JPH03260563A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH03260563A
JPH03260563A JP6038390A JP6038390A JPH03260563A JP H03260563 A JPH03260563 A JP H03260563A JP 6038390 A JP6038390 A JP 6038390A JP 6038390 A JP6038390 A JP 6038390A JP H03260563 A JPH03260563 A JP H03260563A
Authority
JP
Japan
Prior art keywords
source side
heat source
heat exchanger
unit
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6038390A
Other languages
Japanese (ja)
Inventor
Kunimori Sekigami
邦衛 関上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6038390A priority Critical patent/JPH03260563A/en
Publication of JPH03260563A publication Critical patent/JPH03260563A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To make it possible to make a unit on the main heat source side smaller in size and to reduce the area occupied by outdoor installation by a construction wherein a plurality of use-side units having use-side heat exchangers are connected by inter-unit pipings, while a heat exchanger on the auxiliary heat source side is provided in an exhaust passage through which indoor air is exhausted outdoors. CONSTITUTION:A part of a refrigerant discharged from a compressor 2 flows to heat exchangers 5a and 5b on the main heat source side through a discharge pipe 17, a selector valve 16a, a gas pipe 15a and selector valves 24a and 24b in sequence, while the remaining discharged refrigerant flows to a heat exchanger 9 on the auxiliary heat source side through a high-pressure gas pipe 18a and a selector valve 19a, and the refrigerant is condensed and liquefied by the heat exchangers 5a and 5b on the main heat source side and the heat exchanger 9 on the auxiliary heat source side. The liquid refrigerant coming out of the heat exchangers 5a and 5b on the main heat source side is expanded in one stage by refrigerant pressure reducing devices 25a and 25b and then flows to a liquid pipe 18c of an inter-unit piping 18 through a liquid pipe 15b of an inter-unit piping 15, while the liquid refrigerant coming out of the heat exchanger 9 on the auxiliary heat source side is expanded in one stage by a refrigerant pressure reducing device 22 and then flows to the liquid pipe 18c of the inter-unit piping 18. After the two liquid refrigerants join, they are distributed to the respective refrigerant pressure reducing devices 23a to 23c of use-side units 12a to 12c and expanded in two stages.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は複数室を冷暖房する多室型の空気調和装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a multi-room air conditioner that cools and heats a plurality of rooms.

(ロ)従来の技術 大きなビル等を冷暖房する空気調和装置として、例えば
実公昭52−7082号公報で提示されているように圧
縮機と熱源側熱交換器と利用側熱交換器とが一体に内蔵
され各階に設置される一体型空気調和装置や、圧縮機と
熱源側熱交換器を内蔵した熱源側ユニットをビルの屋上
に、且つ利用側熱交換器を内蔵した利用側ユニットを各
階の部屋に設置した分離型空気調和装置がある。
(B) Conventional technology As an air conditioner for heating and cooling large buildings, etc., a compressor, a heat source side heat exchanger, and a user side heat exchanger are integrated, as disclosed in, for example, Japanese Utility Model Publication No. 7082/1982. An integrated air conditioner installed on each floor, a heat source side unit with a built-in compressor and heat source side heat exchanger on the roof of the building, and a user side unit with a built-in user side heat exchanger installed in the rooms on each floor. There is a separate air conditioner installed in the building.

(ハ)発明が解決しようとする課題 上記公報で提示の一体型空気調和装置では、ビルの各階
より空気調和装置の一部が露出するため見栄えが悪いと
共に、各空気調和装置の全てに圧縮機の騒音が漏出しな
いように防音手段を施こさなければならなかった。
(c) Problems to be Solved by the Invention In the integrated air conditioner presented in the above publication, a part of the air conditioner is exposed from each floor of the building, which makes it unsightly. Soundproofing measures had to be taken to prevent noise from escaping.

又、上述の分離型空気調和装置では、熱源側ユニットが
圧縮機と熱源側熱交換器とを有している為、小型化でき
ず、設置占有面積を広く必要とする不具合さかあった。
Further, in the above-mentioned separated air conditioner, since the heat source side unit has a compressor and a heat source side heat exchanger, it cannot be downsized and has the problem of requiring a large installation area.

この為、圧縮機を熱源側ユニットから取り出して別の機
械ユニットに内蔵することにより熱源側ユニットを小型
化にしてこのユニットの設置占有面積を小さくすること
を試みたが、小型化に限度があり、満足し得るものでは
なかった。
For this reason, an attempt was made to miniaturize the heat source unit by taking the compressor out of the heat source unit and incorporating it into another mechanical unit, thereby reducing the footprint of this unit, but there is a limit to miniaturization. , was not satisfactory.

本発明はかかる課題に鑑み、熱源側ユニットの小型化と
排熱回収による運転効率の向上とを図った多室型の空気
調和装置を提供することを目的としたものである。
In view of these problems, it is an object of the present invention to provide a multi-room air conditioner in which the heat source side unit is downsized and the operating efficiency is improved by recovering exhaust heat.

(ニ)!Iliを解決するための手段 本発明は、圧縮機を有する機械ユニットと、主熱源側熱
交換器を有する主熱源側ユニットと、補助熱源側熱交換
器を有する補助熱源側ユニットと、利用側熱交換器を有
する複数台の利用側ユニットとをユニット間配管で接続
する一方、前記補助熱源側熱交換器を室内空気が室外へ
排出される排気路中に設けるようにしたものである。
(d)! Means for Solving Ili The present invention provides a mechanical unit having a compressor, a main heat source side unit having a main heat source side heat exchanger, an auxiliary heat source side unit having an auxiliary heat source side heat exchanger, and a user side heat exchanger. A plurality of user-side units each having an exchanger are connected by inter-unit piping, and the auxiliary heat source-side heat exchanger is provided in an exhaust path through which indoor air is discharged to the outside.

(*)作用 全室を同時に冷房する場合は、主熱源側熱交換器と補助
熱源側熱交換器とが凝縮器として、各利用側熱交換器が
蒸発器として作用させることにより、圧縮機から吐出さ
れた冷媒は主熱源側熱交換器と補助熱源側熱交換器とに
並流して凝縮液化した後、各利用側ユニットに分配され
、然る後、各利用側熱交換器で蒸発気化した後、圧縮機
に吸入される。このように蒸発器として作用する各利用
側熱交換器で全室が冷房されると共に、冷房運転により
温度が低下した室内の汚れた空気が室外へ排出される際
、凝縮器として作用している補助熱源側熱交換器で熱回
収される。
(*) Action When cooling all rooms at the same time, the main heat source side heat exchanger and auxiliary heat source side heat exchanger act as a condenser, and each user side heat exchanger acts as an evaporator, so that the compressor The discharged refrigerant flows in parallel to the main heat source side heat exchanger and the auxiliary heat source side heat exchanger, condenses and liquefies, is distributed to each user side unit, and is then evaporated and vaporized in each user side heat exchanger. After that, it is sucked into the compressor. In this way, each user-side heat exchanger acts as an evaporator to cool the entire room, and also acts as a condenser when the dirty air inside the room whose temperature has dropped due to cooling operation is discharged outside. Heat is recovered by the heat exchanger on the auxiliary heat source side.

又、全室を同時に暖房する場合は、主熱源側熱交換器と
補助熱源側熱交換器とが蒸発器として、各利用側熱交換
器が凝縮器として作用させることにより、圧縮機から吐
出された冷媒は各利用側熱交換器に分配されここで夫々
凝縮液化した後、主熱源側熱交換器と補助熱源側熱交換
器へ並流して蒸発気化した後、圧縮機に吸入される。こ
のように凝縮器として作用する各利用側熱交換器で全室
が暖房されると共に、暖房により温度が上昇した室内の
汚れた空気が室外へ排出される際、蒸発器として作用し
ている補助熱源側熱交換器で熱回収される。
In addition, when heating all rooms at the same time, the main heat source side heat exchanger and the auxiliary heat source side heat exchanger act as an evaporator, and each user side heat exchanger acts as a condenser, so that the heat is discharged from the compressor. The refrigerant is distributed to each user side heat exchanger, where it is condensed and liquefied, and then flows in parallel to the main heat source side heat exchanger and the auxiliary heat source side heat exchanger, where it evaporates and vaporizes, and is then sucked into the compressor. In this way, each user-side heat exchanger acts as a condenser to heat the entire room, and when the dirty air inside the room whose temperature has risen due to heating is discharged outside, the auxiliary heat exchanger acts as an evaporator. Heat is recovered by the heat exchanger on the heat source side.

(へ)実施例 本発明の第一実施例を第1図に基づいて説明すると、(
1)は運転周波数が変わる能力可変型圧縮機(2)と気
液分離器(3〉とを有する機械ユニット、(4〉は熱交
換容量が異なる主熱源側熱交換器〈5a)(5b〉と送
風機(6)とを有する主熱源側ユニット、(7〉は室内
空気が室外へ排出される排気路〈8〉中に位置する補助
熱源側熱交換器(9)と排気用送風機(10)及び吸気
用送風機(11)とを有する補助熱源側ユニット、(1
2a)(12b)(12c)は利用側熱交換器(13a
)(13b>(13e)と送風機(14a)(14b)
< 14c)とを有する利用側ユニットである。
(f) Example The first example of the present invention will be explained based on FIG.
1) is a mechanical unit having a variable capacity compressor (2) with variable operating frequency and a gas-liquid separator (3); (4) is a main heat source side heat exchanger (5a) (5b) with different heat exchange capacities; and a blower (6), a main heat source side unit (7>) is an auxiliary heat source side heat exchanger (9) located in an exhaust passage <8> through which indoor air is discharged to the outside, and an exhaust air blower (10). and an auxiliary heat source side unit (1) having an intake blower (11);
2a) (12b) (12c) are the user side heat exchangers (13a
) (13b>(13e) and blower (14a) (14b)
<14c).

(15)は機械ユニット(1〉と主熱源側ユニット(4
)とを接続したガス管(15a)と液管(15b)とか
らなる2本のユニット間配管で、ガス管(15a)は切
換弁(16a)(16b)を介して圧縮機(2〉の冷媒
吐出管〈17〉に接続されている。
(15) is the mechanical unit (1) and the main heat source side unit (4).
), the gas pipe (15a) is connected to the compressor (2>) through the switching valves (16a) and (16b). It is connected to the refrigerant discharge pipe <17>.

(18〉は機械ユニット(1)と補助熱源側ユニット(
7)と利用側ユニット(12a ) (12b ) (
12c )とを接続した高圧ガス管(18a)と低圧ガ
ス管(18b)と液管(18C〉とからなる3本のユニ
ット間配管で、補助熱源側熱交換器(9〉と各利用側熱
交換器(13a)(13b)(13C)とには夫々切換
弁(19a)(19b) 、 (20a)(21g) 
、 (20b)(21b) 、 (20c)(21c)
を介して接続すると共に液管(18c)には電動式膨張
弁等の冷媒減圧器(22) (23a)(23b)(2
3c)を介して接続している。
(18> is the mechanical unit (1) and the auxiliary heat source side unit (
7) and the user unit (12a) (12b) (
12c), a high-pressure gas pipe (18a), a low-pressure gas pipe (18b), and a liquid pipe (18C). The exchangers (13a) (13b) (13C) are equipped with switching valves (19a) (19b) and (20a) (21g), respectively.
, (20b) (21b) , (20c) (21c)
The liquid pipe (18c) is connected to a refrigerant pressure reducer (22) (23a) (23b) (23b) such as an electric expansion valve.
3c).

(24a)(24b)及び(25a)(25b)は主熱
源側熱交換器(5a)(5b)と直列接続された電動式
膨張弁等の冷媒減圧器及び切換弁、(26〉は補助熱源
側熱交換器(9)の通風量を調節するためのダンパー、
(27)は主熱源側ユニット<4)が据付けられた建物
(28〉の屋上、(29a)(29b)(29c)は室
、(30〉は天井空間である。
(24a) (24b) and (25a) (25b) are refrigerant pressure reducers and switching valves such as electric expansion valves connected in series with the main heat source side heat exchanger (5a) (5b), (26> is an auxiliary heat source a damper for adjusting the ventilation amount of the side heat exchanger (9);
(27) is the rooftop of the building (28>) in which the main heat source side unit <4) is installed, (29a), (29b), and (29c) are rooms, and (30> is the ceiling space).

次に運転動作を説明する。全室を同時に冷房する場合は
、機械ユニット(1)と補助熱源側ユニット(7〉の一
方の切換弁(16a)(19a)を開き他方の切換弁(
16b)(19b)を閉じると共に主熱源側ユニット(
4)の切換弁(24a)(zab)を開き、且つ利用側
ユニット(12a)(12b)(12c)の一方の切換
弁(20a)(20b)(20c)と閉じると共に他方
の切換弁(21a)(21b)(21c)を開くことに
より、圧縮機(2)から吐出された冷媒の一部が吐出管
(17)、切換弁(16a)、ガス管(15a)、切換
弁(24a)(24b)を順次経て主熱源側熱交換器(
5a)(5b)へと流れると共に残りの吐出冷媒が高圧
ガス管(18a)、切換弁(19a)を経て補助熱源側
熱交換器〈9)に流れ、この主熱源側熱交換器(5a)
(5b)と補助熱源側熱交換器(9〉とで凝縮液化され
る。そして主熱源側熱交換器(5a)(5b)を出た液
冷媒は冷媒減圧器(25a)(25b)で−段膨張され
た後にユニット間配管(15〉の液管(15b)を経て
ユニット間配管(18〉の液管(18c)へ流れると共
に、補助熱源側熱交換器(9〉を出た液冷媒は冷媒減圧
器(22〉で−段膨張された後にユニッ間配管(18)
の液管(18c)へ流れ、この両液冷媒は合流した後、
各利用側ユニット< 12a ) <12b ) (1
2e )の冷媒減圧器(23a)(23b)(23c)
に分配され、ココテ二段膨張すれる。然る後、各利用側
熱交換器(13a)(13b)(13C)で蒸発気化し
た後、夫々切換弁(21a)(21b)(21C)、低
圧ガス管(18b)、気液分離器(3)を経て圧縮機(
2)に吸入される。このように蒸発器として作用する利
用側熱交換器(13a)(13b)(13c)で夫々の
室(29a)(29b)(29c)が同時に冷房される
一方、室< 29a >には室外から新鮮な外気が吸気
口(31〉から送風機(11〉で導入されると共に冷房
運転により温度が低下した室(29a)内の汚れた空気
が送風機(10)で排気口(32〉から室外へ排出され
ており、この排出される際に、低温空気から凝縮器とし
て作用している補助熱源側熱交換器(9)で排熱が回収
される為、冷房運転の効率が向上する。
Next, the driving operation will be explained. When cooling all rooms at the same time, open one switching valve (16a) (19a) of the mechanical unit (1) and the auxiliary heat source side unit (7>) and open the other switching valve (
16b) (19b) and close the main heat source side unit (
4), and closes one of the switching valves (20a), (20b), and (20c) of the user unit (12a), (12b, and 12c), and closes the other switching valve (21a). ) (21b) (21c), a part of the refrigerant discharged from the compressor (2) flows through the discharge pipe (17), the switching valve (16a), the gas pipe (15a), the switching valve (24a) ( 24b) and then the main heat source side heat exchanger (
5a) and (5b), and the remaining discharged refrigerant flows through the high pressure gas pipe (18a) and the switching valve (19a) to the auxiliary heat source side heat exchanger (9), and this main heat source side heat exchanger (5a).
(5b) and the auxiliary heat source side heat exchanger (9>).Then, the liquid refrigerant that exits the main heat source side heat exchanger (5a) (5b) is sent to the refrigerant pressure reducer (25a) (25b). After being expanded in stages, the liquid refrigerant flows through the liquid pipe (15b) of the inter-unit pipe (15>) to the liquid pipe (18c) of the inter-unit pipe (18>), and exits the auxiliary heat source side heat exchanger (9>). Inter-unit piping (18) after the refrigerant is expanded in stages by the refrigerant pressure reducer (22)
The liquid refrigerant flows into the liquid pipe (18c), and after these two liquid refrigerants meet,
Each user unit <12a) <12b) (1
2e) Refrigerant pressure reducer (23a) (23b) (23c)
It is then expanded in two stages. After that, after being evaporated and vaporized in each user side heat exchanger (13a) (13b) (13C), the switching valve (21a) (21b) (21C), low pressure gas pipe (18b), and gas-liquid separator ( 3) to the compressor (
2) is inhaled. In this way, the user-side heat exchangers (13a), (13b), and (13c) that act as evaporators simultaneously cool the respective chambers (29a), (29b, and 29c), while the chamber <29a> is Fresh outside air is introduced from the intake port (31> by the blower (11>), and the dirty air in the room (29a) whose temperature has decreased due to cooling operation is discharged outside from the exhaust port (32>) by the blower (10). When the exhaust heat is discharged, the auxiliary heat source side heat exchanger (9), which acts as a condenser, recovers the exhaust heat from the low-temperature air, improving the efficiency of the cooling operation.

逆に全室を同時に暖房する場合は、機械ユニット(1)
と補助熱源側ユニット(7〉の一方の切換弁(16a)
(19a)を閉じ他方の切換弁(16b)(19b)を
開くと共に主熱源側ユニット(4)の切換弁(24a)
(24b)を開き、且つ利用側ユニット(12a ) 
(12b ) (12c )の−方の切換弁(20a)
(20b)(20c)を開くと共に他方の切換弁(21
a)(21b>(21c>を閉じることにより、圧縮機
(2〉から吐出された冷媒が吐出管(17)、高圧ガス
管(18a)を順次経て切換弁(20a)(20b)(
20c)、利用側熱交換器<13a)(13b)(13
c)”’と分配され、ここで夫々凝縮液化した後、各冷
媒減圧器(23a)(23b)(23e)で−段膨張さ
れて液管(18c)で合流され、然る後、この液冷媒の
一部が冷媒減圧器(22)で二段膨張された後に補助熱
源側熱交換器(9)へ流れると共に残りの液冷媒が液管
(15b)を経て冷媒減圧器(25a)(25b)で二
段膨張された後に主熱源側熱交換器(5a)(5b)−
1流れ、夫々の熱源側熱交換器(5g)(5b)(9)
で蒸発気化される。然る後、主熱源側熱交換器(5a)
 (5b)を出た低圧ガス冷媒はガス管(15a)、切
換弁(16b)を経て気液分離器(3)へ補助熱源側熱
交換器(9)を出た低圧ガス冷媒は切換弁(19b)を
経て気液分離器(3〉へと夫々流れた後、圧縮機(2)
に吸入される。このように凝縮器として作用する利用側
熱交換器(13a)(13b)(13c)で夫々の室(
29a ) (29b ) (29c )が同時に暖房
される一方、室(29a)には室外から新鮮な外気が吸
気口(31)から送風機り11〉で導入されると共に暖
房運転により温度が上昇した室(29a)内の汚れた空
気が送風機(10)で排気口(32)から室外へ排出さ
れており、この排出される際に、高温空気から蒸発器と
して作用している補助熱源側熱交換器〈9)で排熱が回
収される為、暖房運転の効率が向上すると共に、補助熱
源側熱交換器(9〉が着霜しにくい為、暖房能力が安定
している。
Conversely, if you want to heat all rooms at the same time, use the mechanical unit (1).
and one switching valve (16a) of the auxiliary heat source side unit (7>)
(19a) is closed, the other switching valve (16b) (19b) is opened, and the switching valve (24a) of the main heat source side unit (4) is closed.
(24b) and use side unit (12a).
(12b) - (12c) - side switching valve (20a)
(20b) and (20c) and open the other switching valve (21
a) By closing (21b>(21c>), the refrigerant discharged from the compressor (2>) sequentially passes through the discharge pipe (17) and the high pressure gas pipe (18a), and then passes through the switching valves (20a) (20b) (
20c), user side heat exchanger <13a) (13b) (13
c)"', and after being condensed and liquefied here, it is expanded in stages in each refrigerant pressure reducer (23a) (23b) (23e) and merged in a liquid pipe (18c), and then this liquid is After a part of the refrigerant is expanded in two stages in the refrigerant pressure reducer (22), it flows to the auxiliary heat source side heat exchanger (9), and the remaining liquid refrigerant passes through the liquid pipes (15b) to the refrigerant pressure reducer (25a) (25b). ) After being expanded in two stages, the main heat source side heat exchanger (5a) (5b)-
1 stream, each heat source side heat exchanger (5g) (5b) (9)
It is vaporized by evaporation. After that, the main heat source side heat exchanger (5a)
The low-pressure gas refrigerant that exits the auxiliary heat source side heat exchanger (9) passes through the gas pipe (15a) and the switching valve (16b) to the gas-liquid separator (3). 19b) to the gas-liquid separator (3), and then to the compressor (2).
is inhaled. In this way, each chamber (
29a), (29b), and (29c) are heated at the same time, while fresh air from outside is introduced into the room (29a) from the air inlet (31) by the blower 11>, and the temperature of the room has increased due to the heating operation. The dirty air inside (29a) is discharged outside from the exhaust port (32) by the blower (10), and when this is discharged, the high temperature air is transferred to the auxiliary heat source side heat exchanger which acts as an evaporator. Since the exhaust heat is recovered in <9>, the efficiency of the heating operation is improved, and since the auxiliary heat source side heat exchanger (9>) is not easily frosted, the heating capacity is stable.

かかる全室冷房運転時又は全室暖房運転時において、利
用側熱交換器(13a)(13b)(13c)の合計熱
交換容量よりも主熱源側熱交換器(5a)(5b)及び
補助熱源側熱交換器(9)の合計熱交換容量が上回った
場合には切換弁(24a)(24b)の一方を閉じて主
熱源側熱交換器(5a)(5b)の一方のみを凝縮器又
は蒸発器として作用させたり、送風機(6)の風量を変
えたり、あるいは切換弁(24a)(24b)の両方を
閉じて主熱源側熱交換器<5a)(5b)の作用を停止
させたりして利用側熱交換容量と熱源側熱交換容量とを
バランスさせるようにしているが、それでもバランスし
ない場合にはダンパー(26)を鎖線の如く回動して補
助熱源側熱交換器(9〉の通風量を減少させることによ
りこの熱交換器(9)の熱交換容量を小さくしている。
During such all-room cooling operation or all-room heating operation, the main heat source side heat exchanger (5a) (5b) and the auxiliary heat source are larger than the total heat exchange capacity of the user side heat exchangers (13a) (13b) (13c). If the total heat exchange capacity of the side heat exchangers (9) exceeds the total heat exchange capacity, close one of the switching valves (24a) (24b) and switch only one of the main heat source side heat exchangers (5a) (5b) to the condenser or It can be operated as an evaporator, the air volume of the blower (6) can be changed, or both the switching valves (24a) and (24b) can be closed to stop the action of the main heat source side heat exchanger <5a) (5b). The heat exchange capacity on the user side and the heat exchange capacity on the heat source side are balanced, but if they are still not balanced, the damper (26) is rotated as shown in the chain line to balance the heat exchange capacity on the auxiliary heat source side (9). By reducing the amount of ventilation, the heat exchange capacity of this heat exchanger (9) is reduced.

又、同時に任意の例えば−室(29c)を暖房し二基(
29a)(29b)を冷房する場合は、機械ユニット(
1)と補助熱源側ユニット(7〉の一方の切換弁(16
a)(19a)を開き他方の切換弁(16b)(19b
)を閉じると共に主熱源側ユニット(4)の切換弁(2
4a)(24b)を開き、且つ利用側ユニット(12a
)(12b)の一方の切換弁(20a)(20b)を閉
じて他方の切換弁(21a)(21b〉を開くと共に共
に利用側ユニット(12c )の一方の切換弁(20c
)を開いて他方の切換弁(21c)を閉じることにより
、圧縮機(2)から吐出された冷媒の一部が吐出管(1
7)、切換弁(16a)、ガス管(15a)、切換弁(
24a)(24b)を順次路て主熱源側熱交換器(5a
)(5b>へと流れると共に、残りの吐出冷媒の一部が
高圧ガス管(18a)、切換弁(19a)を経て補助熱
源側熱交換器(9〉に、且つ残りの吐出冷媒が高圧ガス
管(18a)、切換弁(20c)を経て利用側熱交換器
〈13c>に夫々流れ、この主熱源側熱交換器(5a)
(5b)と補助熱源側熱交換器(9〉と利用側熱交換器
(13c)とで凝縮液化される。そして主熱源側熱交換
器(5a)(5b)を出た液冷媒は冷媒減圧器(25a
)(25b)で−段膨張された後にユニット間配管(1
5〉の液管(15b)を経てユニット間配管(18)の
液管(18c)へ流れると共に、補助熱源側熱交換器(
9〉を出た液冷媒は冷媒減圧器(22〉で−段膨張され
た後に、且つ利用側熱交換器(13c)を出た液冷媒は
冷媒減圧器(23C)で−段膨張された後に夫々ユニ7
1間配管(18)の液管(18c)へ流れ、この両液冷
媒は合流した後、各利用側ユニッ)−(12a)(12
b)の冷媒減圧器(23a)(23b)に分配され、こ
こで二段膨張される。然る後、各利用側熱交換器(13
g>(13b>で蒸発気化した後、夫々切換弁(21a
)(21b)、低圧ガス管(18b)、気液分離器(3
〉を経て圧縮機(2)に吸入される。このように蒸発器
として作用する利用側熱交換器(13a)(13b)で
夫々の室(z9a)(z9b)が同時に冷房されると共
に凝縮器として作用する利用側熱交換器(13c)で室
(29c)が暖房される一方、室(29a)には室外か
ら新鮮な外気が吸気口(31)から送風機(11)で導
入されると共に冷房運転により温度が低下した室(29
a)内の汚れた空気が送風機(10)で排気口(32〉
から室外へ排出されており、この排出される際に、低温
空気から凝縮器として作用している補助熱源側熱交換器
(9)で排熱が回収される為、運転の効率が向上する。
Also, at the same time, any room (29c), for example, can be heated and two units (
29a) (29b), use the mechanical unit (
1) and one of the switching valves (16) of the auxiliary heat source side unit (7).
a) Open (19a) and open the other switching valve (16b) (19b
) and close the switching valve (2) of the main heat source side unit (4).
4a) (24b), and open the user side unit (12a).
) (12b) and open the other switching valve (21a) (21b), and also close one switching valve (20c) of the user unit (12c).
) and close the other switching valve (21c), a part of the refrigerant discharged from the compressor (2) flows into the discharge pipe (1
7), switching valve (16a), gas pipe (15a), switching valve (
24a) (24b) sequentially to the main heat source side heat exchanger (5a
) (5b>, and a part of the remaining discharged refrigerant passes through the high-pressure gas pipe (18a) and the switching valve (19a) to the auxiliary heat source side heat exchanger (9>), and the remaining discharged refrigerant flows into the high-pressure gas It flows through the pipe (18a) and the switching valve (20c) to the user side heat exchanger <13c>, and this main heat source side heat exchanger (5a)
(5b), the auxiliary heat source side heat exchanger (9>), and the usage side heat exchanger (13c) are condensed and liquefied.Then, the liquid refrigerant exiting the main heat source side heat exchanger (5a) (5b) is depressurized. Container (25a
) (25b) and then the inter-unit piping (1
5> through the liquid pipe (15b) to the liquid pipe (18c) of the inter-unit piping (18), and the auxiliary heat source side heat exchanger (
The liquid refrigerant exiting from the refrigerant pressure reducer (22>) is expanded in stages, and the liquid refrigerant exiting the user-side heat exchanger (13c) is expanded in stages in the refrigerant pressure reducer (23C). Uni 7 each
The liquid refrigerant flows into the liquid pipe (18c) of the pipe (18), and after these two liquid refrigerants meet, they are
The refrigerant is distributed to the refrigerant pressure reducers (23a) and (23b) of (b), where it is expanded in two stages. After that, each user side heat exchanger (13
g>(13b>), the respective switching valves (21a
) (21b), low pressure gas pipe (18b), gas-liquid separator (3
> is sucked into the compressor (2). In this way, the user-side heat exchangers (13a) and (13b), which act as evaporators, simultaneously cool the respective chambers (z9a and z9b), and the user-side heat exchanger (13c), which acts as a condenser, cools the respective chambers. (29c) is heated, while fresh air from outside is introduced into the room (29a) from the air inlet (31) by the blower (11), and the temperature of the room (29a) has decreased due to the cooling operation.
a) The dirty air in the air is discharged from the blower (10) through the exhaust port (32).
When the exhaust heat is discharged from the low-temperature air to the outside, the auxiliary heat source side heat exchanger (9), which acts as a condenser, recovers the exhaust heat from the low-temperature air, improving operational efficiency.

しかも、かかる冷暖房同時運転時においては凝縮器とし
て作用する利用側熱交換器(13c)と蒸発器として作
用する利用側熱交換器(13a)(13b)とがシリー
ズ接続されるため、熱回収による効率の良い運転が行な
える。
Moreover, during such simultaneous cooling and heating operation, the user-side heat exchanger (13c) that acts as a condenser and the user-side heat exchanger (13a) (13b) that acts as an evaporator are connected in series, so that heat recovery is possible. Enables efficient driving.

尚、かかる運転時においても、上述した全室冷房及び全
室暖房運転時と同様に、主熱源側熱交換器(5a)(5
b)と補助熱源側熱交換器(9〉と利用側熱交換器(1
3c)との合計凝縮容量が、利用側熱交換器(13a)
(13b)の合計蒸発容量とバランスするように、主熱
源側熱交換器(5a) (5b)の作用を停止させたり
、ダンパー(26)を回動して補助熱源側熱交換器(9
〉の熱交換容量を小さくしている。
In addition, even during such operation, the main heat source side heat exchanger (5a) (5
b), the auxiliary heat source side heat exchanger (9), and the user side heat exchanger (1)
3c), the total condensation capacity of the user side heat exchanger (13a)
(13b), the action of the main heat source side heat exchanger (5a) (5b) is stopped or the damper (26) is rotated to balance the auxiliary heat source side heat exchanger (9).
〉 heat exchange capacity is reduced.

上述したように、全室冷房運転時と全室暖房運転時、及
び冷暖房同時運転時の何れの場合においても補助熱源側
熱交換器(9〉は主熱源側熱交換器<5a)(5b)が
凝縮器として作用する時は凝縮器として、逆に蒸発器と
して作用する時は蒸発器として夫々同じ作用をするよう
に連動させているので、主熱源側ユニット(4〉は補助
熱源側熱交換器(9〉が除かれた分だけ主熱源側熱交換
器(5a)(5b)が小さくなり、例えば、圧縮機(2
〉が10馬力、補助熱源側熱交換器(9〉が2馬力とす
ると、主熱源側ユニット(4)は本来10馬力の大きさ
を必要とするところを2馬力小さい8馬力の大きさとな
り、小型化が図れる。併せて、2馬力小さくなった分だ
けユニット間配管(15〉の管径を小さくでき、工事費
が割安となる。しかも、圧縮機(2〉が10馬力、主熱
源側熱交換器(5a)(5b)が8馬力といった具合に
馬力が異なっているが、機械ユニット(1〉と主熱源側
ユニット(4)とに分離しているため、両ユニットを選
定することにより容易に対応することが可能である。
As mentioned above, the auxiliary heat source side heat exchanger (9> is the main heat source side heat exchanger <5a) (5b) in all rooms cooling operation, all room heating operation, and simultaneous cooling and heating operation. When it acts as a condenser, it acts as a condenser, and when it acts as an evaporator, it acts as an evaporator. The main heat source side heat exchangers (5a) (5b) are made smaller by the amount that the compressor (9) is removed.
> is 10 horsepower, and the auxiliary heat source side heat exchanger (9) is 2 horsepower, the main heat source side unit (4) originally required a size of 10 horsepower, but it has a size of 8 horsepower, which is 2 horsepower smaller. It can be made smaller.In addition, the diameter of the pipe between the units (15〉) can be reduced by 2 horsepower less, and the construction cost is cheaper.Moreover, the compressor (2〉) has 10 horsepower, and the main heat source side heat The horsepower of the exchangers (5a) and (5b) are different, such as 8 horsepower, but since they are separated into the mechanical unit (1> and the main heat source side unit (4)), it is easy to select both units. It is possible to correspond to

第2図は本発明の第二実施例を示すもので、上述した第
一実施例と異なる点は、補助熱源側ユニット(7)を機
械ユニット(1〉と主熱源側ユニット(4〉とを接続す
るユニット間配管(15)から分岐接続することにより
、切換弁(19a)(19b)を不要とした点であり、
全室冷房運転、全室暖房運転、冷暖房同時運転は上述し
た第一実施例と同様である為、同一符号を付して動作説
明は省略する。
FIG. 2 shows a second embodiment of the present invention, which differs from the first embodiment described above in that the auxiliary heat source side unit (7) is replaced by a mechanical unit (1>) and a main heat source side unit (4>). By making a branch connection from the connected inter-unit piping (15), the switching valves (19a) (19b) are no longer required.
The all-room cooling operation, the all-room heating operation, and the simultaneous heating and cooling operation are the same as those in the first embodiment described above, so the same reference numerals are given and the explanation of the operations will be omitted.

第3図は本発明の第三実施例を示すもので、上述した第
二実施例と異なる点は、機械ユニット(1a)と利用側
ユニット(12a)< 12b)(12c)とを液管(
18C〉とガス管(18d)とからなる2本のユニット
間配管(18〉で接続すると共に切換弁(16a)(1
6b)、(20a)(21a)、(20b)(21b)
、(20c)(21c)の代わりに四方弁(33)を用
い、且つ主熱源側ユニット(4a)には単一の主熱源側
熱交換器(5C〉と冷媒減圧器(25c)とを設けるよ
うにした点であり、第二実施例と同一のものは同一符号
を付して詳細な説明は省略する。全室冷房運転時には、
四方弁(33)を実線状態に設定することにより、圧縮
機〈2)から吐出された冷媒は吐出管(17)、四方弁
(33)、ユニット間配管(15〉のガス管(15a)
を経て主熱源側熱交換器(5C〉と補助熱源側熱交換器
(9〉とに分配され、この内熱交換器(5c)(9)で
凝縮液化された後、夫々冷媒減圧器(25c)(22)
で−段膨張される。然る後、液管(15b)で合流され
、ユニット間配管(18〉の液管(18c)から各利用
側ユニット(12a)(12b)(12c)の冷媒減圧
器(23a)(23b)(23c)に分配されて二段膨
張され、利用側熱交換器(13a)(13b)(13c
)で蒸発気化された後、ガス管(18d)、四方弁り3
3〉、気液分離器(3〉を経て圧縮機(2〉に吸入され
、各室<29a)(29b)(29c)が冷房される。
FIG. 3 shows a third embodiment of the present invention. The difference from the second embodiment described above is that the mechanical unit (1a) and the user unit (12a) < 12b) (12c) are connected to a liquid pipe (
18C> and a gas pipe (18d) are connected by two inter-unit piping (18>) and a switching valve (16a) (1
6b), (20a) (21a), (20b) (21b)
, (20c), a four-way valve (33) is used instead of (21c), and the main heat source side unit (4a) is provided with a single main heat source side heat exchanger (5C> and a refrigerant pressure reducer (25c)). Components that are the same as those in the second embodiment are given the same reference numerals and detailed explanations are omitted.During all room cooling operation,
By setting the four-way valve (33) to the solid state, the refrigerant discharged from the compressor (2) is transferred to the discharge pipe (17), the four-way valve (33), and the gas pipe (15a) of the inter-unit piping (15).
The refrigerant is distributed to the main heat source side heat exchanger (5C) and the auxiliary heat source side heat exchanger (9), and after being condensed and liquefied in the internal heat exchangers (5c) and (9), the refrigerant is transferred to the refrigerant pressure reducer (25c), respectively. )(22)
- stage expansion is performed. After that, the liquid is merged in the liquid pipe (15b), and the refrigerant pressure reducer (23a) (23b) ( 23c) and is expanded in two stages.
), the gas pipe (18d), four-way valve 3
3>, the gas is sucked into the compressor (2>) via the gas-liquid separator (3>), and each chamber <29a) (29b) (29c) is cooled.

又、全室暖房運転時には、四方弁<33)を破線状態に
設定することにより、圧縮機(2)から吐出された冷媒
は吐出管(17)、四方弁り33)、ガス管(18d)
を経て各利用側熱交換器(13a)(13b)(13c
)に分配され、ここで凝縮液化した後、冷媒減圧器(2
3a)(23b)(23c)で−段膨張される。然る後
、液管(18c)、液管(15b)を経て分配された後
、冷媒減圧器(22)(25c)で二段膨張され、補助
熱源側熱交換器(9)と主熱源側熱交換器(5C)とで
夫々蒸発気化した後、ガス管(15a)、四方弁(33
〉、気液分離器<3〉を経て圧縮機(2)に吸入され、
各室(29a)(29b)(29C)が暖房される。
Also, during all-room heating operation, by setting the four-way valve <33) to the broken line state, the refrigerant discharged from the compressor (2) is routed through the discharge pipe (17), the four-way valve 33), and the gas pipe (18d).
through each user side heat exchanger (13a) (13b) (13c
), where it is condensed and liquefied, and then transferred to a refrigerant pressure reducer (2
3a) (23b) (23c) - stage expansion is performed. After that, it is distributed through the liquid pipe (18c) and the liquid pipe (15b), and then expanded in two stages in the refrigerant pressure reducer (22) (25c), and then transferred to the auxiliary heat source side heat exchanger (9) and the main heat source side. After being evaporated with the heat exchanger (5C), the gas pipe (15a) and the four-way valve (33
>, is sucked into the compressor (2) via the gas-liquid separator <3>,
Each room (29a) (29b) (29C) is heated.

かかる冷房運転及び暖房運転の何れの場合においても、
上記第一、第二の実施例と同様に補助熱源側熱交換器〈
9〉は主熱源側熱交換器(5C)が凝縮器として作用す
る時は凝縮器として、逆に蒸発器として作用する時は蒸
発器として夫々同じ作用をするようになっているが、か
かる第三実施例では冷房運転と暖房運転とを同時に行な
えない点で第、第二の実施例と相違している。
In either case of such cooling operation or heating operation,
Similar to the first and second embodiments above, the auxiliary heat source side heat exchanger
9> is designed so that when the main heat source side heat exchanger (5C) acts as a condenser, it acts as a condenser, and conversely, when it acts as an evaporator, it acts as an evaporator. The third embodiment differs from the second and second embodiments in that cooling operation and heating operation cannot be performed at the same time.

尚、上記各実施例において、補助熱源側熱交換器〈9〉
を鎖線で示すように補助熱源側ユニット〈7)から取り
出して排気口(32〉に臨む他の補助熱源側ユニット(
7a)に内蔵するようにすると、補助熱源側ユニット(
7)は補助熱源側熱交換器(9〉がない汎用の換気ユニ
ットを用いることが可能である。
In addition, in each of the above embodiments, the auxiliary heat source side heat exchanger <9>
As shown by the chain line, take it out from the auxiliary heat source side unit (7) and insert it into the other auxiliary heat source side unit (32) facing the exhaust port (32).
7a), the auxiliary heat source side unit (
For 7), it is possible to use a general-purpose ventilation unit that does not have an auxiliary heat source side heat exchanger (9>).

(ト)発明の効果 本発明によれば、熱源側熱交換器を主熱源側熱交換器と
補助熱源側熱交換器とに分割して別々の熱源側ユニット
に内蔵し、補助熱源側熱交換器を室内空気の排気路中に
設けるようにしたので、主熱源側ユニットは補助熱源側
熱交換器が除かれた分だけ更に小型化できる為、屋外で
の設置占有面積を小さくすることができると共に、補助
熱源側熱交換器で排熱が回収される為、冷暖房運転の効
率を向上させることができる。
(G) Effects of the Invention According to the present invention, the heat source side heat exchanger is divided into the main heat source side heat exchanger and the auxiliary heat source side heat exchanger and built into separate heat source side units, and the auxiliary heat source side heat exchanger is Since the heat exchanger is installed in the indoor air exhaust path, the main heat source side unit can be further downsized by removing the auxiliary heat source side heat exchanger, which reduces the footprint required for outdoor installation. At the same time, since exhaust heat is recovered by the auxiliary heat source side heat exchanger, the efficiency of air-conditioning operation can be improved.

しかも、主熱源側熱交換器と圧縮機とを別々の主熱源側
ユニットと機械ユニットとに内蔵したので、主熱源側熱
交換器と圧縮機との能力のアンバランスは機械ユニット
よりも能力の小さい主熱源側ユニットを選定してユニッ
ト間配管で接続することにより容易に対応することがで
きる。
Moreover, since the main heat source side heat exchanger and compressor are built into separate main heat source side units and mechanical units, the unbalance in the capacity of the main heat source side heat exchanger and compressor is smaller than that of the mechanical unit. This can be easily handled by selecting a small main heat source side unit and connecting it with inter-unit piping.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第一実施例を示す空気調和装置の冷媒
回路図、第2図は本発明の第二実施例を示す空気調和装
置の冷媒回路図、第3図は本発明の第三実施例を示す空
気調和装置の冷媒回路図である。 (1)(la)・・・機械ユニット、 (2)・・・圧
縮機、(4)・・・主熱源側ユニット、 (5a)(5
b)・−・主熱源側熱交換器、 (7)・・・補助熱源
側ユニット、 (8)・・・排気路、 (9〉・・・補
助熱源側熱交換器、 (12a)(12b)(12c)
=−利用側ユニット、 (13a)(13b)(13c
)・・・利用側熱交換器、 (15)(18)・・・ユ
ニット間配管。
Fig. 1 is a refrigerant circuit diagram of an air conditioner showing a first embodiment of the present invention, Fig. 2 is a refrigerant circuit diagram of an air conditioner showing a second embodiment of the invention, and Fig. 3 is a refrigerant circuit diagram of an air conditioner showing a second embodiment of the invention. FIG. 3 is a refrigerant circuit diagram of an air conditioner showing three embodiments. (1)(la)...Mechanical unit, (2)...Compressor, (4)...Main heat source side unit, (5a)(5
b) Main heat source side heat exchanger, (7) Auxiliary heat source side unit, (8) Exhaust passage, (9> Auxiliary heat source side heat exchanger, (12a) (12b) ) (12c)
=-Using unit, (13a) (13b) (13c
)... User side heat exchanger, (15) (18)... Inter-unit piping.

Claims (1)

【特許請求の範囲】[Claims] (1)圧縮機を有する機械ユニットと、主熱源側熱交換
器を有する主熱源側ユニットと、補助熱源側熱交換器を
有する補助熱源側ユニットと、利用側熱交換器を有する
複数台の利用側ユニットとをユニット間配管で接続する
一方、前記補助熱源側熱交換器を室内空気が室外へ排出
される排気路中に設けたことを特徴とする空気調和装置
(1) Use of multiple units including a mechanical unit with a compressor, a main heat source side unit with a main heat source side heat exchanger, an auxiliary heat source side unit with an auxiliary heat source side heat exchanger, and a user side heat exchanger An air conditioner characterized in that the auxiliary heat source side heat exchanger is connected to a side unit by inter-unit piping, and the auxiliary heat source side heat exchanger is provided in an exhaust path through which indoor air is discharged to the outside.
JP6038390A 1990-03-12 1990-03-12 Air conditioner Pending JPH03260563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6038390A JPH03260563A (en) 1990-03-12 1990-03-12 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6038390A JPH03260563A (en) 1990-03-12 1990-03-12 Air conditioner

Publications (1)

Publication Number Publication Date
JPH03260563A true JPH03260563A (en) 1991-11-20

Family

ID=13140574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6038390A Pending JPH03260563A (en) 1990-03-12 1990-03-12 Air conditioner

Country Status (1)

Country Link
JP (1) JPH03260563A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249267A (en) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp Air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249267A (en) * 2007-03-30 2008-10-16 Mitsubishi Electric Corp Air conditioner

Similar Documents

Publication Publication Date Title
US6199392B1 (en) Air conditioning system
JPH0711366B2 (en) Air conditioner
JP2001082818A (en) Heat pump system and installation method therefor
JP2804527B2 (en) Air conditioner
JPH01247967A (en) Multi-room type air-conditioner
JP2698118B2 (en) Air conditioner
JP2760500B2 (en) Multi-room air conditioner
KR100677267B1 (en) Distribution unit for multi type air conditioner of which indoor units are driven as a cooler or as a heater respectively at a same time
KR20180093570A (en) Air conditioner
US11300337B2 (en) Outdoor system for air conditioner
JPH03260563A (en) Air conditioner
KR100480702B1 (en) Multi-type air conditioner for cooling/heating the same time
JPH0320573A (en) Air-conditioning apparatus
JP2698117B2 (en) Air conditioner
JPH07180927A (en) Multi-chamber type cooling and heating device
JPH0339869A (en) Air conditioning apparatus
KR20180123270A (en) An air conditioner
JPH0282066A (en) Air conditioner
JP3268967B2 (en) Air conditioner
JPH03244976A (en) Air conditioning device
KR100463549B1 (en) Multi-type air conditioner for cooling/heating the same time
KR100911789B1 (en) Air conditioner for dehumidification
JPH01296062A (en) Multiple-room type cooler-heater
JP2642695B2 (en) Air conditioner
JP2662126B2 (en) Air conditioner