために
短波長化(たとえば、赤外光から可視光へ)に対する要
求が強くなっている。半導体レーザの短波長発振化の開
発も進められてはいるが、現在の技術レベルではその発
振波長を600nm以下にすることはかなり困難であり
、その他の技術、たとえば、第2高調波発生(SHG)
による短波長のコヒーレント光が得られるデバイス、と
くに、それに用いる分極反転型光導波路の作成技術の開
発が強く求められている。
In recent years, lasers, particularly semiconductor lasers (LDs), have come to be widely used as light sources for laser printers, laser scanners, optical discs, and the like. However, on the other hand, there is a growing demand for shorter wavelengths (for example, from infrared light to visible light) to increase storage capacity and make handling easier. Although the development of short wavelength oscillation in semiconductor lasers is progressing, it is quite difficult to reduce the oscillation wavelength to 600 nm or less at the current technological level, and other technologies, such as second harmonic generation (SHG), are currently being developed. )
There is a strong demand for the development of devices that can obtain short-wavelength coherent light, especially techniques for creating polarization-inverted optical waveguides for use in such devices.

〔従来の技術〕[Conventional technology]

従来、レーザ光の第2高調波発生素子としてはバルクの
非線形光学結晶にレーザ光を通すものがよく知られてい
る。
Conventionally, as a second harmonic generation element for laser light, one that passes laser light through a bulk nonlinear optical crystal is well known.

たとえば、強誘電体結晶であるLiNbO3をブロンク
にカットし両面を光学研磨してレーザ光の人出射面とし
、一方の側から角周波数ωのレーザ光を入射させると、
反対側から2倍の角周波数2ωの第2高調波が発生ずる
。この時の変換効率(η、H6−P2ω/Pω)は、真
空の誘電率と透磁率をそれぞれε。、μ。、結晶の非線
形光学定数をd、結晶長をl、基本波と高調波に対する
屈折率をnωn2ω、基本波と高調波の伝播定数差をΔ
k、ビーム断面積を八とすると下記(1)式で表される
For example, if LiNbO3, which is a ferroelectric crystal, is cut into a bronch, both sides are optically polished to form a laser beam exit surface, and a laser beam with an angular frequency ω is input from one side.
A second harmonic with twice the angular frequency 2ω is generated from the opposite side. The conversion efficiency (η, H6-P2ω/Pω) at this time is the dielectric constant and magnetic permeability of the vacuum, respectively. ,μ. , the nonlinear optical constant of the crystal is d, the crystal length is l, the refractive index for the fundamental wave and harmonics is nωn2ω, and the difference in propagation constant between the fundamental wave and harmonics is Δ
k and the beam cross-sectional area is 8, it is expressed by the following equation (1).

ηS 11 G −2(ε0/μo) 3/Z (ω2
d212/nzω°nω)(Pω/八)[5in2(Δ
 k12)/(Δ kj2/2)21(1) 第2高調波出力P2ωは(1)弐かられかるように5i
n2曲線の出力特性を示す。このように、第2高調波出
力P2ωが5in2曲線特性で周期的に変動するのはn
ωとn2ωが異なるためである。すなわち、屈折率差の
ため各点で発生した第2高調波の位相が揃わず、位相ず
れが2πになる距離を周期として第2高調波出力が変動
することになる。通常の結晶では屈折率の波長分散のた
めnωとn2ωの差が大きく、シたがって、!c(コヒ
ーレント長)が非常に小さい。すなわち、第2高調波出
力P2ωも非常に小さくなってしまう。これを解決する
ために位相整合を取る方法が提案されている。
ηS 11 G −2 (ε0/μo) 3/Z (ω2
d212/nzω°nω) (Pω/8) [5in2(Δ
k12)/(Δ kj2/2)21(1) The second harmonic output P2ω is (1) 5i as shown from 2
The output characteristics of the n2 curve are shown. In this way, the periodic fluctuation of the second harmonic output P2ω with the 5in2 curve characteristic is n
This is because ω and n2ω are different. That is, due to the refractive index difference, the phases of the second harmonics generated at each point are not aligned, and the second harmonic output fluctuates with a period of distance at which the phase shift is 2π. In normal crystals, the difference between nω and n2ω is large due to the wavelength dispersion of the refractive index, and therefore,! c (coherence length) is very small. That is, the second harmonic output P2ω also becomes very small. To solve this problem, a method of achieving phase matching has been proposed.

たとえば、第2高調波光λ2の異常光の屈折率屈折率n
、と基本波光λ1の常光の屈折率n0とを一致させるよ
うにレーザ光を入射させる。いわゆる、位相整合条件を
満足させて大きな第2高調波出力を得る方法である〔多
用、神谷:光エレクトロニクスの基礎、pp199〜2
00.1974 (丸善刊)参照〕。
For example, the refractive index n of the extraordinary light of the second harmonic light λ2
, and the refractive index n0 of the ordinary light of the fundamental wave light λ1 are made to coincide with each other. This is a method of obtaining a large second harmonic output by satisfying the so-called phase matching condition [Massyo, Kamiya: Fundamentals of Optoelectronics, pp199-2
00.1974 (published by Maruzen)].

第3図は第2高調波出力特性を示す図(位相整合が取れ
ている場合)で、縦軸は第2高調波出力P2ωを、横軸
は結晶長!である。図中、■の破線は上記に説明した第
2高調波光λ2の屈折率と基本波光λ1の屈折率を一致
させて、第2高調波出力P2ωが結晶長lが大きくなる
に従って増大するようにしている場合である。しかし、
以上に述べたバルク結晶型の場合、位相整合条件を満足
し。
Figure 3 is a diagram showing the second harmonic output characteristics (when phase matching is achieved), where the vertical axis is the second harmonic output P2ω and the horizontal axis is the crystal length! It is. In the figure, the broken line (■) indicates the refractive index of the second harmonic light λ2 and the refractive index of the fundamental wave light λ1 explained above, so that the second harmonic output P2ω increases as the crystal length l increases. This is the case. but,
In the case of the bulk crystal type described above, the phase matching condition is satisfied.

かつ、非線形光学定数も大きい結晶が得られていないた
め基本波の光強度を大きくしなければならず、半導体レ
ーザでは光源強度として充分でなく実用化されるに至っ
ていない。
In addition, since a crystal with a large nonlinear optical constant has not been obtained, the light intensity of the fundamental wave must be increased, and semiconductor lasers do not have sufficient light source intensity and have not been put into practical use.

一方、最近になって光導波路型の素子を用いたとえば、
異常光の屈折率n8曲線上で位相整合を行わせる(した
がって、基本波と第2高調波の光の屈折率とは異なる)
ことによって、大きな非線形光学定数を利用することが
でき、その結果、大きな変換効率(η、H0)が得られ
る極めて有力な方法が提案されている。
On the other hand, recently, optical waveguide type elements have been used to, for example,
Phase matching is performed on the refractive index n8 curve of the extraordinary light (therefore, the refractive index of the fundamental wave and the second harmonic light are different)
An extremely effective method has been proposed in which a large nonlinear optical constant can be utilized and, as a result, a large conversion efficiency (η, H0) can be obtained.

第4図は光導波路型第2高調波発生素子の例を示す図で
、同図(イ)は斜視図、同図(ロ)はXX゛断面図であ
る。
FIG. 4 is a diagram showing an example of an optical waveguide type second harmonic generation element, in which (a) is a perspective view and (b) is a cross-sectional view of XX.

図中、1は基板で、たとえば、LiNbO3の最も大き
な非線形光学定数が得られる入射方向と偏波方向を取れ
るように+7面を光学研磨した基板で、100は基板l
上に形成された分極反転型光導波路である。同図(ロ)
に示したごとく、たとえば、基板lを下向きの方向に強
誘電体分極を揃え、光導波路の部分に等間隔にまたとえ
ば1周期Δで分極が上向きのある深さを持った領域を形
成すると、下向きの分極領域へと上向きの分極領域Bと
が等間隔に並んだ分極反転型光導波路100が構成され
る。
In the figure, 1 is a substrate, for example, a substrate whose +7 surface is optically polished so that the incident direction and polarization direction can be set to obtain the largest nonlinear optical constant of LiNbO3, and 100 is a substrate l
This is a polarization-inverted optical waveguide formed above. Same figure (b)
As shown in , for example, if the ferroelectric polarization of the substrate l is aligned downward, and regions with a certain depth where the polarization is directed upward are formed at regular intervals in the optical waveguide portion with one period Δ, A polarization-inverted optical waveguide 100 is configured in which downward polarization regions and upward polarization regions B are arranged at equal intervals.

いま、たとえば、左側から角周波数ωのレーザ光を分極
反転型光導波路100に入射させ、右側から出射させる
と次式を満足するときに位相整合条件が満たされ、大き
い第2高調波出力が得られることが知られている(J、
A、Armstrong、et、al、、Phys。
Now, for example, if a laser beam with an angular frequency ω is made to enter the polarization-inverted optical waveguide 100 from the left side and exit from the right side, the phase matching condition will be satisfied when the following equation is satisfied, and a large second harmonic output will be obtained. It is known that (J,
A. Armstrong, et al., Phys.

Rev、vol、127.p1918.1962)。Rev, vol, 127. p1918.1962).

Δ−2πm1IB 、、、(2ω)−2β1o o (
ω) ] −−<1)こ\で、β、、、(2ω)は分極
反転型光導波路100に対する第2高調波の伝播定数、
β、。。(ω)は同しく基本波の伝播定数1mは正の奇
数である。
Δ−2πm1IB ,,,(2ω)−2β1o o (
ω) ] −−<1) Here, β, , (2ω) is the propagation constant of the second harmonic for the polarization-inverted optical waveguide 100,
β,. . Similarly, the propagation constant 1m of the fundamental wave (ω) is a positive odd number.

なお、上式を屈折率を用いて表すと、 Δ−λ。m/2I  n 、、、(2ω)  −n 1
0゜(ω)] −(2)となる。
In addition, when the above equation is expressed using a refractive index, Δ−λ. m/2I n ,, (2ω) −n 1
0°(ω)] −(2).

こ\で、λ。は基本波の真空中の波長+nl。。Here, λ. is the wavelength of the fundamental wave in vacuum + nl. .

(2ω)は分極反転型光導波路100に対する第2高調
波の屈折率+nl。。(ω)は同じく基本波の屈折率1
mは正の奇数である。
(2ω) is the refractive index +nl of the second harmonic for the polarization-inverted optical waveguide 100. . (ω) is also the refractive index of the fundamental wave 1
m is a positive odd number.

第3図の■の実線はこの場合の理想的な第2高調波出力
特性の例を示したもので、結晶長lと共に第2高調波出
力pgωが増加し、しかも、大きな非線形定数を用いて
いるのでバルク結晶型に比較して大巾に変換効率が向上
している。
The solid line marked ■ in Fig. 3 shows an example of the ideal second harmonic output characteristic in this case, in which the second harmonic output pgω increases with the crystal length l, and moreover, using a large nonlinear constant, Because of this, the conversion efficiency is greatly improved compared to the bulk crystal type.

上記のごとき分極反転型先導波路100を作製するには
、部分的分極反転領域、たとえば、前記第4図の上向き
の分極領域Bを形成しなければならない。そのような方
法として2つの方法がよく知られている。
In order to fabricate the polarization-inverted guide waveguide 100 as described above, a partially polarization-inverted region, for example, the upward polarization region B in FIG. 4 must be formed. Two such methods are well known.

第1の方法は基板100上に適当なマスクをつけて高温
に加熱すると露出面のLiが外部に拡散しその部分の分
極が反転する現象を用いる。しかし、この場合分極反転
領域の深さは高々1μm程度に過ぎず、また、その部分
の屈折率も変化し光導波路として実用化しがたい欠点が
ある。
The first method uses a phenomenon in which when a suitable mask is placed on the substrate 100 and the substrate is heated to a high temperature, Li on the exposed surface is diffused to the outside and the polarization of that portion is reversed. However, in this case, the depth of the polarization inversion region is only about 1 μm at most, and the refractive index of that portion also changes, making it difficult to put it to practical use as an optical waveguide.

第2の方法は分極反転領域となる部分にTiを被着した
のち熱処理すると、その部分の分極が反転する現象を用
いており、その深さは数μmにまで達することが可能で
実用的な光導波路が作製されると期待されている。
The second method uses the phenomenon that when Ti is deposited on the part that will become the polarization inversion region and then heat-treated, the polarization in that part is reversed, and the depth can reach several μm, making it practical. It is expected that optical waveguides will be fabricated.

第5図は従来の部分的分極反転領域の形成方法の例を示
す回で、その主な工程順を図示したものである。
FIG. 5 shows an example of a conventional method for forming a partially polarization inverted region, and illustrates the order of the main steps.

工程(1):単一分域化された強誘電体結晶、たとえば
、LiNbO3の+7面を光学り1磨した基板1を作成
する。
Step (1): A substrate 1 is prepared by optically polishing the +7 plane of a single-domain ferroelectric crystal, for example, LiNbO3.

工程(2):前記処理基板上に厚さ300nmのTi層
重0を真空蒸着する。
Step (2): A 300 nm thick Ti layer with a weight of 0 is vacuum deposited on the treated substrate.

工程(3):前記処理基板を分極反転領域Bになる部分
のTiが残るようにホトエ・ンチング処理してTi薄膜
パターン20゛ を形成する。
Step (3): The treated substrate is photo-etched so that Ti remains in the portion that will become the polarization inversion region B to form a Ti thin film pattern 20'.

工程(4):前記処理基板を約10006Cで加熱処理
してTiを拡散し、Ti拡散領域20”を形成すると、
その部分の基板1の表面部分が分極反転する。
Step (4): When the treated substrate is heat-treated at about 10,006 C to diffuse Ti and form a Ti diffusion region 20'',
The polarization of that portion of the surface of the substrate 1 is reversed.

工程(5):前記処理基板を適当な処理液で処理し残留
しているかもしれないTiを必要に応して除去洗浄すれ
ば、分極反転型先導波路の分極反転領域Bとなる部分的
分極反転領域(B)40が形成される。
Step (5): If the treated substrate is treated with an appropriate treatment solution and any remaining Ti is removed and cleaned as necessary, partial polarization becomes the polarization inversion region B of the polarization inversion type guide waveguide. A reversal region (B) 40 is formed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記従来の方法で形成された部分的分極反転領
域(1’1)40は、Tiを含有しているために、すで
によく知られているようにレーザ光を通したとき、いわ
ゆる、光損傷の闇値が下がり、さらに屈折率も変化して
しまうために、それを構成部分とする分極反転型光導波
路は、たとえば、第3図の■の点線で示したごとく、第
2高調波光の出力強度が上がらず、また、屈折率変動に
基づく光散乱などによる損失増加も加わるなど、実用上
天きな問題があり、その解決が必要であった。
However, since the partially polarized region (1'1) 40 formed by the above-mentioned conventional method contains Ti, when laser light is passed through it, as is already well known, the so-called light Since the damage value decreases and the refractive index also changes, a polarization-inverted optical waveguide that uses it as a component will, for example, absorb second harmonic light, as shown by the dotted line (■) in Figure 3. There are serious practical problems that need to be solved, such as not increasing the output intensity and also increasing loss due to light scattering due to changes in the refractive index.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は、強誘電体からなる基板1上の少なくとも
部分的分極反転領域4を形成する範囲に熱吸収膜2また
は熱吸収膜パターン部2“を設ける工程と、前記基板1
をキューリ点直下まで加熱する工程と、前記加熱された
基板1上の熱吸収膜2の所望の領域1または、熱吸収膜
パターン部2°を少なくとも含む領域をレーザ光照射し
て、部分的分極反転領域4の形成範囲をキューリ点以上
に加熱する工程と、前記基板1の温度を下げたのち、前
記熱吸収11g2または熱吸収膜パターン部2°を除去
する工程とを少なくとも含む部分的分権反転領域の形成
方法により解決することができる。
The above-mentioned problem consists of a step of providing a heat absorbing film 2 or a heat absorbing film pattern portion 2'' on a substrate 1 made of a ferroelectric material in an area where at least a partially polarization inverted region 4 is to be formed;
A step of heating the substrate to just below the Curie point, and irradiating a desired region 1 of the heat absorption film 2 on the heated substrate 1 or a region including at least 2° of the heat absorption film pattern with a laser beam to achieve partial polarization. Partial decentralization inversion including at least a step of heating the formation range of the inversion region 4 to a temperature higher than the Curie point, and a step of removing the heat absorption 11g2 or the heat absorption film pattern portion 2° after lowering the temperature of the substrate 1. This problem can be solved by the method of forming the regions.

〔作用〕[Effect]

本発明によれば、部分的分極反転領域4を形成する際に
、Tiの拡散やLiの結晶外への拡散といった手段を用
いないで、光導波路に悪い影響を与えない熱吸収膜2ま
たは熱吸収膜パターン部2゛を部分的にキューリ点以上
に加熱してから室温に温度を下げ、焦電効果による焦電
電界で分極反転を生じさせるので、その部分的分極反転
領域4を構成部分として分極反転型光導波路100を作
製すれば、光損傷は勿論のこと光導波路中での屈折率変
動も生ぜず、したがって、大きな第2高調波光出力が得
られる。さらに、LiTa0.などのようなキューリ点
の低い結晶に対しても本方法が適用できるという大きな
利点がある。
According to the present invention, when forming the partially polarized region 4, the heat absorbing film 2 or the heat absorbing film 2, which does not have a bad influence on the optical waveguide, is formed without using means such as diffusion of Ti or diffusion of Li out of the crystal. The absorbing film pattern portion 2 is partially heated above the Curie point and then lowered to room temperature to cause polarization inversion in the pyroelectric field caused by the pyroelectric effect. If the polarization-inverted optical waveguide 100 is manufactured, not only optical damage but also refractive index fluctuation in the optical waveguide will not occur, and therefore a large second harmonic optical output can be obtained. Furthermore, LiTa0. This method has the great advantage of being applicable to crystals with low Curie points, such as crystals with low Curie points.

[実施例] 第1図は本発明の実施例を示す図で、主な工程を順に図
示したものである。以下、図に従って説明する。
[Example] FIG. 1 is a diagram showing an example of the present invention, showing the main steps in order. The explanation will be given below according to the figures.

工程(1):たとえば、厚さ0.5 mm、 1111
0mm。
Step (1): For example, thickness 0.5 mm, 1111
0mm.

長さ15mmの単一分域処理したLiTaO3の最も大
きな非線形光学定数が得られるように、+2面を光学研
磨して基板1を作製する。
Substrate 1 is prepared by optically polishing the +2 surface so as to obtain the largest nonlinear optical constant of LiTaO3 treated in a single domain having a length of 15 mm.

工程(2)二上記処理基板上に熱吸収膜2.たとえば、
厚さ1100nのAuを真空蒸着する。
Step (2) Applying a heat absorbing film 2 on the above-mentioned treated substrate. for example,
Au is vacuum-deposited to a thickness of 1100 nm.

工程(3)二上記処理基板をキューり点を越えない温度
、たとえば、6008Cに加熱し、さらに、部分的分極
反転領域4となる範囲の熱吸収膜2の領域。
Step (3) Heat the above-mentioned treated substrate to a temperature that does not exceed the cue point, for example, 6008C, and further heat the area of the heat absorption film 2 that will become the partially polarization inverted area 4.

すなわち、部分的加熱領域3を、たとえば、YAGレー
ザ光をスキャンすることにより部分的にキューリ点以上
に加熱したのち室温に下げる。
That is, the partially heated region 3 is partially heated to a temperature above the Curie point by scanning with a YAG laser beam, for example, and then cooled to room temperature.

LiTa0.のような強誘電体は同時に焦電効果を持っ
ているので、この温度降下の時にYAGレーザ光により
部分加熱された領域は、その他の非照射領域の焦電性電
荷に基づく焦電電界によって分極反転される。
LiTa0. Since ferroelectric materials such as ferroelectric materials also have a pyroelectric effect, the region partially heated by the YAG laser beam during this temperature drop is polarized by the pyroelectric field based on the pyroelectric charges in the other non-irradiated regions. be reversed.

工程(4)二上記処理基板上に残された熱吸収膜2を、
たとえば、適当な処理液で除去・洗浄すれば先導波路と
して悪影響を及ぼすことのない部分的分極反転領域4が
形成される。
Step (4) The heat absorbing film 2 left on the second treated substrate is
For example, if it is removed and cleaned with an appropriate treatment liquid, a partially polarized region 4 that will not have any adverse effect as a leading waveguide will be formed.

部分的分極反転領域4の深さは照射レーザ光のパワーや
照射時間を調整することにより制御することができる。
The depth of the partially polarized region 4 can be controlled by adjusting the power and irradiation time of the irradiated laser beam.

この部分的分極反転領域4を含んで公知の方法たとえば
、光導波路となる部分を残してSiO□のスパッタ劇か
らなるマスクを形成し、200〜300°Cに加熱した
安息香酸(C6)1.C00)l)の融液に数10分〜
数時間浸漬する。いわゆる、プロトン交換法により周囲
の基板部分よりも屈折率を約1%上昇させれば、分極反
転型先導波路100を形成することができる。このよう
にして作製された光導波路型第2高調波発生素子は、従
来のTi拡散による分極反転法を用いるものに比較して
光損傷の闇値が向」ニし屈折率変動も小さく、大巾に変
換効率が改善される。
Including this partially polarization inverted region 4, a well-known method is used, for example, to form a mask made of SiO□ sputtering, leaving a portion that will become an optical waveguide, and using benzoic acid (C6) heated to 200 to 300°C. C00) l) melt for several tens of minutes
Soak for several hours. If the refractive index is increased by about 1% compared to the surrounding substrate portion by a so-called proton exchange method, the polarization-inverted guiding waveguide 100 can be formed. The optical waveguide-type second harmonic generation device fabricated in this way has better optical damage values and smaller refractive index fluctuations than those using the conventional polarization inversion method using Ti diffusion. Conversion efficiency is greatly improved.

第2図は本発明の他の実施例を示す図である。FIG. 2 is a diagram showing another embodiment of the present invention.

図中、2”は熱吸収膜パターン部である。なお、前記の
諸国面で説明したものと同等の部分については同一符号
を付し、かつ、同等部分についての説明は省略する。
In the figure, 2'' is a heat-absorbing film pattern section. Note that the same reference numerals are given to the same parts as those explained in the above-mentioned countries, and the explanation of the same parts will be omitted.

以下、主な工程を順を追って説明する。The main steps will be explained step by step below.

工程(1):たとえば、厚さ0.5 mm、中10mm
、長さ15mmの単一分域処理した]、1TaO,の最
も大きな非線形光学定数が得られるように、+2面を光
学研磨して基板1を作製する。
Step (1): For example, thickness 0.5 mm, medium 10 mm
Substrate 1 is prepared by optically polishing the +2 surface so that the largest nonlinear optical constant of 1 TaO is obtained.

工程(2)二上記処理基板上に熱吸収膜2.たとえば、
厚さ1100nのAuを真空蒸着する。
Step (2) Applying a heat absorbing film 2 on the above-mentioned treated substrate. for example,
Au is vacuum-deposited to a thickness of 1100 nm.

工程(3)二上記処理基板を分極反転領域Bになる部分
のAuが残るようにホトエツチング処理して熱吸収膜パ
ターン部2”を形成する。
Step (3) The above-treated substrate is photoetched so that Au remains in the portion that will become the polarization inversion region B to form a heat absorbing film pattern portion 2''.

工程(4)二上記処理基板をキューり点を越えない温度
、たとえば、600°Cに加熱し、さらに、熱吸収膜パ
ターン部2゛を少なくとも含む領域を、たとえば、YA
G レーザ光をスキャンすることにより部分的にキュー
リ点以上に加熱したのち室温に下げる。この場合、Li
TaO3からなる基板1は透明でYACレーザ光の吸収
が小さいので、キューリ点以上に温度が上がるのは熱吸
収膜パターン部2゛がある領域に限られる。
Step (4) Two, the above-mentioned treated substrate is heated to a temperature not exceeding the cue point, for example, 600°C, and the region including at least the heat-absorbing film pattern portion 2 is heated with, for example, YA.
G By scanning the laser beam, it is partially heated to above the Curie point and then cooled to room temperature. In this case, Li
Since the substrate 1 made of TaO3 is transparent and has low absorption of YAC laser light, the temperature rises above the Curie point only in the region where the heat absorbing film pattern portion 2' is present.

そして、前記の実施例の場合と同様に、温度降下の時に
キューリ点以上に温度上昇させた熱吸収膜パターン部2
゛の下部の結晶部分が所定の深さで焦電性電荷に基づく
焦電電界によって分極反転される。
Then, as in the case of the above embodiment, the heat absorbing film pattern portion 2 whose temperature is raised above the Curie point when the temperature drops.
The polarization of the crystal part at the bottom of the crystal is inverted at a predetermined depth by a pyroelectric field based on pyroelectric charges.

工程(5)二上記処理基板上に残された熱吸収膜パター
ン部2°の、たとえば、Auを適当な処理液で除去・洗
浄すれば光導波路として悪影響を及ぼすことのない部分
的分極反転領域4が形成される。
Step (5) Partially polarized region of the heat absorbing film pattern portion 2° left on the second treated substrate, for example, where Au is removed and cleaned with an appropriate treatment liquid so that it will not have any adverse effects as an optical waveguide. 4 is formed.

この例の場合には、YAG レーザ光の照射領域を厳密
に位置制御する必要がないので、実用上大きな利点があ
る。
In this case, there is no need to strictly control the position of the YAG laser beam irradiation area, so there is a great practical advantage.

この部分的分極反転領域4を含んで公知の方法。The known method includes this partially poled region 4.

たとえば、前記と同様にプロトン交換法により周囲の基
板部分よりも屈折率を約1%上昇させれば分極反転型光
導波路100を形成することができ、同様に優れた光導
波路型第2高調波発生素子を作製することができる。
For example, if the refractive index is increased by about 1% compared to the surrounding substrate portion using the proton exchange method as described above, the polarization-inverted optical waveguide 100 can be formed. A generating element can be manufactured.

以上の実施例では熱吸収膜2あるいは熱吸収パターン部
2゛として八〇の薄膜を用いたが、その他光損傷に影響
を与えないような材料、たとえば、ptやPdおよびそ
れらの合金などを用いてもよい。
In the above embodiments, a thin film of 80 was used as the heat absorption film 2 or the heat absorption pattern portion 2, but other materials that do not affect optical damage, such as PT, Pd, and alloys thereof, may also be used. It's okay.

また、部分的加熱にはYAG レーザの照射に限定され
るものではなく、その他のレーザ光や加熱手段を用いて
もよいことは勿論である。
Further, partial heating is not limited to YAG laser irradiation, and it goes without saying that other laser beams or heating means may be used.

以上述べた実施例は例を示したもので、本発明の趣旨に
添うものである限り、その他使用する素材や構成など適
宜好ましいもの、あるいはその組み合わせを用いてよい
ことは言うまでもない。
The embodiments described above are merely examples, and it goes without saying that other preferred materials and configurations, or combinations thereof, may be used as long as they comply with the spirit of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明方法によれば部分的分極反転
領域4を形成する際に、Tiの拡散やLiの結晶外への
拡散といった手段を用いないで、光導波路に悪い影響を
与えない熱吸収膜2または熱吸収膜パターン部2′を部
分的にキューリ点以上に加熱してから室温に温度を下げ
、焦電効果による焦電電界で分極反転を生じさせるので
、その部分的分極反転領域4を構成部分として分極反転
型光導波路100を作製すれば、光損傷は勿論のこと光
導波路中での屈折率変動も生じない。さらに、LiTa
01などのようなキューり点の低い結晶に対しても本方
法が適用できるという大きな利点があり、光導波路型第
2高調波発生素子の性能・品質の向上に寄与するところ
が極めて大きい。
As described above, according to the method of the present invention, when forming the partially domain-inverted region 4, no means such as diffusion of Ti or diffusion of Li out of the crystal is used, so that the optical waveguide is not adversely affected. The heat-absorbing film 2 or the heat-absorbing film pattern 2' is partially heated above the Curie point and then lowered to room temperature to cause polarization reversal in the pyroelectric field caused by the pyroelectric effect. If the polarization-inverted optical waveguide 100 is manufactured using the region 4 as a constituent part, not only optical damage but also refractive index fluctuation in the optical waveguide will not occur. Furthermore, LiTa
This method has the great advantage that it can be applied to crystals with low cue points such as 01, and it greatly contributes to improving the performance and quality of optical waveguide type second harmonic generation elements.

第4図は光導波路型第2高調波発生素子の例を示す図、 第5図は従来の部分的分極反転領域の形成方法の例を示
す図である。
FIG. 4 is a diagram showing an example of an optical waveguide type second harmonic generation element, and FIG. 5 is a diagram showing an example of a conventional method for forming a partially polarization inverted region.

図において、 1は基板、 2は熱吸収膜、 2”は熱吸収膜パターン部、 3は部分的加熱領域、In the figure, 1 is the board, 2 is a heat absorption film; 2” is the heat absorption film pattern part, 3 is a partial heating area;

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す図、 第2図は本発明の他の実施例を示す図、第3図は第2高
調波出力特性を示す図、! 本肴≦日月の奥が已存・]乞予示図 仇 1 図 嵩2高論遠出力持住祉日図 舅 3 図 (イ) 余」 視 図 (ロ)X−メ゛啓斥面国 光浦じ虞j在!最32*m彫支全IシD使]誌す図z 
4 図 ・イζイ区日月のイ已の、す字方恒」夕1]乞j卜す図
旬ち  2  図 ィ芝棄の部外的分掻夏払領土式の子−誠方丞の夕・コど
示寸図舅 5Il¥1
Fig. 1 is a diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing another embodiment of the invention, and Fig. 3 is a diagram showing the second harmonic output characteristic. Main dish≦The back of the sun and moon is still there. I'm here! Maximum 32*m carved stems IshiD envoy] magazine z
4 Diagram ζ I-ku Sun and Moon's I's Su-ji Katsuhō" Evening 1] Request for illustration Junchi 2 Diagram A child of the external division of the lawn and the summer payment of the territory ceremony - Makojo 5Il ¥1

Claims (1)

【特許請求の範囲】 強誘電体からなる基板(1)上の少なくとも部分的分極
反転領域(4)を形成する範囲に熱吸収膜(2)または
熱吸収膜パターン部(2′)を設ける工程と、前記基板
(1)をキューリ点直下まで加熱する工程と、 前記加熱された基板(1)上の熱吸収膜(2)の所望の
領域、または、熱吸収膜パターン部(2′)を少なくと
も含む領域をレーザ光照射して、部分的分極反転領域(
4)の形成範囲をキューリ点以上に加熱する工程と、 前記基板(1)の温度を下げたのち、前記熱吸収膜(2
)または熱吸収膜パターン部(2′)を除去する工程と
を少なくとも含むことを特徴とした部分的分極反転領域
の形成方法。
[Claims] A step of providing a heat absorbing film (2) or a heat absorbing film pattern portion (2') on a substrate (1) made of ferroelectric material in an area where at least a partially polarized region (4) is formed. heating the substrate (1) to just below the Curie point; At least a region containing at least the partially polarized region (
4) heating the formation area above the Curie point, and after lowering the temperature of the substrate (1), heating the heat absorbing film (2).
) or removing the heat absorbing film pattern portion (2').
JP2060544A 1990-03-12 1990-03-12 Formation of partial polarization inversion region Pending JPH03260635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2060544A JPH03260635A (en) 1990-03-12 1990-03-12 Formation of partial polarization inversion region

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2060544A JPH03260635A (en) 1990-03-12 1990-03-12 Formation of partial polarization inversion region

Publications (1)

Publication Number Publication Date
JPH03260635A true JPH03260635A (en) 1991-11-20

Family

ID=13145340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2060544A Pending JPH03260635A (en) 1990-03-12 1990-03-12 Formation of partial polarization inversion region

Country Status (1)

Country Link
JP (1) JPH03260635A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348832A (en) * 1989-07-17 1991-03-01 Sony Corp Domain control method for nonlinear ferroelectric optical material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348832A (en) * 1989-07-17 1991-03-01 Sony Corp Domain control method for nonlinear ferroelectric optical material

Similar Documents

Publication Publication Date Title
JP2750231B2 (en) Method of manufacturing waveguide type second harmonic generation element
US20100208757A1 (en) Method of ferroelectronic domain inversion and its applications
US5515471A (en) Frequency doubler and short wave laser source using the same and optical data processing apparatus using the short wave laser source
JP3052501B2 (en) Manufacturing method of wavelength conversion element
JPH1172809A (en) Optical wavelength conversion element and its production, optical generator using this element and optical pickup, diffraction element as well as production of plural polarization inversion part
US5218661A (en) Device for doubling the frequency of a light wave
JP3518604B2 (en) Dopant-doped KTP exhibiting high birefringence suitable for type II phase matching and similar forms
JPH03260635A (en) Formation of partial polarization inversion region
JPH043128A (en) Formation of partial polarization inversion region
JP7127472B2 (en) Manufacturing method of wavelength conversion element
JP2921207B2 (en) Optical wavelength conversion element and method of manufacturing the same
JPH04254835A (en) Light wavelength conversion element and laser beam source utilizing the element
Webjörn et al. Periodically domain-inverted lithium niobate channel waveguides for second harmonic generation
JPH04335329A (en) Production of second harmonic generating element having dielectric polarization inversion grating
JP3086239B2 (en) Proton exchange optical waveguide, method of manufacturing the same, and optical deflector using this waveguide
JP3006217B2 (en) Optical wavelength conversion element and method of manufacturing the same
JPH0728112A (en) Second harmonic generating light source of waveguide path type
JP4114693B2 (en) Manufacturing method of polarization reversal
JP2921209B2 (en) Manufacturing method of wavelength conversion element
JPH08220576A (en) Short wavelnegth light generating device
JPH05107421A (en) Method of forming partial polarization inverting layer and manufacture of second harmonic wave generating element
JPH06273817A (en) Light wavelength conversion element and its manufacture short wavelength coherent light generator using the same, and manufacture of polarization inversion layer
JPH06230445A (en) Production of periodic polarization inversion structure and production of wavelength conversion element
JPH05249522A (en) Production of polarization inversion element
Pavel et al. Continuous-wave ultraviolet generation at 354 nm in a periodically poled MgO: LiNbO3