JPH03260193A - Water-resistant paper by chemical modification - Google Patents

Water-resistant paper by chemical modification

Info

Publication number
JPH03260193A
JPH03260193A JP5800690A JP5800690A JPH03260193A JP H03260193 A JPH03260193 A JP H03260193A JP 5800690 A JP5800690 A JP 5800690A JP 5800690 A JP5800690 A JP 5800690A JP H03260193 A JPH03260193 A JP H03260193A
Authority
JP
Japan
Prior art keywords
paper
pulp
strength
wet
dry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5800690A
Other languages
Japanese (ja)
Other versions
JP2766541B2 (en
Inventor
Kyoji Suzuki
鈴木 恭治
Hideki Nomura
秀樹 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP5800690A priority Critical patent/JP2766541B2/en
Publication of JPH03260193A publication Critical patent/JPH03260193A/en
Application granted granted Critical
Publication of JP2766541B2 publication Critical patent/JP2766541B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Abstract

PURPOSE:To obtain reutilizable water-resistant paper capable of providing a high paper strength even in a wet state and reducing wet strength by treatment with NaClO in recovering by using N-halogenated pulp fiber. CONSTITUTION:The objective water-resistant paper obtained by carbamoylethylating pulp fiber, then reacting a hypohalite therewith, carrying out N-halogenation and forming sheets of paper from the resultant N- halogenated pulp fiber.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、水酸基を有するパルプ繊維の化学改質により
、湿潤状態でも高い強度の紙力を得ることができる耐水
紙に関するものである。
The present invention relates to waterproof paper that can obtain high paper strength even in a wet state by chemically modifying pulp fibers having hydroxyl groups.

【従来の技術】[Conventional technology]

従来、乾湿紙力シートを製造する一般的な方法としては
、パルプスラリーに紙力増強剤を添加して抄紙する方法
、シート架橋剤を添加する方法、合成パルプとの複合化
による混抄方法などが挙げられる。 耐水性付与に用いられる紙力増強剤は、メラミン樹脂や
エビクロロヒドリン系樹脂に代表される反応性のものと
アミノ化ポリアクリルアミド(A−PAM)やポリエチ
レンイミン(PEI)のような非反応性のものに大別さ
れる。 メラミン樹脂は共存するホルムアルデヒドにより生成す
るメチロール基の反応性を利用して紙力向上を計るもの
であり、古くから研究されているが、遊離ホルマリンの
毒性や製品の安定性に問題がある(■土屋道典二紙パル
プ技術タイムス。 24.7−14(1981) )。 現在湿潤紙力増強剤として広く利用されているポリアミ
ドポリアミンエビクロロヒドリン樹脂(PAE)はアジ
ピン酸とジエチレントリアミンの縮合ポリマーにエビク
ロロヒドリンを反応させて合成され、繊維表面に定着し
たPAEの側鎖エポキシ基とセルロース繊維との共有結
合反応性を期待して抄紙時に添加されるが、湿潤強度は
未処理の乾燥強度に遥かに及ばない(■、■N、A、B
ates  : T a p p i、 、 52.1
162−1168(1969))。 またA−PAMはアミノ化率の高いものが湿潤紙力増強
剤として効果的であることからアミノ基が湿潤強度増加
に寄与しているものと考えられる(■鈴木恭治・日中浩
雄:木材学会誌。 2+1,204−208(1977))。PEIも同様
に湿紙強度の増加がみられる。しかしこれらのウェット
エンド添加剤は定着性、抄紙性、紙質(地合)、価格等
の点から添加量に自ら限界があり、何れの紙力増強剤も
通常の抄紙条件及び添加量範囲では湿潤引張り強度が無
添加時の乾燥引張り強度の50%を越えることは難しい
。 また架橋剤添加法についてはビスアクリルアミド化合物
やジイソシアネート化合物を紙表面にスプレー添加する
方法がある。 日中らはジメチレンエーテルビスアクリルアミド(ME
BA)を対しBKP重量当たり3%添加し湿潤引張り強
度で未処理紙の12倍、乾燥引張り強度で7%の向上を
得ている(■日中浩雄・森田光博・千手諒−:紙バ技協
誌、25,575−581(1971,’) )。しか
しこの場合も未処理乾燥紙力に対する湿潤紙力の割合(
湿潤強度率)は41%に止まっている。またMEBAは
シート作成時に反応触媒としてアルカリの添加が必要で
あり、乾燥時に130℃以上の加熱温度を必要とする。 一方ジイソシアネートタイプの架橋剤も繊維間架橋によ
り湿潤強度が向上するが、水系での添加は難しく、有機
溶媒の使用は実用上問題がある。 合成パルプと天然パルプとの複合化による耐水性付与は
可能であるが紙本来の特性が損なわれ、吸水性、手触り
が一般紙に劣る。 一方N−塩素化した化合物を紙の耐水化に利用した例と
して、カルバモイルエチル化デンプンのN−塩素化誘導
体を紙力増強剤として用いた千手らの報告がある(■千
手諒−・樋口先夫・竹下賢二・中山幸一部:紙バ技協誌
、27,335−340(1973))。報告によれば
N−塩素化デンプンは含リグニンパルプに卓効を示し、
アミノ基を持ったポリマーとの併用により著しい紙力増
強効果を得ている。 LUKPに置換度10.7のN−塩素化デンプンを対パ
ルプ1%添加することにより乾燥引張り強度は52%向
上し、湿潤強度は約11倍に向上する。(if置換度 
 (degree of 5ubstitution%
DSで表す。)とは構成糖残基(この場合グルコース)
1個当りの置換された平均水酸基数である。)従って置
換度0.7とはデンプンのグルコース残基当り0.7個
の水酸基がN−CI化CB基に置き換わっていることを
示す。) しかし湿潤強度率は26%に止まる。LBKPでは同様
の添加率で乾燥強度向上率28%、湿潤強度向上率13
%に過ぎない。 また海外ではSm1thらが、酸性下でカルバモイルエ
チル化デンプンを次亜塩素酸ナトリウム処理した生成物
をLUKPに素早く添加し乾湿紙力の大幅な向上を得て
いるが、対パルプ10%という大量添加でも湿潤強度率
は約60%である(■H,E、Smjth  et  
al、:  T  a  p  p  i  、  5
3.1704−170g(1970))。 このほかカルバモイルエチル化を利用した繊維の改質例
として、(1)カルバモイルエチル化セルロース繊維に
アクリル酸エステルをグラフト重合させ、高弾性回復性
を付与したものや(■特開昭50−135395号公報
)、(2)カルバモイルエチル化パルプをホフマン分解
することによりカチオンパルプを製造したちの(■樋口
先夫・野間耕−・千手諒−二紙バ技協誌、25,187
−195(1971) ;■特公昭49−38708号
公報)がある。ここで(1)は繊維への高伸縮性付与、
(2)はパルプ繊維にプラスのゼータ−電位をもたせ陰
性コロイドを吸着させるように意図したものであり、何
れも耐水化を目的としたものではない。従って、乾湿強
度を向上させる点では十分ではない。
Traditionally, common methods for producing wet and dry paper strength sheets include adding a paper strength enhancer to pulp slurry to make paper, adding a sheet crosslinking agent, and mixing paper by combining with synthetic pulp. Can be mentioned. Paper strength agents used to impart water resistance are reactive ones such as melamine resin and shrimp chlorohydrin resin, and non-reactive ones such as aminated polyacrylamide (A-PAM) and polyethyleneimine (PEI). It is broadly classified into gender. Melamine resin improves paper strength by utilizing the reactivity of methylol groups generated by coexisting formaldehyde, and has been studied for a long time, but there are problems with the toxicity of free formalin and product stability (■ Michinori Tsuchiya, Paper and Pulp Technology Times. 24.7-14 (1981)). Polyamide polyamine shrimp chlorohydrin resin (PAE), which is currently widely used as a wet paper strength agent, is synthesized by reacting shrimp chlorohydrin with a condensation polymer of adipic acid and diethylenetriamine. It is added during paper making in hopes of covalent reactivity between chain epoxy groups and cellulose fibers, but its wet strength is far below the untreated dry strength (■, ■N, A, B
ates: Tappi, , 52.1
162-1168 (1969)). In addition, since A-PAM with a high amination rate is effective as a wet paper strength enhancer, it is thought that the amino group contributes to the increase in wet strength (Kyoji Suzuki, Hiroo Naka: Wood Science Society Journal. 2+1, 204-208 (1977)). PEI also shows an increase in wet paper strength. However, these wet-end additives have their own limits on the amount added in terms of fixing properties, papermaking properties, paper quality (formation), price, etc., and all paper strength enhancers are wet-end additives under normal papermaking conditions and within the range of addition amounts. It is difficult for the tensile strength to exceed 50% of the dry tensile strength without additives. As for the method of adding a crosslinking agent, there is a method of spraying a bisacrylamide compound or a diisocyanate compound onto the paper surface. During Japan and China, dimethylene ether bisacrylamide (ME
BA) was added in an amount of 3% based on the weight of BKP, and the wet tensile strength was 12 times that of untreated paper, and the dry tensile strength was 7% higher (Hiroo Naka, Mitsuhiro Morita, Ryo Senju - Paperback). Technical Association Journal, 25, 575-581 (1971,')). However, in this case as well, the ratio of wet paper strength to untreated dry paper strength (
The wet strength rate) remained at 41%. Furthermore, MEBA requires the addition of an alkali as a reaction catalyst during sheet production, and requires a heating temperature of 130° C. or higher during drying. On the other hand, diisocyanate type crosslinking agents also improve wet strength due to interfiber crosslinking, but they are difficult to add in aqueous systems, and the use of organic solvents poses practical problems. Although it is possible to impart water resistance by combining synthetic pulp and natural pulp, the original properties of paper are impaired, and the water absorbency and feel are inferior to ordinary paper. On the other hand, as an example of using N-chlorinated compounds to make paper water resistant, there is a report by Senju et al. who used an N-chlorinated derivative of carbamoylethylated starch as a paper strength enhancer (■Ryo Senju-・Sakio Higuchi, Kenji Takeshita, and Koichi Nakayama: Paperback Technical Association Journal, 27, 335-340 (1973)). According to reports, N-chlorinated starch shows excellent effects on lignin-containing pulp,
By using it in combination with a polymer containing amino groups, a remarkable effect of increasing paper strength has been obtained. By adding 1% of N-chlorinated starch with a degree of substitution of 10.7 to LUKP based on the pulp, the dry tensile strength increases by 52% and the wet strength increases approximately 11 times. (if substitution degree
(degree of 5substitution%
Represented by DS. ) is a constituent sugar residue (in this case glucose)
This is the average number of substituted hydroxyl groups per hydroxyl group. ) Therefore, the degree of substitution of 0.7 means that 0.7 hydroxyl groups per glucose residue in starch are replaced with N-CI-formed CB groups. ) However, the wet strength rate remains at 26%. With LBKP, the dry strength improvement rate was 28% and the wet strength improvement rate was 13% at the same addition rate.
It is only %. Overseas, Sm1th et al. quickly added a product obtained by treating carbamoylethylated starch with sodium hypochlorite under acidic conditions to LUKP and obtained a significant improvement in wet and dry paper strength, but they added a large amount of 10% to the pulp. However, the wet strength rate is about 60% (■H, E, Smjth et
al,: T a p p i , 5
3.1704-170g (1970)). In addition, as examples of fiber modification using carbamoylethylation, (1) carbamoylethylated cellulose fibers are graft-polymerized with acrylic esters to impart high elastic recovery properties (Japanese Patent Application Laid-Open No. 50-135395 Publication), (2) Production of cationic pulp by Hofmann decomposition of carbamoylethylated pulp (Sakio Higuchi, Ko Noma, Ryo Senju, Nishiba Technical Association Journal, 25, 187
-195 (1971); ■Special Publication No. 49-38708). Here, (1) is imparting high elasticity to the fibers,
(2) is intended to impart a positive zeta potential to the pulp fibers so that negative colloids can be adsorbed, and neither of them is intended to make the pulp fibers water resistant. Therefore, it is not sufficient to improve wet and dry strength.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、上記各種薬品添加による方法では、乾燥
強度は向上するも、湿潤強度の向上は十分とは言えず、
薬品添加による、遊離ホルマリンによる毒性問題、製品
の安定性、填料等の定着性、抄紙性、地合の悪化、合成
繊維配合による地合、吸水性、手触りが劣る諸問題等の
弊害がある。 本発明はこれらの諸問題を解決し、湿潤状態でも高い強
度の紙力を有する耐水紙を得ることを課題とする。
However, although the above methods of adding various chemicals improve dry strength, wet strength cannot be said to be improved sufficiently.
Due to the addition of chemicals, there are problems such as toxicity due to free formalin, poor product stability, fixation of fillers, etc., paper-making properties, and formation, and problems with formation, water absorption, and texture due to the combination of synthetic fibers. The object of the present invention is to solve these problems and to obtain waterproof paper that has high paper strength even in a wet state.

【課題を解決するための手段】[Means to solve the problem]

本発明は、パルプ繊維をカルバモイルエチル化し、つい
で次亜ハロゲン酸塩を作用させてN−ハロゲン化し、該
N−ハロゲン化パルプ繊維を用いて抄紙して得られる、
水酸基を有するパルプ繊維の化学改質による耐水紙であ
る。 本発明で用いることが出来るパルプ繊維とは、水酸基を
有するパルプ繊維であれば、とくに限定するものではな
く、例えば、広葉樹、針葉樹等の化学パルプ、GP、P
GW、RMP、TMP。 CTMP、CMPXCGP等の機械パルプの晒、未晒パ
ルプ、また、DIP等の古紙パルプが挙げられ、これら
のパルプ繊維を単独または混合して用いることが出来る
。 パルプ繊維の濾水度は特に限定するものではなく、如何
なる濾水度でも優れた紙力の向上が得られる。 従って希望する濾水度まで叩解したものを原料パルプに
用いればよい。 パルプ繊維をカルバモイルエチル化する方法としては、 第1法:パルプ繊維にアクリルアミドをマイケル付加す
る方法。 F−OH+CH2−CHCONH2 →F −0−CH2CH2CON H2第2法二パルプ
繊維にアクリロニトリルをマイケル付加し、シアノエチ
ル化した後、過酸化水素を作用させ、カルバモイル化物
を得る方法。 F−OH+CH2−CH−CN →F  OCH2CH2CN F  0−CH2CH2CN +2H202→F  O
CH2CH2CONH2+H20+02 (Fは繊維を表す) カルバモイルエチル化パルプ繊維をN−ハロゲン化パル
プ繊維にするには、ハロゲン化合物を用いる。このハロ
ゲン化合物の例としては、次亜塩素酸ナトリウム、次亜
塩素酸カリ、次亜塩素酸カルシウム、次亜臭素酸ナトリ
ウム、次亜臭素酸カリ、次亜臭素酸カルシウムなどの次
亜ハロゲン酸のアルカリ金属塩またはアルカリ土類金属
塩、苛性ソーダ、苛性カリ、水酸化カルシウム、水酸化
マグネシウムなどの水溶液に塩素や臭素を吹込むことに
よって生成する化合物等がある。 N−ハロゲン化パルプ繊維を得る一例としては、カルバ
モイルエチル化パルプ繊維にアルカリ下で次亜塩素酸ナ
トリウムを作用させN−ハロゲン化を行うことができる
。 F  0−CH2CH2CONH2+NaQC1→F 
 OCH2CH2CON −CIN−ハロゲン化パルプ
繊維は、単独または非N−ハロゲン化パルプ繊維と混合
して用いることが出来る。しかし、非N−ハロゲン化パ
ルプ繊維の配合量の増加にともない、はぼ比例的に乾湿
引張強度向上率は低下する。 CB化度の範囲は置換度”(DS)にして0゜01〜0
.06がよく、置換度0.005以下では高度な耐水性
は得られない。置換度0.1以上では耐引裂性の低下が
大きい。 置換度tf、パルプを構成するセルロース繊維のグルコ
ース残基当りの置換CB基数である。 N−ハロゲン化パルプ繊維を抄紙機にて抄造しシート化
後、プレスで脱水して加熱乾燥する。 抄紙温度はN−ハロゲンの安定性の点から常温以下が望
ましいが抄造時間が短時間であれば特に低温は必要とし
ない。 本発明耐水紙の抄紙に際し、添加できる、他の添加物と
しては、一般の抄紙に用いられる物質を使用することが
でき、例えば、軽質炭酸カルシウム、重質炭酸カルシウ
ム、タルク、クレー カオリン等の各種の填料、サイズ
剤、定着剤、歩留り剤、カチオン化剤、紙力増強剤等の
各種添加剤を適宜含ませ、酸性、中性、アルカリ性で抄
造することが出来る。
The present invention is obtained by carbamoylethylating pulp fibers, then N-halogenating them by acting with a hypohalite, and making paper using the N-halogenated pulp fibers.
Waterproof paper made by chemically modifying pulp fibers with hydroxyl groups. Pulp fibers that can be used in the present invention are not particularly limited as long as they have hydroxyl groups, and examples include chemical pulps such as hardwood and softwood, GP, P
GW, RMP, TMP. Examples include bleached mechanical pulps such as CTMP and CMPXCGP, unbleached pulps, and waste paper pulps such as DIP, and these pulp fibers can be used alone or in combination. The freeness of the pulp fibers is not particularly limited, and excellent improvement in paper strength can be obtained at any freeness. Therefore, pulp that has been beaten to a desired freeness may be used as the raw material pulp. Methods for carbamoylethylating pulp fibers include: Method 1: Michael addition of acrylamide to pulp fibers. F-OH+CH2-CHCONH2 →F -0-CH2CH2CON H2 Second method: After Michael addition of acrylonitrile to pulp fibers and cyanoethylation, hydrogen peroxide is applied to obtain a carbamoylated product. F-OH+CH2-CH-CN →F OCH2CH2CN F 0-CH2CH2CN +2H202→F O
CH2CH2CONH2+H20+02 (F represents fiber) A halogen compound is used to convert carbamoylethylated pulp fibers into N-halogenated pulp fibers. Examples of these halogen compounds include hypohalous acids such as sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, sodium hypobromite, potassium hypobromite, and calcium hypobromite. These include compounds produced by blowing chlorine or bromine into aqueous solutions of alkali metal salts or alkaline earth metal salts, caustic soda, caustic potash, calcium hydroxide, magnesium hydroxide, and the like. As an example of obtaining N-halogenated pulp fibers, carbamoylethylated pulp fibers can be N-halogenated by reacting sodium hypochlorite in an alkaline environment. F 0−CH2CH2CONH2+NaQC1→F
OCH2CH2CON -CIN-halogenated pulp fibers can be used alone or in combination with non-N-halogenated pulp fibers. However, as the amount of non-N-halogenated pulp fibers increases, the wet and dry tensile strength improvement rate decreases in proportion. The range of CB degree is 0°01 to 0 in terms of degree of substitution (DS).
.. 06 is good, and if the degree of substitution is less than 0.005, high water resistance cannot be obtained. When the degree of substitution is 0.1 or more, the tear resistance is greatly reduced. The degree of substitution tf is the number of substituted CB groups per glucose residue in the cellulose fibers constituting the pulp. N-halogenated pulp fibers are made into a sheet using a paper machine, then dehydrated using a press and dried by heating. The papermaking temperature is preferably room temperature or lower from the viewpoint of stability of N-halogen, but if the papermaking time is short, a particularly low temperature is not required. Other additives that can be added when making the waterproof paper of the present invention include substances used in general paper making, such as light calcium carbonate, heavy calcium carbonate, talc, clay kaolin, etc. Various additives such as a filler, a sizing agent, a fixing agent, a retention agent, a cationizing agent, and a paper strength enhancer can be appropriately included, and the paper can be made in acidic, neutral, or alkaline conditions.

【実施例】【Example】

本発明を実施例に基づき更に詳しく説明するが、これに
限定するものではない。 実施例に於ける強度試験は下記の方法により測定した。 乾燥裂断長:JIS  P811B 湿潤裂断長:JIS  P8135(30分浸漬)比破
裂度 :JIS  P8112 (ミューレン低圧試験) 耐折強度 :JIs  P8115 白色度  :JIS  P8123 (ハンター白色度) 実施例1、比較例1〜3 濾水度(csf) 426 mlに叩解したLBKP 
(絶乾換算重量50g)に対して、水酸化ナトリウム2
g1アクリロニトリル8gと純水を添加し全量を500
1とし、50℃で3時間処理しシアノエチル化(CE化
)し、CE化パルプを水洗い後、CE化パルプに対して
過酸化水素を5g、水酸化ナトリウムを2gを含む50
01水溶液中に投入し、常温で50分間処理しカルバモ
イルエチル化(CB化)した、そのCB化度は置換度”
(DS)にして0.04であった。このCB化パルプ(
絶乾換算重量5g)に0.1モル次亜塩素酸ナトリウム
アルカリ溶液201を加えてN−クロル化した後、手抄
してプレスで脱水し、加熱乾燥して耐水紙を作成した。 比較として未処理、CE化及びCB化したパルプを同様
に手抄してシートを得た。 各処理パルプの強度試験結果を第1表に示す。 第1表から明らかなように、N−クロル化パルプ繊維に
より作成した耐水紙は未処理紙、CE化紙及びCB化紙
に比べて、乾湿紙引張り、破裂、耐折共に卓越した強度
を示すことが分かる。 第1表 パルプ: LBKP  濾水度(csr) 426 m
l置換度**、パルプを構成するセルロースのグルコー
ス残基当りの置換基個数 実施例2、比較例4〜6 濾水度(cs「) 440 mlに叩解したLUKP 
(絶乾換算重量50g)に対して、水酸化ナトリウム1
.5g、アクリロニトリル7gと純水を添加し全量を4
001とし、50℃で3時間処理しシアノエチル化(C
E化)し、CE化パルプを水洗い後、CE化パルプに対
して過酸化水素を5g、水酸化ナトリウムを2g及び微
量のヨウ化カリウムを含む5001水溶液中に投入し、
常温で50分間処理しカルバモイルエチル化(CB化)
した、そのCB基含量11g″は1.5%であった。こ
のCB化パルプ(絶乾換算重量5g)に0.1モル次亜
塩素酸ナトリウムアルカリ溶液201を加えてN−クロ
ル化した後、手抄してプレスで脱水し、加熱乾燥して耐
水紙を作成した。 比較として未処理、CE化及びCB化したパルプを同様
に手抄してシートを得た。 CB基含量”’:LUKPはリグニンを含んでおりDS
での表示は適当でないのでCB基含量(%)で表す。 CB基含量 CB基含量(%)−X100 CB化パルプ絶乾重量 各処理パルプの強度試験結果を第2表に示す。 第1表の晒クラフトパルプ(L B K P)と同様、
未晒KPでも優れた耐水強度が得られることを示す(第
2表)。乾燥引張、破裂、耐折の各強度も大巾に向上し
、白色度も若干向上する。含有リグニンは耐水強度発現
に対して特に大きな負の効果はないものと考えられる。 第2表 パルプ: LUKP  濾水度(Cs「) 440 m
実施例3〜7、比較例7 濾水度(csr) 420 mH:叩解したLBKP 
(絶乾換算重量48g)を、CB化度が置換度11(D
S)にして0.008.0.019.0.03.0.0
4.0.057になるようカルバモイルエチル化(CB
化)し、これらのCB化パルプ繊維(絶乾換算重量5g
)に0.1モル次亜塩素酸ナトリウムアルカリ溶液20
1を加えてN−クロル化した後、手抄してプレスで脱水
し、加熱乾燥して耐水紙を作成した。各パルプの強度試
験結果を第3表に示す。第3表より、乾湿引張強度、破
裂度及び耐折強度は置換度の増加とともに向上し、特に
湿潤引張強度はDS0.05を越えると未処理紙の乾燥
引張強度より強くなる。また、DS0゜008といった
極く低置換度でも乾燥裂断長が未処理紙の約1−54倍
となり湿潤裂断長が約20倍となることは注目すべきで
ある。 第3表 パルプ: LBKP  濾水度(csf) 420 m
l実施例二N−クロル化パルプ 比較例:未処理パルプ 実施例8〜10、比較例8〜10 実施例1のLBKPに替えて、LBKPの濾水度(cs
f)を2611.3911.638 sll: 叩解し
、CB化度を置換度”(DS)にして0.03にした他
は実施例1と同様にして手抄耐水紙を得た。 比較例として未処理パルプ繊維を同様に叩解し、手抄し
てプレスで脱水し、加熱乾燥してシートを作成した。 各叩解パルプの強度試験結果を第4表に示す。 第4表かられかるように、濾水度638m1のパルプは
未叩解パルプであるが、N−クロル化処理(DS0.0
3)することによって乾燥裂断長は通常の叩解シート並
みの強度となり、湿潤裂断長は2kmを越える。濾水度
(csr)の高いパルプはど乾燥強度向上率は高くなる
。これは未処理紙自体の強度が高濾木皮のものほど低い
からである。 何れの濾水度でもDS0.03のCB化度を持つパルプ
の場合は2.5〜3 km程度の乾燥裂断長の向上が得
られるものと考えられる。 第4表 実施例二N−クロル化パルプ(LBKP)比較例二未処
理パルプ 実施例11〜14、比較例11 実施例]−と同様にして、濾水度(csf) 455 
mlに叩解したLBKPのCB化度を置換度”(DS)
にして0.04になるよう調整し、該CB化パルプ繊維
をN−クロル化し、該N−クロル化パルプ繊維と量減木
皮の未処理パルプ繊維の配合比を0:1.3:1.1:
1.1:3.1:0とし、手抄してプレスで脱水し、加
熱乾燥して耐水紙を作成した。 各混合パルプの強度試験結果を第5表に示す。 第5表から分かるように、湿潤引張強度は配合により、
その割合以上の低下が見受けられるが、概ね各強度とも
配合比にほぼ見合った強度値を示している。 第5表 A:N−クロル化パルプ(LBKP  置換度”0.0
4)B:未処理パルプ レスで脱水し、加熱乾燥して耐水紙を作成した。 比較として未処理のTMPパルプを同様に手抄してシー
トを得た。 各パルプの強度試験結果を第6表に示す。 第6表から明らかなように、未晒TMPのようなリグニ
ン高含有機械パルプに対してもN−クロル化することに
より、高度な耐水性を付与できることがわかる。各強度
に於て、未処理紙の強度に対する向上率が高い(乾燥裂
断長は152%向上)のは、LBKPの未叩解パルプの
場合と同様に未処理紙自体の強度が低いためである。 実施例15、比較例12 濾水度(csf) 3791に叩解した未晒TMPを実
施例2と同様の方法にてCB基含量0.62%のCB化
TMPを調製し、さらに、次亜塩素酸ナトリウムアルカ
リ溶液によりN−クロル化TMP(置換基含量0.91
%)とした後、手抄してプ第6表 パルプ: TMP  濾水度(cs「) 379a+1
実施例16、比較例13 濾水度(csf) 430 mlに叩解したLBKP 
(絶乾換算重量48g)を、CB化度が置換度11(D
S)にして0.03になるようカルバモイルエチル化(
CB化)し、これらのCB化パルプ繊維(絶乾換算型J
i5 g)にθ、1モル次亜塩素酸ナトリウムアルカリ
溶液201を加えてN−クロル化した後、手抄してプレ
スで脱水し、105℃で10分間加熱乾燥して作製した
シートと、脱水後常温(20℃)で24時間乾燥して作
製したシートの強度比較を行った。未処理パルプを同様
の乾燥処理によりシート化した場合の強度値も合わせ示
した。結果を第7表に示す。 第7表より分かるように、N−クロル化した耐水紙を1
05℃で加熱乾燥した場合、乾燥裂断長は未処理シート
に比べて約44%向上するが、常温乾燥処理でも約39
%向上する。湿潤裂断長に於ても、常温処理紙は加熱乾
燥処理紙の9割以上を保持している。従って、N−クロ
ル化耐水紙の場合、あえて高温加熱処理をしなくても良
好な耐水性が得られることが分かる。 第8表から分かるように、LBKP、NBKPともにN
−クロル化により乾湿引張り強度は向上する。 パルプ: LBKP  濾水度(csf)430 it
実施例17〜21、比較例14〜゛15実施例1と同様
にして、濾水度(csf) 426 mlに叩解しりL
 B K P及び濾水度(csf) 455 s+lニ
叩解したNBKPのCB化度を置換度ゞ”(DS)にし
て0,05になるよう調整し、該CB化、<ルブ繊維を
N−クロル化し、得られたN−クロル化パルプ繊維と未
処理のLBKP、NBKPを第8表の配合で手、抄して
プレスで脱水し、加熱乾燥して耐水紙を作成した。各混
合パルプの強度試験結果を第8表に示す。 置換度′”+ 0. 05 (N−クロル化パルプ)
The present invention will be explained in more detail based on examples, but is not limited thereto. The strength test in the examples was measured by the following method. Dry breaking length: JIS P811B Wet breaking length: JIS P8135 (30 minute immersion) Specific rupture degree: JIS P8112 (Mullen low pressure test) Folding strength: JIS P8115 Whiteness: JIS P8123 (Hunter whiteness) Example 1, Comparative Examples 1 to 3 LBKP beaten to freeness (csf) 426 ml
(absolute dry equivalent weight 50g), sodium hydroxide 2
g1 Add 8 g of acrylonitrile and pure water to bring the total amount to 500 g.
1, treated at 50°C for 3 hours to cyanoethylate (CE), and after washing the CE pulp with water, the CE pulp was treated with 50 g of hydrogen peroxide and 2 g of sodium hydroxide.
01 aqueous solution and treated at room temperature for 50 minutes to form carbamoylethylation (CB conversion).The degree of CB conversion is the degree of substitution.
(DS) was 0.04. This CB pulp (
After N-chlorination by adding 0.1 mol sodium hypochlorite alkaline solution 201 to 5 g (absolute dry equivalent weight), the paper was hand-sheeted, dehydrated with a press, and dried by heating to produce waterproof paper. For comparison, untreated pulp, CE-modified pulp, and CB-modified pulp were hand-made in the same manner to obtain sheets. Table 1 shows the strength test results for each treated pulp. As is clear from Table 1, the waterproof paper made from N-chlorinated pulp fibers exhibits superior strength in both dry and wet tensile strength, bursting, and folding resistance compared to untreated paper, CE paper, and CB paper. I understand that. Table 1 Pulp: LBKP Freeness (csr) 426 m
Degree of substitution**, number of substituents per glucose residue in cellulose constituting pulp Example 2, Comparative Examples 4 to 6 Freeness (cs') LUKP beaten to 440 ml
(absolute dry equivalent weight 50g), sodium hydroxide 1
.. Add 5g of acrylonitrile, 7g of acrylonitrile, and pure water to bring the total amount to 4.
001 and treated at 50°C for 3 hours to undergo cyanoethylation (C
After washing the CE-modified pulp with water, the CE-modified pulp was poured into a 5001 aqueous solution containing 5 g of hydrogen peroxide, 2 g of sodium hydroxide, and a trace amount of potassium iodide,
Carbamoylethylation (CB conversion) by processing at room temperature for 50 minutes
The CB group content of 11 g'' was 1.5%. After N-chlorination by adding 0.1 mol sodium hypochlorite alkaline solution 201 to this CB-formed pulp (bone dry equivalent weight 5 g), A water-resistant paper was prepared by hand-sheeting, dehydration using a press, and heating and drying. For comparison, untreated, CE-modified and CB-modified pulps were hand-papered in the same manner to obtain sheets. CB group content: LUKP contains lignin and DS
Since it is not appropriate to express it in terms of CB group content (%). CB group content CB group content (%) - X100 CB-formed pulp absolute dry weight The strength test results of each treated pulp are shown in Table 2. Similar to bleached kraft pulp (L B K P) in Table 1,
It is shown that excellent water resistance can be obtained even with unbleached KP (Table 2). Dry tensile strength, bursting strength, and folding strength are greatly improved, and whiteness is also slightly improved. It is thought that the lignin content does not have a particularly large negative effect on the development of water resistance. Table 2 Pulp: LUKP Freeness (Cs') 440 m
Examples 3 to 7, Comparative Example 7 Freeness (csr) 420 mH: Beaten LBKP
(absolute dry equivalent weight 48 g), the degree of CB conversion is 11 (D
S) is 0.008.0.019.0.03.0.0
Carbamoylethylation (CB
) and these CB-formed pulp fibers (absolute dry equivalent weight 5g)
) with 0.1 molar sodium hypochlorite alkaline solution 20
After adding 1 to N-chloride, the paper was hand-papered, dehydrated using a press, and dried by heating to produce waterproof paper. Table 3 shows the strength test results for each pulp. Table 3 shows that the wet and dry tensile strength, bursting degree and folding strength improve as the degree of substitution increases, and in particular, the wet tensile strength becomes stronger than the dry tensile strength of untreated paper when the DS exceeds 0.05. It should also be noted that even at a very low degree of substitution such as DS0°008, the dry tear length is about 1-54 times that of untreated paper and the wet tear length is about 20 times that of untreated paper. Table 3 Pulp: LBKP Freeness (csf) 420 m
l Example 2 N-chlorinated pulp Comparative example: Untreated pulp Examples 8 to 10, Comparative Examples 8 to 10 The freeness of LBKP (cs
Handmade waterproof paper was obtained in the same manner as in Example 1, except that f) was beaten and the degree of CB substitution was changed to 0.03 (DS). As a comparative example. Untreated pulp fibers were beaten in the same way, hand-papered, dehydrated with a press, and heated to dry to create a sheet. The strength test results of each beaten pulp are shown in Table 4. As shown in Table 4. , the pulp with a freeness of 638 m1 is unbeaten pulp, but it has been treated with N-chlorination (DS0.0
3) By doing so, the dry tearing length becomes as strong as a normal beaten sheet, and the wet tearing length exceeds 2 km. Pulp with high freeness (csr) has a high dry strength improvement rate. This is because the strength of untreated paper itself is lower than that of high-filtration wood bark. In the case of pulp having a degree of CB of DS 0.03 at any freeness, it is thought that an improvement in dry tearing length of about 2.5 to 3 km can be obtained. Table 4 Example 2 N-Chlorinated Pulp (LBKP) Comparative Example 2 Untreated Pulp Examples 11 to 14, Comparative Example 11 Freeness (csf) 455
The degree of CB conversion of LBKP beaten to ml is the degree of substitution” (DS)
The CB-treated pulp fibers were N-chlorinated, and the blending ratio of the N-chlorinated pulp fibers and the reduced-volume untreated pulp fibers was 0:1.3:1. 1:
1.1:3.1:0, hand-papered, dehydrated with a press, and heated to dry to produce waterproof paper. Table 5 shows the strength test results for each mixed pulp. As can be seen from Table 5, the wet tensile strength varies depending on the formulation.
Although a decrease of more than that percentage is observed, each strength generally shows a strength value that is almost commensurate with the blending ratio. Table 5 A: N-chlorinated pulp (LBKP substitution degree "0.0"
4) B: Waterproof paper was prepared by dehydration using an untreated pulp press and drying by heating. For comparison, untreated TMP pulp was similarly hand-milled to obtain a sheet. Table 6 shows the strength test results for each pulp. As is clear from Table 6, it is possible to impart a high degree of water resistance even to lignin-rich mechanical pulp such as unbleached TMP by N-chlorinating it. The reason why the improvement rate for each strength is higher than that of untreated paper (152% increase in dry tearing length) is because the strength of untreated paper itself is low, similar to the case of LBKP's unbeaten pulp. . Example 15, Comparative Example 12 CB-modified TMP with a CB group content of 0.62% was prepared from unbleached TMP beaten to a freeness (csf) of 3791 in the same manner as in Example 2, and further treated with hypochlorite. N-chlorinated TMP (substituent content 0.91
%), then hand-papered and pulped Table 6 Pulp: TMP Freeness (cs') 379a+1
Example 16, Comparative Example 13 Freeness (csf) LBKP beaten to 430 ml
(absolute dry equivalent weight 48 g), the degree of CB conversion is 11 (D
Carbamoylethylation (
CB) and these CB-converted pulp fibers (absolute dry equivalent type J
i5 g) was N-chlorinated by adding θ, 1 mol sodium hypochlorite alkaline solution 201, hand-sheeted, dehydrated with a press, and dried by heating at 105°C for 10 minutes. After that, the sheets were dried at room temperature (20° C.) for 24 hours and the strengths of the prepared sheets were compared. The strength values when the untreated pulp was made into a sheet by the same drying process are also shown. The results are shown in Table 7. As can be seen from Table 7, 1
When heated and dried at 05°C, the dry tearing length is improved by about 44% compared to the untreated sheet, but even when dried at room temperature, the dry tear length is about 39% higher than that of the untreated sheet.
%improves. Even in wet tearing length, paper treated at room temperature retains more than 90% of that of paper treated with heat and drying. Therefore, it can be seen that in the case of N-chlorinated waterproof paper, good water resistance can be obtained even without high-temperature heat treatment. As can be seen from Table 8, both LBKP and NBKP are N.
-Dry and wet tensile strength is improved by chlorination. Pulp: LBKP freeness (csf) 430 it
Examples 17-21, Comparative Examples 14-15 In the same manner as in Example 1, the samples were beaten to a freeness (csf) of 426 ml.
B K P and freeness (csf) 455 s+l The degree of CB conversion of the beaten NBKP was adjusted to the degree of substitution ゚'' (DS) to be 0.05. The resulting N-chlorinated pulp fibers, untreated LBKP, and NBKP were hand-milled, dehydrated using a press, and heated to dry using the formulations shown in Table 8 to produce waterproof paper.Strength of each mixed pulp The test results are shown in Table 8. Degree of substitution'''+0. 05 (N-chlorinated pulp)

【発明の効果】【Effect of the invention】

本発明の耐水紙の特徴は薬品添加による耐水化と異なり
、添加による紙地台を損なう恐れはなく、当然のことな
がら歩留まりを考慮する必要もない、また、抄紙後の乾
燥に高温処理を必要としない。 出来あがった耐水紙は地合も良く、感触や表面性状は従
来の一般紙と殆ど変わらない。CB化時に過酸化水素を
使用するため、白色度は未処理紙よりやや向上する。乾
湿繰り返しにも耐えられる。 また、回収時はNaCl0処理により湿潤強度を低下せ
しめ再利用が可能である。
The characteristics of the waterproof paper of the present invention are that, unlike water resistance made by adding chemicals, there is no risk of damaging the paper base by adding chemicals, and of course there is no need to consider yield, and high temperature treatment is required for drying after paper making. I don't. The resulting waterproof paper has good texture, and its feel and surface properties are almost the same as conventional paper. Since hydrogen peroxide is used during CB conversion, the whiteness is slightly improved compared to untreated paper. Can withstand repeated wet and dry conditions. In addition, upon recovery, the wet strength is reduced by NaCl0 treatment and reuse is possible.

Claims (1)

【特許請求の範囲】[Claims] (1)、N−ハロゲン化パルプ繊維を用いたことを特徴
とする化学改質による耐水紙。
(1) A chemically modified waterproof paper characterized by using N-halogenated pulp fibers.
JP5800690A 1990-03-12 1990-03-12 Waterproof paper by chemical modification Expired - Lifetime JP2766541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5800690A JP2766541B2 (en) 1990-03-12 1990-03-12 Waterproof paper by chemical modification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5800690A JP2766541B2 (en) 1990-03-12 1990-03-12 Waterproof paper by chemical modification

Publications (2)

Publication Number Publication Date
JPH03260193A true JPH03260193A (en) 1991-11-20
JP2766541B2 JP2766541B2 (en) 1998-06-18

Family

ID=13071889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5800690A Expired - Lifetime JP2766541B2 (en) 1990-03-12 1990-03-12 Waterproof paper by chemical modification

Country Status (1)

Country Link
JP (1) JP2766541B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001271291A (en) * 2000-01-20 2001-10-02 Toppan Printing Co Ltd Impregnated fiber structure and formed product body thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001271291A (en) * 2000-01-20 2001-10-02 Toppan Printing Co Ltd Impregnated fiber structure and formed product body thereof

Also Published As

Publication number Publication date
JP2766541B2 (en) 1998-06-18

Similar Documents

Publication Publication Date Title
US4066495A (en) Method of making paper containing cationic starch and an anionic retention aid
JP2987642B2 (en) Paper and paper manufacturing method
US5502091A (en) Enhancement of paper dry strength by anionic and cationic guar combination
US4146515A (en) Making a lightly oxidized starch additive by adding a cationic polymer to starch slurry prior to heating the slurry
US6843888B2 (en) Starches for use in papermaking
US2583548A (en) Production of pigmented cellulosic pulp
US2729560A (en) Wet strength paper containing aminoaliphatic chain polymer resins
US2872313A (en) Pulping of paper broke containing wet-strength resins
AU5345700A (en) Preparation of aldehyde modified cellulose pulp for use in paper products
CN1898439B (en) Filler for papermaking process
US2935436A (en) Method of making paper containing a starch ether and product produced thereby
NZ506387A (en) paper comprising an aldehyde modified cellulose pulp having 1-20 mmoles of aldehyde per 100g of cellulose
JP2841328B2 (en) Paper manufacturing method
SE540103C2 (en) Method of manufacturing intermediate product for conversioninto microfibrillated cellulose
EP1540081B1 (en) Papers comprising a boron-containing compound and a method of making same
JPS629121B2 (en)
US2890978A (en) Paper of high dry strength and low wet strength
JP2540164B2 (en) Amino-aldehyde resin-containing composition and method for producing the same
NO152606B (en) ANALOGUE PROCEDURE FOR THE PREPARATION OF NEW PHARMACEUTICAL USE 2-IMIDAZOLIN-1-YL URINE AND AMIDO COMPOUNDS
JP5601630B2 (en) Paper filler dispersion and filler-containing paper
JP7077111B2 (en) Pulp mold
JPH03260193A (en) Water-resistant paper by chemical modification
US3236721A (en) Reaction product of a dialdehyde polysaccharide with a metal salt and preparing paper containing same
US3709780A (en) Process and product for making paper products of improved dry strength
JP6711432B2 (en) Cellulose sheet

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080403

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090403

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090403

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100403

Year of fee payment: 12

EXPY Cancellation because of completion of term