JPH03259762A - Instrument for measuring superconducting properties - Google Patents

Instrument for measuring superconducting properties

Info

Publication number
JPH03259762A
JPH03259762A JP5939890A JP5939890A JPH03259762A JP H03259762 A JPH03259762 A JP H03259762A JP 5939890 A JP5939890 A JP 5939890A JP 5939890 A JP5939890 A JP 5939890A JP H03259762 A JPH03259762 A JP H03259762A
Authority
JP
Japan
Prior art keywords
cooling tank
coil
cryogenic refrigerator
magnetic field
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5939890A
Other languages
Japanese (ja)
Inventor
Hitoshi Kondo
斎 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP5939890A priority Critical patent/JPH03259762A/en
Publication of JPH03259762A publication Critical patent/JPH03259762A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To make exact measurement by housing a 2nd cooling tank disposed with a superconductor sample into the inside hole of a 1st cooling tank provided with a coil for impressing AC magnetic fields, thereby maintaining the coil for impressing the AC magnetic fields at a specified temp. during measurement. CONSTITUTION:The toric coil 28 for impressing the AC magnetic fields is provided into the 1st cooling tank 27 of a cylindrical shape provided on a cold stage 24 of a 1st cryogenic refrigerator 20. The superconductor sample 45 is disposed in the 2nd cooling tank 43 provided on a cold stage 34 of a 2nd cryogenic refrigerator 30. The cooling tank 43 is housed in the inside hole of the cooling tank 27 and while the coil 28 is held at the specified temp., the temp. of the superconductor sample 45 is changed by the refrigerator 20. The coil 28 is held at the specified temp. by the refrigerator 20 during the measurement in this way and, therefore, background noises are removed.

Description

【発明の詳細な説明】 〔発明の目的] (産業上の利用分野) 本発明は、超電導物性測定装置に関し、特に超電導体の
交流帯磁率の測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a superconducting physical property measuring device, and particularly to a measuring device for alternating current magnetic susceptibility of a superconductor.

(従来の技術) 極低温冷凍機は、スターリングサイクルやギボードマク
マポン(GM)サイクルを利用して100に以下の極低
温を得ている。一方、ある物質を極低温に冷やすと電気
抵抗がゼロを示す。即ち、超電導物質であるが、この超
電導物性を示す物質か否かを判断するには、一般には、
結晶構造の確認、マイスナー効果の確認、電気抵抗が転
移点付近で急激に消失することの確認、テスト結果の再
現性の確認等が必要になる。
(Prior Art) A cryogenic refrigerator uses a Stirling cycle or a Gibbord-McMapon (GM) cycle to obtain a cryogenic temperature of 100 degrees or less. On the other hand, when a certain substance is cooled to an extremely low temperature, its electrical resistance becomes zero. In other words, it is a superconducting material, but in general, to determine whether or not the material exhibits superconducting physical properties,
It is necessary to confirm the crystal structure, confirm the Meissner effect, confirm that electrical resistance suddenly disappears near the transition point, and confirm the reproducibility of test results.

超電導体物性を示すか否かの確認のだめのマイスナー効
果(磁場内での鉄とは逆の超電導体の完全反逆性、実際
には、超電導体に外から磁場を加えると、完全に磁場が
超電導体の外側に排除される訳ではなく、その表面のわ
ずかに薄い層だけ磁場が侵入すると共に、この薄い層に
電流が流れる。
The Meissner effect (complete rebelliousness of a superconductor, which is the opposite of iron in a magnetic field, is used to confirm whether or not a superconductor exhibits physical properties).In reality, when a magnetic field is applied to a superconductor from the outside, the magnetic field completely changes to make it superconducting. It is not excluded to the outside of the body, but the magnetic field penetrates only a slightly thin layer on the surface, and an electric current flows through this thin layer.

即ち、帯磁する。又、完全な超電導体の結晶体でない限
り、試料内には超電導でない部分が含まれ、磁場の排斥
の度合いが異なる。)の測定法には、交流法と直流法(
SQUID帯磁率計)とがある。
That is, it becomes magnetized. Furthermore, unless the sample is a perfect superconducting crystal, the sample will contain non-superconducting parts, and the degree of magnetic field rejection will differ. ) can be measured using the alternating current method and the direct current method (
SQUID magnetic susceptibility meter).

(1) (2) 本発明に係わる交流法は、交流磁界印加中の超電導体試
料(以下、単に試料という)からの信号検出のための環
状ボビンに巻回されたコイル中に試料を配し、試料の帯
磁率変化をコイルのインダクタンスと損失の変化として
捉えるもので、物質内部のマイスナー電流の情報を得る
ものである。
(1) (2) The AC method according to the present invention involves placing a sample in a coil wound around an annular bobbin for detecting signals from a superconductor sample (hereinafter simply referred to as the sample) while an AC magnetic field is applied. , which captures changes in the magnetic susceptibility of a sample as changes in coil inductance and loss, and obtains information about the Meissner current inside the material.

交流法による測定装置を第3図を参照して簡単に説明す
る。極低温冷凍機lはシールドケース2内の真空槽3内
のコールドステージ4を介して測定ヘッド5に極低温を
伝達させる。測定ヘッド5は、内部ケース6によって作
られる冷却槽7内に位置し、環状のボビン8と、該ボビ
ン8に巻回された交流磁界印加用コイル9とよりなり、
その中空部内に試料10を置く。11はコイル9に電流
を流すだめの内部配線であり、12は試料10からのデ
ータをとる端子である。測定ヘッド5とは離れた位置に
、ダミー試料13を配し、このダミー試料13からの温
度信号を外部に取り出す。尚、図中、14はコールドス
テージ4の温度測定用抵抗体である。
A measuring device using the AC method will be briefly explained with reference to FIG. The cryogenic refrigerator 1 transmits cryogenic temperature to the measurement head 5 via the cold stage 4 in the vacuum chamber 3 in the shield case 2. The measurement head 5 is located in a cooling tank 7 formed by an inner case 6, and consists of an annular bobbin 8 and an alternating current magnetic field application coil 9 wound around the bobbin 8.
A sample 10 is placed within the hollow space. Reference numeral 11 is an internal wiring for passing current through the coil 9, and reference numeral 12 is a terminal for receiving data from the sample 10. A dummy sample 13 is arranged at a position apart from the measurement head 5, and a temperature signal from this dummy sample 13 is taken out to the outside. In the figure, 14 is a temperature measuring resistor of the cold stage 4.

(発明が解決しよ・うとする課題) 上記した従来の測定装置により帯磁率を測定すると、第
5図の如く、超電導になる臨界温度(TO)前において
、バックグランド傾きが大きく、またTc後にもその傾
きが見られる。
(Problems to be Solved by the Invention) When magnetic susceptibility is measured using the conventional measuring device described above, as shown in Figure 5, the background slope is large before the critical temperature (TO) at which superconductivity occurs, and after Tc. This trend can also be seen.

これは、従来の装置では、コイル自体を試料と同時に冷
却しているため、コイルの抵抗が減少し、各温度での印
加電圧が一定であっても、コイルの印加電流、印加磁場
の変化がハックグランドとして帯磁率データに重なって
しまっているからであり、この結果、従来の装置におい
ては、正確な測定が行えないという問題があった。
This is because in conventional equipment, the coil itself is cooled at the same time as the sample, so the resistance of the coil decreases, and even if the applied voltage at each temperature is constant, the applied current and applied magnetic field of the coil will change. This is because the magnetic susceptibility data overlaps with the magnetic susceptibility data as a hack ground, and as a result, there is a problem in that the conventional apparatus cannot perform accurate measurements.

そこで本発明は、交流磁界印加用コイルを測定中一定温
度に保ち、上述したバックグランド傾きを取り除き、正
確な超電導物性の測定が行えるようにすることを、その
技術的課題とする。
Therefore, the technical problem of the present invention is to maintain the alternating current magnetic field applying coil at a constant temperature during measurement, eliminate the above-mentioned background slope, and enable accurate measurement of superconducting physical properties.

〔発明の構成〕[Structure of the invention]

(課題を解決するだめの手段) 上記した技術的課題を解決するために講じた手段は第1
極低温冷凍機のコールドステージ上に設(3) (4) りられた円筒状の第1冷却槽内に円環状の交流磁界印加
用コイルを配設すると共に、第2極低温冷凍機のコール
ドステージ上に設けられた第2冷却槽内に超電導体試料
を配設し、前記第2冷却槽を前記第1冷却槽の内孔内に
収容させ、前記交流磁界印加用コイルを前記第1極低温
冷凍機により一定の温度に保持しながら前記第2極低温
冷凍機により前記超電導体試料の温度を変化させるよう
にしたことである。
(Means to solve the problem) The measures taken to solve the above technical problem are the first
An annular alternating current magnetic field applying coil is disposed in the cylindrical first cooling tank installed on the cold stage of the cryogenic refrigerator (3) (4), and a cold stage of the second cryogenic refrigerator is installed. A superconductor sample is placed in a second cooling tank provided on a stage, the second cooling tank is accommodated in the inner hole of the first cooling tank, and the alternating current magnetic field applying coil is connected to the first pole. The temperature of the superconductor sample is changed by the second cryogenic refrigerator while maintaining the temperature at a constant temperature by a low-temperature refrigerator.

(作用) これによれば、第1極低温冷凍機により交流磁界印加用
コイルを測定中一定温度に保持することができるため、
上述したバックグランドノイズを取り除くことができ、
正確な超電導物性の測定を行うことができる。尚、本発
明の装置によれば、第3図に示す帯磁率データが得られ
る。
(Function) According to this, since the AC magnetic field applying coil can be maintained at a constant temperature during measurement by the first cryogenic refrigerator,
The background noise mentioned above can be removed,
Accurate measurements of superconducting physical properties can be made. Incidentally, according to the apparatus of the present invention, magnetic susceptibility data shown in FIG. 3 can be obtained.

(実施例) 以下、本発明に従った超電導物性測定装置の一実施例を
図面に基づき説明する。
(Example) Hereinafter, one example of the superconducting physical property measuring device according to the present invention will be described based on the drawings.

第1図において、20は第1段冷凍部21及び第2段冷
凍部22を備えた2段の第1極低温冷凍機で、第1段冷
凍部21には第2段冷凍部22を囲む輻射シールド板2
3が設げられており、また第2段冷凍部22にはコール
ドステージ24が設げられている。尚、第1極低温冷凍
機2oは、−、−ス部材29及び該ベース部材29に各
冷凍部21.22に軸線に平行に立設されたガイド部材
30a、30bに固定されている。
In FIG. 1, 20 is a two-stage first cryogenic refrigerator equipped with a first-stage freezing section 21 and a second-stage freezing section 22. Radiation shield plate 2
3 is provided, and a cold stage 24 is provided in the second stage freezing section 22. The first cryogenic refrigerator 2o is fixed to a base member 29 and guide members 30a and 30b that are erected on the base member 29 in parallel to the axis of each of the freezing sections 21 and 22.

コールドステージ24には、第2図に示すように、M状
のカバー25が設けられている。カバー25の一端はコ
ールドステージ24に固定されていて、またカバー25
の他端には有底状のボビン26が固定されている。これ
により、コールドヘッド24上にHeガス等が充填され
る円筒状の第1冷却槽27が形成されている。該第1冷
却槽27内には、ボビン26の外周に巻回される交流磁
界印加用コイル28が配設されている。尚、交流磁界印
加用コイル28は図示しない電源より電流を印加される
ようになっている。
The cold stage 24 is provided with an M-shaped cover 25, as shown in FIG. One end of the cover 25 is fixed to the cold stage 24, and one end of the cover 25 is fixed to the cold stage 24.
A bottomed bobbin 26 is fixed to the other end. As a result, a cylindrical first cooling tank 27 filled with He gas or the like is formed above the cold head 24. An alternating current magnetic field applying coil 28 wound around the outer periphery of the bobbin 26 is disposed within the first cooling tank 27 . Incidentally, the alternating current magnetic field applying coil 28 is configured to receive current from a power source (not shown).

第1極低温冷凍機20の各冷凍部の同軸線上に(5) (6) ば、第1段冷凍部31及び第2段冷凍部32を備えた2
段の第2極低温冷凍機30が配設されている。第1段冷
凍部31にしま第2段冷凍部32を囲む輻射シールド′
板33が設けられており、また第2段冷凍部22にはコ
ールドステージ24が設けられている。尚、第2極低温
冷凍機30は、ガイド部材30a、30bに摺動自在に
配設されたスライダ部H35,36に固定されており、
その最下降位置はスライダ部材35がカイト部+A’ 
30 aに設けられたス1−ツバ37に当接することに
より規定されている。尚、第2極低温冷凍@30ば、ス
ライダ部材36にワイヤ42を介して連結されるバラン
スT′)エイト41の重量を増減することにより、支柱
38に設けられた滑車39.40を通してガイド部材3
0a、30bに沿って上下動し、その最下降位置にては
、両輻射シールド板2333の各開口が重合するように
なっている。
On the coaxial line of each freezing section of the first cryogenic refrigerator 20 (5) (6), two
A second stage cryogenic refrigerator 30 is provided. A radiation shield that surrounds the first stage freezing section 31 and the second stage freezing section 32.
A plate 33 is provided, and a cold stage 24 is provided in the second stage freezing section 22. The second cryogenic refrigerator 30 is fixed to slider parts H35 and 36 that are slidably disposed on guide members 30a and 30b,
At its lowest position, the slider member 35 is at the kite portion +A'
30a is defined by coming into contact with a flange 37 provided at the flange 37a. In addition, in the second cryogenic freezing @ 30, by increasing or decreasing the weight of the balance T') eight 41 connected to the slider member 36 via the wire 42, the guide member can be passed through the pulleys 39 and 40 provided on the support column 38. 3
It moves up and down along 0a and 30b, and at its lowest position, the openings of both radiation shield plates 2333 overlap.

第2極低温冷凍機30のコールドステージ34には、内
部にl(eガス等が充填される第2冷却槽43を形成す
るカバー44か固定されており、該第2冷却槽43内に
ε」超電導体試料45が配設されている。このカバー4
4ば、第2極低温冷凍機30の最下降位置にてボヒン2
6の内孔26a内かかる構成の超電導物性測定装置によ
れば、交?に磁界印加用コイル28の温度が第1極低温
冷凍機20&こより一定の温度に保たれ、印加電圧に対
して常に一定の磁場を作り、この状態の下で第2極低温
冷凍機30により超電導体試料45の温度だけを変化さ
せることができる。そのため、本実施例による測定装置
によれば、第3回に示す如きより正確な帯磁率のデータ
が得られる。
A cover 44 is fixed to the cold stage 34 of the second cryogenic refrigerator 30, and the cover 44 forms a second cooling tank 43 filled with l(e gas, etc.). ”A superconductor sample 45 is arranged.This cover 4
4B, Bohin 2 at the lowest position of the second cryogenic refrigerator 30
According to the superconducting physical property measuring device having the above configuration, the inner hole 26a of No. 6 has an intersection? The temperature of the magnetic field applying coil 28 is maintained at a constant temperature by the first cryocooler 20 and a constant magnetic field is always created with respect to the applied voltage. Only the temperature of the body sample 45 can be changed. Therefore, according to the measuring device according to this embodiment, more accurate magnetic susceptibility data as shown in the third article can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、磁場の強さに依存した正確な帯磁率の
データを得ることができる。更に、試料温度、コイル温
度を夫々の極低温冷凍機で容易に制御・維持てきるので
、再現性の高い信頼できるデータが得られる。
According to the present invention, accurate magnetic susceptibility data that depends on the strength of the magnetic field can be obtained. Furthermore, since the sample temperature and coil temperature can be easily controlled and maintained using respective cryogenic refrigerators, reliable data with high reproducibility can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に従った超電導物性測定装置の一実施例
を示す断面図、第2図は第1図における(7) (8) 測定部の拡大断面図、第3図は本発明における帯磁率の
データのグラフ、第4図は従来例の断面図、第5図は従
来例における帯磁率のデータのグラフである。 20・・・第1極低温冷凍機、24・・ コールI−ス
テージ、25・・・カバー、26・・・ボヒン、27・
・・第1冷却槽、28・・・交′/N、磁界印加用コイ
ル、30・・・第2極低温冷凍機、34・・・コールド
”ステージ、43・・・第2冷却槽、44・・・カバー
、45・・・超電導体試料。
FIG. 1 is a cross-sectional view showing an embodiment of the superconducting physical property measuring device according to the present invention, FIG. 2 is an enlarged cross-sectional view of the measuring section (7) (8) in FIG. 1, and FIG. A graph of magnetic susceptibility data, FIG. 4 is a cross-sectional view of the conventional example, and FIG. 5 is a graph of magnetic susceptibility data in the conventional example. 20... First cryogenic refrigerator, 24... Cole I-stage, 25... Cover, 26... Bohin, 27...
...First cooling tank, 28...AC'/N, magnetic field application coil, 30...Second cryogenic refrigerator, 34...Cold" stage, 43...Second cooling tank, 44 ...Cover, 45...Superconductor sample.

Claims (1)

【特許請求の範囲】[Claims]  第1極低温冷凍機のコールドステージ上に設けられた
円筒状の第1冷却槽内に円環状の交流磁界印加用コイル
を配設すると共に、第2極低温冷凍機のコールドステー
ジ上に設けられた第2冷却槽内に超電導体試料を配設し
、前記第2冷却槽を前記第1冷却槽の内孔内に収容させ
、前記交流磁界印加用コイルを前記第1極低温冷凍機に
より一定の温度に保持しながら前記第2極低温冷凍機に
より前記超電導体試料の温度を変化させるようにしたこ
とを特徴とする超電導物性測定装置。
An annular alternating current magnetic field applying coil is disposed in a cylindrical first cooling tank provided on the cold stage of the first cryogenic refrigerator, and a coil for applying an alternating current magnetic field is provided on the cold stage of the second cryogenic refrigerator. A superconductor sample is disposed in a second cooling tank, the second cooling tank is accommodated in the inner hole of the first cooling tank, and the alternating current magnetic field applying coil is heated at a constant temperature by the first cryogenic refrigerator. An apparatus for measuring superconducting physical properties, characterized in that the temperature of the superconductor sample is changed by the second cryogenic refrigerator while maintaining the superconductor sample at a temperature of .
JP5939890A 1990-03-09 1990-03-09 Instrument for measuring superconducting properties Pending JPH03259762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5939890A JPH03259762A (en) 1990-03-09 1990-03-09 Instrument for measuring superconducting properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5939890A JPH03259762A (en) 1990-03-09 1990-03-09 Instrument for measuring superconducting properties

Publications (1)

Publication Number Publication Date
JPH03259762A true JPH03259762A (en) 1991-11-19

Family

ID=13112141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5939890A Pending JPH03259762A (en) 1990-03-09 1990-03-09 Instrument for measuring superconducting properties

Country Status (1)

Country Link
JP (1) JPH03259762A (en)

Similar Documents

Publication Publication Date Title
Goree et al. Magnetometers using RF‐driven squids and their applications in rock magnetism and paleomagnetism
Nikolo Superconductivity: A guide to alternating current susceptibility
EP1435525B1 (en) Cooled NMR probe
CN105988053A (en) CICC conductor performance test system
Magnusson et al. A low field superconducting quantum interference device magnetometer for dynamic measurements
CN105301093B (en) A kind of superconducting coil defective locations detection system
Deaver Jr et al. Some techniques for sensitive magnetic measurements using superconducting circuits and magnetic shields
CN108152766A (en) A kind of superconducting tape magnetizing assembly
Hilschenz et al. Remote detected low-field MRI using an optically pumped atomic magnetometer combined with a liquid cooled pre-polarization coil
Feng et al. A compact bellows-driven diamond anvil cell for high-pressure, low-temperature magnetic measurements
CA2183174A1 (en) Nondestructive inspection equipment
US4225818A (en) Cryogenic nuclear gyroscope
Ehnholm et al. NMR studies on nuclear ordering in metallic copper below 1 ΜK
Steinberg et al. Nanokelvin thermometry at temperatures near 2 K
CN103885010A (en) SQUID sealing cavity system for magnetic and electrical property synchronous measurement
US11275128B2 (en) Magnetic field measuring device
JPH03259762A (en) Instrument for measuring superconducting properties
US4630881A (en) Immediately testable superconductor joint
Fu et al. A high-resolution thermometer for the range 1.6 to 5 K
Scott et al. Use of a magnetoresistor to measure the magnetic field in a superconducting magnet
Sakai et al. Compact rotating-sample magnetometer for relaxation phenomenon measurement using HTS-SQUID
JPH04115155A (en) Noncontact current density measuring probe
Ishizuka et al. A SQUID magnetometer for simultaneous measurements of spontaneous magnetization and AC susceptibility around the magnetic phase transition point
US5280240A (en) Methodology using odd harmonic components of an induced magnetic field for analyzing superconducting magnetic materials and their properties
JPS58169070A (en) Squid fluxmeter