JPH03260083A - Production of high purity copper - Google Patents

Production of high purity copper

Info

Publication number
JPH03260083A
JPH03260083A JP2060477A JP6047790A JPH03260083A JP H03260083 A JPH03260083 A JP H03260083A JP 2060477 A JP2060477 A JP 2060477A JP 6047790 A JP6047790 A JP 6047790A JP H03260083 A JPH03260083 A JP H03260083A
Authority
JP
Japan
Prior art keywords
copper
purity
purity copper
electrolytic
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2060477A
Other languages
Japanese (ja)
Inventor
Akiyoshi Nakatsu
中津 朗善
Yoshinobu Umemiya
梅宮 義信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2060477A priority Critical patent/JPH03260083A/en
Publication of JPH03260083A publication Critical patent/JPH03260083A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To efficiently obtain high purity copper having high surface smoothness by specifying duty cycle, energizing time and average current density when an electrolytic soln. not contg. additives is electrolyzed with pulsating current. CONSTITUTION:Electrolytic copper as the anode and a Ti plate as the cathode are set in an electrolytic soln. contg. copper and free sulfuric acid but not contg. additives and the electrolytic soln. is electrolyzed with pulsating current under the conditions of 0.01-0.5 duty cycle represented by formula I, 10musec-1sec energizing time per one cycle and 0.5-5.0A/dm<2> average current density represented by formula II to obtain high-purity copper having >=99.999% purity and a smooth surface. When this high purity copper is dry-refined, higher purity copper can be produced. In the formulas I and II, I1 is supplied current, T1 is energizing time and T2 is non-energizing time.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、パルス電流電解による純度 99.999ないし99.999996程度の高純度銅
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing high purity copper with a purity of about 99.999 to 99.999996 by pulsed current electrolysis.

[従来の技術] 一般に、銅はその加工性の良さ、導電性の良さのために
電子材料として広く使用されている。山でも表面実装技
術におけるボンディングワイヤや薄膜形成技術における
スパッタリングターゲットへの使用か注目されている。
[Prior Art] Generally, copper is widely used as an electronic material due to its good workability and good conductivity. Attention is also being paid to its use in bonding wires in surface mount technology and sputtering targets in thin film formation technology.

通常、電気分解で得られた銅、すなわち電気銅は、不純
物元素としてPbSSn、Ag5Fe。
Usually, copper obtained by electrolysis, that is, electrolytic copper, contains PbSSn and Ag5Fe as impurity elements.

N1等の重金属元素、およびS、C,O等の元素を1な
いし20 ppmの範囲で含有しており、その純度は9
9.9%程度である。このような電気銅を用いて作製さ
れたボンディングワイヤヤスバッタリングターゲットは
、その中に含有する不純物元素がそれぞれ表面実装工程
、薄膜形成工程において悪影響を及ぼす。このため、ボ
ンディングヮイヤやスパッタリングターゲット等に用い
られる銅は、不純物元素濃度をできるたけ低くすること
か望ましい。したかって、電気銅を99.99900以
上の純度を(−j゛するものに精錬する必要かある。
Contains heavy metal elements such as N1 and elements such as S, C, and O in the range of 1 to 20 ppm, and its purity is 9.
It is about 9.9%. The impurity elements contained in the bonding wire sheath battering target produced using such electrolytic copper have an adverse effect on the surface mounting process and the thin film forming process, respectively. For this reason, it is desirable that the concentration of impurity elements in copper used for bonding wires, sputtering targets, etc. be as low as possible. Therefore, is it necessary to refine electrolytic copper to a purity of 99.99900 or higher (-j゛)?

従来の高純度銅の製造h′法は、次のようにして行う。The conventional method h' for producing high-purity copper is carried out as follows.

まず、一般にT業的に製造された電気銅(純度99.9
?o)を陽極とし、純銅、チタンまたはステンレスのい
ずれかを陰極として電解液中に浸漬させる。電解液には
、銅分40ないし55g/、11゜遊離硫酸100ない
し22 Q g / 11を含有する酸性硫酸銅溶液を
用いる。次に、電解液温度40ないし70 ℃、電流密
度1ないし5 A / d m 2の条件下で電解液を
直流電流による電解精錬(以下、直流電解精錬と呼ぶ)
を行い、陰極に銅を析出させる。その後、析出した銅に
ゾーンメルティング法、フローティングメルティング法
等の乾式精製を施して高純度銅を得る。
First, electrolytic copper (purity 99.9
? o) is used as an anode, and pure copper, titanium, or stainless steel is used as a cathode and immersed in an electrolytic solution. As the electrolytic solution, an acidic copper sulfate solution containing 40 to 55 g/11 of copper and 100 to 22 Q g/11 of free sulfuric acid is used. Next, the electrolyte is electrolytically refined using a direct current (hereinafter referred to as DC electrolytic refining) under the conditions of an electrolyte temperature of 40 to 70°C and a current density of 1 to 5 A/dm2.
to deposit copper on the cathode. Thereafter, the precipitated copper is subjected to dry refining such as a zone melting method or a floating melting method to obtain high purity copper.

[発明か解決しようとする課題] しかしなから、上記の直流電解精錬により得られた銅は
、?j&視的に見て表面か粗い。このため、残Hする不
純物元素か銅表面の四部に入り込み純度を低下させる。
[Problem to be solved by the invention] However, what about the copper obtained by the above-mentioned DC electrolytic refining? j& Visually, the surface is rough. Therefore, the remaining H impurity elements enter the four parts of the copper surface and reduce the purity.

このように凹部に入り込んだ不純物は、1回の乾式精製
では除去できないので、多数回の乾式精製で除去しなく
てはならない。その結果、製造コストが非常に高くなる
The impurities that have entered the recesses cannot be removed by one dry refining process, so they must be removed by multiple dry refining processes. As a result, manufacturing costs become very high.

この問題を解決するために、あらかしめニカワ、カゼイ
ン、ゼラチン、千オ尿素、ポリビニルアルコール、およ
び脂肪族スルホン化物の1種またはそれ以上を添加した
電解液を直流電解精錬して下漬な表面を持つ銅を得る方
法が行われている。しかし、この方法は、添加した有機
物質に含有されている硫黄元素が直流電解精錬中に銅に
析出して、得られる銅の純度を低下させる。このため、
この方法では99.999%以上の純度の銅を得ること
ができない。
In order to solve this problem, an electrolytic solution containing one or more of rough glue, casein, gelatin, 1,000 urea, polyvinyl alcohol, and aliphatic sulfonated substances was subjected to direct current electrolytic refining to obtain a rough surface. There are ways to get copper with. However, in this method, the sulfur element contained in the added organic substance is deposited on the copper during DC electrolytic refining, reducing the purity of the obtained copper. For this reason,
Copper with a purity of 99.999% or higher cannot be obtained by this method.

本発明はかかる点に鑑みてなされたものであり、99.
999%以上の純度を有し、しかも表面の平滑度が高い
高純度銅を効率よく製造することができる高純度銅の製
造方法を提供することを目的とする。
The present invention has been made in view of this point, and is based on 99.
It is an object of the present invention to provide a method for producing high-purity copper that can efficiently produce high-purity copper having a purity of 999% or more and a high surface smoothness.

[課題を解決するための手段] 本発明は、下記式Iて示されるデユーティ−サイクルが
0.01ないし1〕、5、通電時間が1サイクル当たり
10μsecないし1secs下記式IIで示される平
均電流密度がし)、5〜5.0A/dm2である条件下
で無添加物電解液をパルス電流電解することを特徴とす
る高純度銅の製造方法である。
[Means for Solving the Problems] The present invention provides a duty cycle represented by the following formula I of 0.01 to 1]; This method of producing high-purity copper is characterized by subjecting an additive-free electrolyte to pulse current electrolysis under conditions of 5 to 5.0 A/dm2.

デユーティ−サイクル−T(/ (T+ +T> )・
・・ (1) 平均電流密度−1,・71 / (T I + T 2
 )(II) (式1.U中、111.を通電電流、T r ハA ’
4 ”i &”)、T2は非通電時間である) ここで、パルス電流電解後に得られた電解銅の乾式精製
を行うことが好ましい。なお、乾式精製には、ゾーンメ
ルティング法、フローティングメルティング法等が用い
られる。
Duty cycle-T(/(T+ +T>)・
... (1) Average current density -1, 71 / (T I + T 2
)(II) (In formula 1.U, 111. energizing current, T r A'
4 "i &"), T2 is the non-current application time) Here, it is preferable to carry out dry refining of the electrolytic copper obtained after pulsed current electrolysis. In addition, a zone melting method, a floating melting method, etc. are used for dry refining.

デユーティ−サイクルは、0.01ないしr〕、5に設
定する。これは、デユーティ−サイクルか0.01未満
であると電流効率か低すぎて生産性か悪<、デユーティ
−サイクルか0.5を超えると得られる銅の表面か粗く
なるからである。
The duty cycle is set to 0.01 to 5. This is because when the duty cycle is less than 0.01, the current efficiency is too low and productivity is poor, and when the duty cycle is more than 0.5, the surface of the resulting copper becomes rough.

通電時間は、]サイクル当たり10μsecないし1 
secに設定する。これは、通電時間か1サイクル当た
り10μsec未満であると電流効率が低すぎて生産性
か悪く、通電時間が1サイクル当たり1 secを超え
ると得られる銅の表面が粗くなるからである。なお、1
サイクルは、1回の通電状態と1回の非通電状態で構成
される。
The energization time is 10 μsec to 1 per cycle.
Set to sec. This is because if the energization time is less than 10 μsec per cycle, the current efficiency will be too low and productivity will be poor, and if the energization time exceeds 1 sec per cycle, the surface of the resulting copper will become rough. In addition, 1
A cycle consists of one energized state and one non-energized state.

平均電流密度は、0.5〜5.0A/dm2に設定する
。これは、平均電流密度か0.5A/dm2未満である
と銅が析出せず、平均電流密度か5.0A/dm2を超
えると得られる銅の表面が粗くなるからである。
The average current density is set to 0.5 to 5.0 A/dm2. This is because copper does not precipitate when the average current density is less than 0.5 A/dm2, and when the average current density exceeds 5.0 A/dm2, the surface of the resulting copper becomes rough.

また、電解液の温度は特に定めないが、35ないし65
℃が好ましい。
In addition, the temperature of the electrolyte is not particularly determined, but is between 35 and 65
°C is preferred.

[作用] 本発明の高純度銅の製造方法は、デューティーサイクル
か0.01ないし0.5、通電■、1間か1サイクル当
たり10μSeeないし1 sec 、平均電流密度が
0.5〜5.0A/dm’である条件下におけるパルス
電流電解法を用いる。パルス電流電解法は、第1図に示
すような波形1のパルスで電流を通電して電解を行うも
のである。すなわち、第1図においで、電流量■1を時
間Tまたけ通電する状態と、時間T2だけ通電しない状
態を繰り返して行うものである。
[Function] The method for producing high-purity copper of the present invention has a duty cycle of 0.01 to 0.5, electrification (1), 10 μSee to 1 sec per cycle, and an average current density of 0.5 to 5.0 A. A pulsed current electrolysis method under the condition of /dm' is used. In the pulsed current electrolysis method, electrolysis is performed by applying a current with pulses having a waveform 1 as shown in FIG. That is, in FIG. 1, a state in which the current amount 1 is applied for a time T and a state in which the current is not applied for a time T2 are repeated.

この方法において、非通電時間T2内に、陰極表面濃度
の低下、すなわち濃度分極が減少される。
In this method, the cathode surface concentration decreases, that is, the concentration polarization is reduced during the non-current application time T2.

このため、陰極の濃度分極による高純度銅表面の粗面化
を防止し、針状晶や樹枝状結晶(デンドライト)の発生
を抑制する。
Therefore, roughening of the high-purity copper surface due to concentration polarization of the cathode is prevented, and generation of needle crystals and dendrites is suppressed.

また、上記のような条件設定を行うことにより、99.
999%以上の高純度であり、しかも表面が平滑である
高純度銅を得ることができる。
Also, by setting the conditions as described above, 99.
High purity copper with a purity of 999% or more and a smooth surface can be obtained.

さらに、得られた高純度銅を乾式精製することにより、
より高純度の銅を製造することができる。
Furthermore, by dry refining the obtained high purity copper,
Higher purity copper can be produced.

[実施例] 以下、本発明の高純度銅の製造方法を具体的に説明する
[Example] Hereinafter, the method for producing high-purity copper of the present invention will be specifically described.

実施例1 電気銅を陽極とし、チタン板を陰極として、50 g 
/ Iの銅分および150g/gの遊離硫酸を金白゛す
る電解液中に浸漬して、パルス電流電解を総通電時間、
20時間で行った。ここで、電気銅は、工業的に製造さ
れたもので純度が99.9%であり、Agを16ppm
SSを8ppIISFeを4 pp+a含有するもので
ある。また、電解液には表面平滑剤等の添加物を加えな
かった。なお、パルス電流電解は、デユーティ−サイク
ルがQ、2、通電時間が1サイクル当たり111see
、平均電流密度が2A/dm”、電解液温度が55℃の
条件下で行った。なお、パルス電流電解の条件はド記第
1表に示す。このようにして、高純度銅を製造した。
Example 1 Electrolytic copper as an anode and a titanium plate as a cathode, 50 g
/ I copper content and 150 g/g free sulfuric acid were immersed in a gold-plated electrolyte, and pulsed current electrolysis was carried out for a total energizing time,
I did it in 20 hours. Here, electrolytic copper is industrially produced and has a purity of 99.9%, and contains 16 ppm of Ag.
It contains 8 pp of SS and 4 pp+a of IISFe. Furthermore, no additives such as surface smoothing agents were added to the electrolyte. In addition, in pulse current electrolysis, the duty cycle is Q, 2, and the current application time is 111sees per cycle.
The electrolysis was carried out under the conditions of an average current density of 2 A/dm'' and an electrolyte temperature of 55°C.The conditions for pulsed current electrolysis are shown in Table 1.In this way, high purity copper was produced. .

得られた高純度銅の表面の平滑性、不純物元素濃度、電
流効率を調べた。その結果を下記第1表に併記する。な
お、表面の平滑度は、ルーペを用いて10倍に拡大して
目蜆により観察し、・lソ滑な結晶の場合を良、樹脂状
もしくは粉状結晶の場合を不良とした。また、不純物元
素濃度は、高周波誘導結合プラズマ(ICP)発光分光
分析により測定した。電流効率は、通電した総電流員に
対する実際に銅の析出に寄与した電流の割合を算出した
値を示した。
The surface smoothness, impurity element concentration, and current efficiency of the obtained high-purity copper were investigated. The results are also listed in Table 1 below. The smoothness of the surface was observed using a magnifying glass at 10 times magnification, and was evaluated as good in the case of smooth crystals and poor in the case of resin-like or powdery crystals. Further, the impurity element concentration was measured by high frequency inductively coupled plasma (ICP) emission spectrometry. The current efficiency was a calculated value of the ratio of the current that actually contributed to the deposition of copper to the total current that was applied.

実施例2〜5.比較例1〜6 下記第1表に示す条件でパルス電流電解を行うことを除
いて、実施例1と同様にして高純度銅を製造した。
Examples 2-5. Comparative Examples 1 to 6 High purity copper was produced in the same manner as in Example 1, except that pulse current electrolysis was performed under the conditions shown in Table 1 below.

得られた高純度銅の表面の平滑性、不純物元素濃度、電
流効率を実施例1と同様にして調べた。
The surface smoothness, impurity element concentration, and current efficiency of the obtained high-purity copper were examined in the same manner as in Example 1.

その結果を下記第1表に併記する。The results are also listed in Table 1 below.

実施例6 実施例1と同様にして高純度銅を製造した。次に、得ら
れた高純度銅にゾーンメルティング法により乾式精製を
1回行った。
Example 6 High purity copper was produced in the same manner as in Example 1. Next, the obtained high-purity copper was subjected to one dry refining process using a zone melting method.

精製後の高純度銅の不純物元素濃度を実施例1と同様に
して調べた。その結果を下記第1表に併記する。
The concentration of impurity elements in the purified high-purity copper was investigated in the same manner as in Example 1. The results are also listed in Table 1 below.

従来例1 電気銅を陽極とし、チタン板を陰極として、50g/l
)の銅分および1’50g/Dの遊離硫酸を含有する電
解液中に浸漬して、電流密度が2A/dm2、電解液温
度が55℃の条件下で直流電解を20時間行った。ここ
で、電気銅は、工業的に製造されたもので純度が99.
9%であり、Agを16ppm、SをgppH,Feを
4 ppn+含有するものである。このようにして、電
解銅を製造した。
Conventional example 1 Electrolytic copper is used as an anode, titanium plate is used as a cathode, 50 g/l
) and 1'50 g/D of free sulfuric acid, and DC electrolysis was performed for 20 hours at a current density of 2 A/dm2 and an electrolyte temperature of 55°C. Here, electrolytic copper is industrially produced and has a purity of 99.
It contains 16 ppm of Ag, gppH of S, and 4 ppn+ of Fe. In this way, electrolytic copper was produced.

得られた電解銅の表面の平滑性、不純物元素濃度、電流
効率を実施例1と161様にして調べた。その結果を下
記第1表に併記する。
The surface smoothness, impurity element concentration, and current efficiency of the obtained electrolytic copper were examined in the same manner as in Examples 1 and 161. The results are also listed in Table 1 below.

従来例2 従来例1と同様にして電解銅を製造した。次に、得られ
た電解銅にゾーンメルティング法により乾式精製を1回
行った。
Conventional Example 2 Electrolytic copper was produced in the same manner as in Conventional Example 1. Next, the obtained electrolytic copper was subjected to one dry refining process using a zone melting method.

精製後の電解銅の不純物元素濃度を実施例1と同様にし
て調べた。その結果を下記第1表に併記する。
The concentration of impurity elements in the purified electrolytic copper was investigated in the same manner as in Example 1. The results are also listed in Table 1 below.

第1表から明らかなように、本発明の方法により製造さ
れた高純度銅(実施例1〜6)は、パルス電流電解を行
ったにもかかわらず70%以上の電流効率であり、不純
物量が少なく高純度(99゜999%以上)のものであ
り、表面の平滑性も良好であった。特に乾式精製を行っ
た高純度銅(実施例6)は、かなりの高純度のものであ
った。また、本発明にかかる方法により製造された高純
度銅(実施例1〜6)は導電性および低温軟化特性に優
れ、比較的軟質のものであった。
As is clear from Table 1, the high-purity copper produced by the method of the present invention (Examples 1 to 6) had a current efficiency of 70% or more even though pulsed current electrolysis was performed, and the amount of impurities was It was of high purity (99°999% or more) with little oxidation and had good surface smoothness. In particular, the high purity copper that was dry refined (Example 6) was of considerably high purity. Moreover, the high-purity copper produced by the method according to the present invention (Examples 1 to 6) had excellent conductivity and low-temperature softening properties, and was relatively soft.

これに対して、従来の方法により製造された電解銅(従
来例1)は、不純物量か多く、しかも表面の平滑性も悪
いものであった。また、得られた電解銅に乾式精製を行
ったもの(従来例2)も、不純物量が多かった。
On the other hand, electrolytic copper produced by the conventional method (Conventional Example 1) contained a large amount of impurities and had poor surface smoothness. Furthermore, the obtained electrolytic copper that was subjected to dry refining (Conventional Example 2) also had a large amount of impurities.

また、本発明の範囲外のデユーティ−サイクル、通電時
間、平均電流密度等のパルス電流電界条件で製造された
電解銅(比較例1〜6)は、不純物量、表面平滑性、電
流効率等が劣るものであった。
In addition, electrolytic copper (Comparative Examples 1 to 6) manufactured under pulsed current electric field conditions such as duty cycle, energization time, and average current density that are outside the range of the present invention has poor impurity content, surface smoothness, current efficiency, etc. It was inferior.

[発明の効果] 以上説明した如く、本発明の高純度銅の製造方法は、9
9.999%ないし99.9999%の純度を有し、し
かも表面の平滑度が高い高純度銅を効率よく製造するこ
とができるものである。
[Effect of the invention] As explained above, the method for producing high-purity copper of the present invention has 9
High purity copper having a purity of 9.999% to 99.9999% and a highly smooth surface can be efficiently produced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に使用されるパルス電流電解におけるパ
ルス波形を示す特性図である。 1・・・パルス波形。
FIG. 1 is a characteristic diagram showing a pulse waveform in pulsed current electrolysis used in the present invention. 1...Pulse waveform.

Claims (2)

【特許請求の範囲】[Claims] (1)下記式 I で示されるデューティーサイクルが0
.01ないし0.5、通電時間が1サイクル当たり10
μsccないし1scc、下記式IIで示される平均電流
密度が0.5〜5.0A/dm^2である条件下で無添
加物電解液をパルス電流電解することを特徴とする高純
度銅の製造方法。 デューティーサイクル=T_1/(T_1+T2)・・
・( I ) 平均電流密度=I_1・T_1/(T_1+T_2)・
・・(II) (式 I 、II中、I_1は通電電流、T_1は通電時間
、T_2は非通電時間である)
(1) The duty cycle shown by the formula I below is 0.
.. 01 to 0.5, energizing time is 10 per cycle
Production of high-purity copper characterized by pulse current electrolysis of an additive-free electrolyte under conditions of μscc to 1scc and an average current density of 0.5 to 5.0 A/dm^2 represented by the following formula II. Method. Duty cycle = T_1/(T_1+T2)...
・(I) Average current density=I_1・T_1/(T_1+T_2)・
...(II) (In formulas I and II, I_1 is the energizing current, T_1 is the energizing time, and T_2 is the non-energizing time)
(2)パルス電流電解後に得られた電解銅の乾式精製を
行うものである請求項1記載の高純度銅の製造方法。
(2) The method for producing high-purity copper according to claim 1, wherein the electrolytic copper obtained after pulsed current electrolysis is dry-refined.
JP2060477A 1990-03-12 1990-03-12 Production of high purity copper Pending JPH03260083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2060477A JPH03260083A (en) 1990-03-12 1990-03-12 Production of high purity copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2060477A JPH03260083A (en) 1990-03-12 1990-03-12 Production of high purity copper

Publications (1)

Publication Number Publication Date
JPH03260083A true JPH03260083A (en) 1991-11-20

Family

ID=13143395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2060477A Pending JPH03260083A (en) 1990-03-12 1990-03-12 Production of high purity copper

Country Status (1)

Country Link
JP (1) JPH03260083A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014533778A (en) * 2011-11-22 2014-12-15 ナノメタルルギ スプウカ アクツィーナ Process for industrial copper electrorefining
CN104694978A (en) * 2013-12-05 2015-06-10 阳谷祥光铜业有限公司 Waste electrolyte treatment method and device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014533778A (en) * 2011-11-22 2014-12-15 ナノメタルルギ スプウカ アクツィーナ Process for industrial copper electrorefining
CN104694978A (en) * 2013-12-05 2015-06-10 阳谷祥光铜业有限公司 Waste electrolyte treatment method and device
CN104694978B (en) * 2013-12-05 2018-03-23 阳谷祥光铜业有限公司 The processing method and processing unit of a kind of waste electrolyte

Similar Documents

Publication Publication Date Title
EP0267972A1 (en) A method for the electrodeposition of an ordered alloy
US4159231A (en) Method of producing a lead dioxide coated cathode
US4419192A (en) Method for galvanic deposition of copper
US2541721A (en) Process for replenishing nickel plating electrolyte
US3576724A (en) Electrodeposition of rutenium
US3864227A (en) Method for the electrolytic refining of copper
US2457059A (en) Method for bonding a nickel electrodeposit to a nickel surface
JPS58177494A (en) Anodically oxidizing bath for aluminum-clad part and anodic oxidation
JPH03260083A (en) Production of high purity copper
US4159926A (en) Nickel plating
US4082622A (en) Electrodeposition of ruthenium
EP0018165A1 (en) A bath and a process for electrodepositing ruthenium, a concentrated solution for use in forming the bath and an object having a ruthenium coating
JP3171646B2 (en) Platinum alloy plating bath and method for producing platinum alloy plating product using the same
US4297179A (en) Palladium electroplating bath and process
US2489523A (en) Electrodeposition of tin or lead-tin alloys
Fischer et al. Morphology of the growth of isolated crystals in cathodic metal deposits
US2335821A (en) Palladium plating bath
US2457021A (en) Palladium plating
EP0058506B1 (en) Bipolar refining of lead
US4428804A (en) High speed bright silver electroplating bath and process
JPS5811000B2 (en) Manufacturing method of insoluble anode used for electrolysis of aqueous solution
US6103088A (en) Process for preparing bismuth compounds
JPH05345997A (en) Production of gold plated articles
JPH0297700A (en) Surface treatment of aluminum or aluminum alloy
Bushrod et al. Stress in anodically formed lead dioxide