JPH03259782A - Surveying method for underground buried body - Google Patents

Surveying method for underground buried body

Info

Publication number
JPH03259782A
JPH03259782A JP2058381A JP5838190A JPH03259782A JP H03259782 A JPH03259782 A JP H03259782A JP 2058381 A JP2058381 A JP 2058381A JP 5838190 A JP5838190 A JP 5838190A JP H03259782 A JPH03259782 A JP H03259782A
Authority
JP
Japan
Prior art keywords
electrodes
current
underground
electrode
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2058381A
Other languages
Japanese (ja)
Inventor
Masahiko Yamamoto
正彦 山本
Kanji Shibatani
柴谷 寛治
Tomoyuki Abe
阿部 友行
Yasuhiko Ichimura
市村 泰彦
Shoichi Sakanishi
坂西 昇一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2058381A priority Critical patent/JPH03259782A/en
Publication of JPH03259782A publication Critical patent/JPH03259782A/en
Pending legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To make an excellent survey with high voltage detection sensitivity and a deep-layer survey with a widened electrode interval by specifying the frequency of a sent current which is supplied from a constant current source. CONSTITUTION:An electrode array 14 for resistivity measurement which consists of plural electrodes 12 is fitted on the surface of a sensor main body so that the electrodes 12 are exposed. When one specific adjacent couple of electrodes are used as current transmitting electrodes 12A, an AC power source 18 which supplies the constant sent current of 240 - 1200 Hz in transmission frequency is connected to the electrodes and the current is sent into the ground. When another couple of electrodes whose combination can be changed by a relay box are used as voltage detection electrodes 12B, a signal processor 24 which inputs detection data is connected to them. Then the specific resistivity of the buried body and in its peripheral ground is measured by the electrodes 12B to measure a deep layer part while the reception sensitivity is improved and the supply current value is made large.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は地中埋設導体の探査方法に係り、特に金属など
の探鉱に利用するのに好適な地中埋設導体の探査方法に
関する。
The present invention relates to an underground conductor exploration method, and more particularly to an underground conductor exploration method suitable for use in metal exploration.

【従来の技術】[Conventional technology]

従来から物理的探鉱法として比抵抗法が知られており、
例えばウェンナー電極列を用いて、電気導体の金属鉱床
や埋設金属等を探査することが行なわれている。これは
複数の電極の一対を送信電極として定電流を地中に送信
し、他の一対の電極を検出電極として地中電圧を測定す
ることによって比抵抗を求めるものである。 ところで、従来の比抵抗法による物理探査に用いられる
送信電流の周波数は、直流の数十Hzとされていた。低
い周波数では分極現象を伴い、また、観測対象が深部に
存在する場合には表皮効果が現れるので、通常、10数
Hzの送信電流が用いられていたのである。更に、深部
探査を行なう場合には直流が用いられていた。
The resistivity method has traditionally been known as a physical exploration method.
For example, a Wenner electrode array is used to search for metal deposits, buried metals, etc. of electrical conductors. This method uses one pair of multiple electrodes as transmitting electrodes to transmit a constant current into the ground, and uses the other pair of electrodes as detection electrodes to measure the underground voltage to determine specific resistance. By the way, the frequency of the transmission current used in conventional physical exploration using the resistivity method was several tens of Hz of direct current. Low frequencies involve polarization phenomena, and skin effects appear when the object to be observed is deep, so a transmission current of 10-odd Hz was normally used. Furthermore, direct current was used for deep exploration.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、上記従来の探査方法によれば、観測対象
が抵抗率の低い導体に近いものである場合には、電気伝
導度が大きいため、比抵抗が小さくなり、電圧検出電極
による感度が低くなって検出が極めて困難となる問題が
あった。 本発明は、上記従来の問題点に着目し、地中に埋設され
ている金属などの導体を感度よく検出することができる
ようにした地中埋設導体の探査方法を提供することを目
的とする。
However, according to the conventional exploration method described above, if the observation target is close to a conductor with low resistivity, the electric conductivity is high, so the specific resistance becomes small and the sensitivity of the voltage detection electrode becomes low. There was a problem that made detection extremely difficult. The present invention focuses on the above-mentioned conventional problems, and aims to provide an underground conductor exploration method that can detect conductors such as metal buried underground with high sensitivity. .

【課題を解決するための手段および作用】本発明者は従
来電流送信電極から送信している電流の発振周波数に着
目し、その周波数が250〜1200Hzの範囲、特に
II(Hz前後の交流電流を送信電流として用いること
により、受信感度を向上でき、かつ供給電流値を大きく
して深層部の計測が可能であるという知見を得たもので
ある。 すなわち、本発明に係る地中埋設導体の探査方法は、複
数の電極からなる比抵抗測定用電極列における一対の電
極を定電流源に接続して地中に送信するとともに、他の
対の電極に電圧測定器を接続して前記送信電流に基づく
地中の比抵抗を測定することにより地中に埋設した金属
導体を探査する方法において、前記定電流源から供給さ
れる送信電流を交流発振器により250〜1200Hz
の周波数で送信し、埋設導体と周辺地中の比抵抗を電圧
検出電極により計測して判別検知して探査するように構
成することによって、上記目的を達成するようにしたも
のである。 斯かる構成によって、地中に埋設されている金属導体に
対して、その電気伝導度が大きいことによって受信感度
が低下することによる計測の困難性を改善することがで
きた。しかも、計測感度の向上により、電極間隔を大き
くして深層部の測定も可能になるのである。
[Means and Effects for Solving the Problems] The present inventor focused on the oscillation frequency of the current transmitted from the conventional current transmitting electrode, and determined that the frequency is in the range of 250 to 1200 Hz, especially the alternating current around II (Hz). It has been found that by using it as a transmitting current, it is possible to improve the receiving sensitivity and to increase the supply current value to enable measurement in deep layers.In other words, the exploration of underground conductors according to the present invention The method involves connecting one pair of electrodes in a resistivity measuring electrode array consisting of a plurality of electrodes to a constant current source and transmitting it underground, and connecting a voltage measuring device to the other pair of electrodes to transmit the transmitted current. In the method of exploring a metal conductor buried underground by measuring the underground specific resistance based on
The above object is achieved by transmitting data at a frequency of 1, and measuring the resistivity of the buried conductor and the surrounding underground using voltage detection electrodes to perform discrimination and detection. With this configuration, it has been possible to improve the difficulty in measurement due to a decrease in reception sensitivity due to the high electrical conductivity of metal conductors buried underground. Moreover, the improvement in measurement sensitivity makes it possible to measure deep layers by increasing the electrode spacing.

【実施例] 以下に本発明に係る地中埋設導体の探査方法の具体的実
施例を図面を参照して詳細に説明する。 第1図は実施例に係る探査を実施するための装置構成ブ
ロック図である。図示のように、この装置は地中に向け
て配置されるセンサ本体10を備えている。これは絶縁
板の表面に複数の電極12を一定の間隔で配列17てダ
イポール電極列を形成した比抵抗測定用電極列14が設
けられている。 比抵抗測定用電極列14はセンサ本体10の表面に電極
12を露出して取り付けられ、これは第2図に示すよう
に、特定の隣接する一対の電極を電流送信電極12Aと
し、これから所定距離を隔てて配置された一対の電極を
電圧検出電極12Bとしている。 この比抵抗測定用電極列14による比抵抗の検出方法は
次のようになる。すなわち、電極間隔をa1電極数をN
とすると、測定点は電流送信電極12Δと電圧検出電極
12Bの中点を結ぶ線分を底辺とする直角二等辺三角形
の頂点Pとなる。したがって比抵抗測定用電極列14か
らの距離りは、h = (N+1)a/2として求めら
れる。この測定点は電圧検出電極12Bの位置を変更す
ることにより、上記測定点と電流送信電極12Aの中点
とを結ぶ線」二に求められ、したがって、電流送信電極
12Aと電圧検出電極12Bの組合せを適宜変更するこ
とにより、三角形のマトリックス状にマツプ化できる。 これは地中の深さ方向の電極配列線に沿う地中断面の比
抵抗分布を表すものとなる。 」1記のような比抵抗測定用電極列14には電流送信電
極12Aと電圧検出電極12Bとの組合せを変更するリ
レー、−ボックス16が接続され、多数の測定点の比抵
抗を計測するために電流送信電極12Aと電圧検出電極
12Bの組合せを変更するようにしている。そしてリレ
ーボックス16を介して電流送信電極12Aに送信定電
流を供給する交流電源18が、一方、電圧検出電極12
Bにはフ、fルタ20.受信アンプ22を介して、検出
データを入力する信号処理装置24が接続されている。 信号処理装置24は電極12への切換え信号を出力し、
内蔵された電圧計によって比抵抗に相当する電圧値を入
力して、前記距離りと電極12の間隔aとによって決定
されるマトリックス上にデータが配列される計測比抵抗
マツプを算出するようにしている。 ここで、前記電源18から供給される定電流の送信周波
数は、実施例では、250〜1200Hzの範囲となる
ようにし、特に実施例では、975KHzに設定してい
る。すなわち、電源18は固定周波数975KHzを発
振させるために発信器28とアンプ30とによって構成
し、発信器28によへ − り送信周波数を975Hzに設定して送信電極12Aに
供給しているのである。 このように構成した地中探査装置の周波数特性を確認し
た結果を次に説明する。 第3図に示したように、送信電極12Aと検出電極12
Bの離間距離を40cm、各電極対の間隔を8 cmと
したダイポール電極を用い、比抵抗の変化が現れるよう
に鋼球(SUSφ14cm)を24cmの地中深さに埋
設して計測した。送信電流として100mAのサイン波
を供給し、鋼球があるときの計測電圧をv1鋼球がない
時の計測電圧をV。 とじて、感度Sを次式によって算出した。 5=100×(■−V。)/vo ・・・・・・(1)
上記装置によって、前記送信電極12Aから供給する電
流の送信周波数とその感度の関係を求めた実験結果を次
表に示す。 一方、鋼球の代りに同サイズの絶縁球を埋設して同一条
件で測定した結果を次表に示す。 このような結果から明らかなように、送信周波数を25
0〜1200Hzの範囲で供給することにより、検出電
極12Bでの受信感度を向上させることができる。特に
、送信周波数が975Hzの場合には、受信感度が最大
となるので、本実施例では、前述したように、前記電源
18から供給される定電流の送信周波数を975KHz
に設定したのである。 このように、本実施例によれば、送信電極12Aからの
供給電流の周波数を250〜1200Hzの範囲、特に
975Hzの周波数で供給するようにしたので、受信感
度が向上し、地中に埋設されている金属導体を確実に検
出することができる。 しかも、送信電極12Aと検出電極12B間の距離を大
きくすることができ、深層部の埋設金属導体をも確実に
検出できるのである。 【発明の効果】 以上説明したように、本発明によれば、定電流源から供
給される送信電流の周波数を250〜1200Hzに設
定したので、観測対象が抵抗率の低く電気伝導度が大き
いために比抵抗が小さい場合であっても、電圧検出感度
が高くなるので良好な探査が可能となる。同時に感度の
向上により電極間隔を広げて深層探査が可能であって、
金属塊等の探査に好適な方法となるという優れた効果が
得 8 られる。
[Embodiments] Specific embodiments of the underground conductor exploration method according to the present invention will be described in detail below with reference to the drawings. FIG. 1 is a block diagram of a device configuration for carrying out exploration according to an embodiment. As shown, this device includes a sensor body 10 that is placed underground. This is provided on the surface of an insulating plate with a resistivity measuring electrode array 14 in which a plurality of electrodes 12 are arranged 17 at regular intervals to form a dipole electrode array. The resistivity measurement electrode row 14 is attached to the surface of the sensor body 10 with the electrodes 12 exposed, and as shown in FIG. A pair of electrodes placed apart from each other are defined as voltage detection electrodes 12B. The method for detecting specific resistance using this electrode array 14 for measuring specific resistance is as follows. In other words, the electrode spacing is a1 and the number of electrodes is N.
Then, the measurement point is the apex P of a right-angled isosceles triangle whose base is the line segment connecting the midpoints of the current transmitting electrode 12Δ and the voltage detecting electrode 12B. Therefore, the distance from the specific resistance measurement electrode array 14 is determined as h = (N+1)a/2. By changing the position of the voltage detection electrode 12B, this measurement point can be found on the line connecting the measurement point and the midpoint of the current transmission electrode 12A. Therefore, the combination of the current transmission electrode 12A and the voltage detection electrode 12B By appropriately changing , it is possible to create a map in the form of a triangular matrix. This represents the resistivity distribution on the ground surface along the electrode array line in the depth direction of the ground. A relay and box 16 for changing the combination of the current transmitting electrode 12A and the voltage detecting electrode 12B are connected to the resistivity measuring electrode array 14 as described in 1. The combination of the current transmitting electrode 12A and the voltage detecting electrode 12B is changed. Then, an AC power source 18 that supplies a constant current to the current transmitting electrode 12A via the relay box 16 is connected to the voltage detecting electrode 12A.
B has a filter, f filter 20. A signal processing device 24 to which detected data is input is connected via a receiving amplifier 22. The signal processing device 24 outputs a switching signal to the electrode 12,
By inputting a voltage value corresponding to the specific resistance using a built-in voltmeter, a measured specific resistance map is calculated in which data is arranged on a matrix determined by the distance and the spacing a between the electrodes 12. There is. Here, in the embodiment, the transmission frequency of the constant current supplied from the power source 18 is set in the range of 250 to 1200 Hz, and in particular, in the embodiment, it is set to 975 KHz. That is, the power source 18 is composed of an oscillator 28 and an amplifier 30 to oscillate a fixed frequency of 975 kHz, and the oscillator 28 sets the transmission frequency to 975 Hz and supplies it to the transmitting electrode 12A. . The results of checking the frequency characteristics of the underground exploration device configured as described above will be explained next. As shown in FIG. 3, the transmitting electrode 12A and the detecting electrode 12
Using dipole electrodes with a distance of B of 40 cm and an interval of 8 cm between each pair of electrodes, measurements were taken by burying a steel ball (SUS φ14 cm) at a depth of 24 cm underground so that changes in specific resistance would appear. A sine wave of 100 mA is supplied as the transmission current, and the measured voltage when there is a steel ball is v1.The measured voltage when there is no steel ball is V. Then, the sensitivity S was calculated using the following formula. 5=100×(■-V.)/vo ・・・・・・(1)
The following table shows the experimental results of determining the relationship between the transmission frequency of the current supplied from the transmission electrode 12A and its sensitivity using the above device. On the other hand, the following table shows the results of measurements under the same conditions with an insulating ball of the same size buried in place of the steel ball. As is clear from these results, the transmission frequency is set to 25
By supplying the frequency in the range of 0 to 1200 Hz, the reception sensitivity at the detection electrode 12B can be improved. In particular, when the transmission frequency is 975Hz, the reception sensitivity is maximum, so in this embodiment, as described above, the transmission frequency of the constant current supplied from the power supply 18 is set to 975kHz.
It was set to . As described above, according to the present embodiment, the frequency of the current supplied from the transmitting electrode 12A is in the range of 250 to 1200 Hz, particularly in the frequency of 975 Hz, so that the receiving sensitivity is improved and the current is not buried underground. It is possible to reliably detect metal conductors that are Furthermore, the distance between the transmitting electrode 12A and the detecting electrode 12B can be increased, and even buried metal conductors in deep layers can be reliably detected. Effects of the Invention As explained above, according to the present invention, since the frequency of the transmission current supplied from the constant current source is set to 250 to 1200 Hz, the observation target has low resistivity and high electrical conductivity. Even when the specific resistance is small, the voltage detection sensitivity is high, making it possible to conduct a good exploration. At the same time, improved sensitivity allows for deeper exploration by widening the electrode spacing.
This method has the excellent effect of being a suitable method for exploring metal lumps, etc. 8 .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例に係る方法を実施するための地中埋設導
体の探査装置の構成図、第2図は探査方法の説明図、第
3図は周波数特性の実験設備の説明図である。 10・・・・・・センサ本体、j2A・・・・・・送信
電極、12B・・・・・・検出電極、14・・・・・・
比抵抗測定用電極列、18・・・・・・交流電源、24
・・・・・・信号処理装置、28・・・・・・発信器。
FIG. 1 is a configuration diagram of an underground conductor exploration device for carrying out the method according to the embodiment, FIG. 2 is an explanatory diagram of the exploration method, and FIG. 3 is an explanatory diagram of frequency characteristic experimental equipment. 10...Sensor body, j2A...Transmission electrode, 12B...Detection electrode, 14...
Electrode array for resistivity measurement, 18... AC power supply, 24
...Signal processing device, 28...Transmitter.

Claims (1)

【特許請求の範囲】[Claims] 1)、複数の電極からなる比抵抗測定用電極列における
一対の電極を定電流源に接続して地中に送信するととも
に、他の対の電極に電圧測定器を接続して前記送信電流
に基づく地中の比抵抗を測定することにより地中に埋設
した金属導体を探査する方法において、前記定電流源か
ら供給される送信電流を交流発振器により250〜12
00Hzの周波数で送信し、埋設導体と周辺地中の比抵
抗を電圧検出電極により計測して判別検知して探査する
ことを特徴とする地中埋設導体の探査方法。
1) Connect one pair of electrodes in a resistivity measuring electrode array consisting of a plurality of electrodes to a constant current source and transmit it underground, and connect a voltage measuring device to the other pair of electrodes to transmit the transmitted current. In the method of detecting a metal conductor buried underground by measuring the underground specific resistance based on the method, the transmitting current supplied from the constant current source is
An underground conductor exploration method characterized by transmitting at a frequency of 0.00Hz, measuring specific resistance between the buried conductor and the surrounding underground using a voltage detection electrode, and performing discrimination detection and exploration.
JP2058381A 1990-03-09 1990-03-09 Surveying method for underground buried body Pending JPH03259782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2058381A JPH03259782A (en) 1990-03-09 1990-03-09 Surveying method for underground buried body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2058381A JPH03259782A (en) 1990-03-09 1990-03-09 Surveying method for underground buried body

Publications (1)

Publication Number Publication Date
JPH03259782A true JPH03259782A (en) 1991-11-19

Family

ID=13082753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2058381A Pending JPH03259782A (en) 1990-03-09 1990-03-09 Surveying method for underground buried body

Country Status (1)

Country Link
JP (1) JPH03259782A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021032642A (en) * 2019-08-21 2021-03-01 一般財団法人電力中央研究所 Buried steel material detection device, buried steel material detection method and buried steel material detection program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021032642A (en) * 2019-08-21 2021-03-01 一般財団法人電力中央研究所 Buried steel material detection device, buried steel material detection method and buried steel material detection program

Similar Documents

Publication Publication Date Title
US7066282B2 (en) Apparatus and methods for measuring formation characteristics in presence of conductive and non-conductive muds
US6943553B2 (en) Method and apparatus for rapid tomographic measurements of the electrical conductivity distribution of a sample
US4617518A (en) Method and apparatus for offshore electromagnetic sounding utilizing wavelength effects to determine optimum source and detector positions
US4468623A (en) Method and apparatus using pad carrying electrodes for electrically investigating a borehole
CA2921822C (en) Borehole electric field survey with improved discrimination of subsurface features
CN111239242B (en) Dam leakage channel detection method and device based on magnetic field measurement
US2872638A (en) Ocean bottom stratigraphy surveying
CN101258424A (en) High resolution resistivity earth imager
CN106646624A (en) Asymmetric electrical method-based sounding method
CN112946762B (en) Frequency domain electromagnetic exploration method for acquiring resistivity based on horizontal electric field and magnetic field
GB2132357A (en) Buried object location
US2690537A (en) Electrical method and apparatus for geological exploration
JPS6363856B2 (en)
JPH03259782A (en) Surveying method for underground buried body
JP6501128B2 (en) Metal pipe corrosion prediction system and method thereof
RU160147U1 (en) DEVICE FOR FINDING DAMAGES OF INSULATION OF UNDERGROUND PIPELINES AND EXTENDED ANODE EARTHING
US8990019B2 (en) Methods and apparatus for rapid determination of target depth and transverse resistance
JP2019144253A (en) Electrode for high frequency ac electrical exploration
RU2231089C1 (en) Process of geoelectric prospecting
US2035943A (en) Method of determining the nature of the subsoil
RU2019116531A (en) DETECTION OF DAMAGE
NL2002124C (en) Assembly and method for detection of submerged objects.
JPH0499987A (en) Surveying of shield excavation natural ground
RU2649030C1 (en) Device for geoelectric profiling of soil-frozen complex
RU2105329C1 (en) Method of man-made electric charge