JPH03259569A - Radiation sensor array and radiation image-receiving device - Google Patents

Radiation sensor array and radiation image-receiving device

Info

Publication number
JPH03259569A
JPH03259569A JP2058285A JP5828590A JPH03259569A JP H03259569 A JPH03259569 A JP H03259569A JP 2058285 A JP2058285 A JP 2058285A JP 5828590 A JP5828590 A JP 5828590A JP H03259569 A JPH03259569 A JP H03259569A
Authority
JP
Japan
Prior art keywords
radiation
sensor array
units
unit
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2058285A
Other languages
Japanese (ja)
Inventor
Yasuichi Oomori
大森 康以知
Tetsuo Ootsuchi
大土 哲郎
Hiroshi Tsutsui
博司 筒井
Matsuki Baba
末喜 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2058285A priority Critical patent/JPH03259569A/en
Publication of JPH03259569A publication Critical patent/JPH03259569A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the concentration resolution of a radiation image-receiving device by a method wherein another electrode is provided on the periphery of split electrodes for forming a unit detecting element in a unit and when the units are arranged for constituting an array, all the split electrodes of the units are arranged in a zigzag form in such a way that they are positioned at equal intervals in the longitudinal direction of the array. CONSTITUTION:A semiconductor crystal 1, split electrodes 2 and a guard electrode 3 are provided on a common electrode 4 as units 5 of a sensor array and a plurality of pieces of these units are arranged on a substrate 6 in a zigzag form. The array is moved and operated in the direction 7 of operation of the sensor array. Operation lines 8 of the array are conformed to a pitch P1 between the split electrodes at the end parts of the adjacent units at the connection parts of units. A pitch between the split electrodes in the individual units is P2. In such a way, a one-dimensional multichannel type semiconductor radiation detector is constituted of unit detecting elements equivalent to the number of the electrodes 2. Radiation 20 is made to incident in a processing deteriorated layer 18 having many traps in such a way and a charge 22 which is generated is collected by the electrode 3 and is earthed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は医療用放射線診断装置 工業用非破壊検査装置
等に用いる放射線センサアレイ及び放射線受像装置に関
するものであも 従来の技術 半導体放射線検出器は従来の気体検出器に比べ放射線の
吸収係数が大きいことから微小な体積でも高感度であり
、また半導体結晶に入射した放射線の光子が直接電荷に
変換され電気信号として出力されるので、 シンチレー
ション検出器のように光電変換系を別途に設けて検出器
を構成する必要がなく検出器サイズを小さく抑えられる
事から様々な用途への応用が注目されていも 中でLX線センサアレイへの応用においては単位検出素
子のサイズが小さくでき、従来の検出器にないような高
い位置分解能が実現可能であも周知のようにX線センサ
アレイは単位検出素子を複数個−次元にアレイ状に配列
した構成を有すん センサアレイに要求される位置分解能が高くなるに従い
単位検出素子のサイズは小さくせねばならない力t 単
位検出素子のサイズが小さくなるに従1.N、素子を1
個1個精度よく配列するのは困難となん そこで半導体X線センサアレイでは 短冊状の半導体結
晶の放射線受面において、その長平方向に複数個の分割
電極を配設して電気的に1つの半導体結晶に複数個の単
位検出素子を形威すも この場合、 1個の半導体結晶
の長さには製造上の限界があるので、 1つの半導体結
晶から作成されたセンサアレイを単位ユニットとし 複
数個の単位ユニットを一次元に並べ任意の長さのX線セ
ンサアレイを構成すも 発明が解決しようとする課題 さて、半導体放射線検出器の特性に影響を与える要素に
 半導体結晶の切断加工面における加工変質層があも 第6図は加工変質層の影響を説明する為の素子の断面図
であも 第6図において1は半導体結晶4は共通t&1
8は素子の両端の切断面において発生した加工変質ML
  19は放射l!  21.22は電藏 23はブリ
アンス 24は高圧電源であム 半導体結晶1に入射した放射線19に応じて電荷2】が
発生すも 電荷21は半導体結晶l中を走行し電極2に
収集され 放射線入射に対する電気信号としてプリアン
プ23に出力されもところが半導体結晶1には切断等の
加工により形成された加工変質層18が存在すム 加工
変質層1gには多数個の電荷トラップが存在するの型加
工変質層18に入射した放射線2oにより発生した電荷
22は電極lに到達するまでにトラップにより捕獲され
る確率が高1.%  従って加工変質層18で発生した
電荷22により出力される電気信号は他の領域で発生し
た電荷21による電気信号より波高が低くなまったもの
となも 従って、この様な加工変質層を有する検出器でCヨ  
単一エネルギーの放射線が入射しても半導体検出器から
出力される電気信号の波高には大きなばらつきが生じも また 加工変質層18の存在は電極2および4間の表面
漏れ電流の増加にもつなかも 第7図に加工変質層の存在する半導体放射線検出器で測
定した241−Am y線のパルス波高スペクトルを示
す。同図で、横軸はパルスの波高 縦軸はパルスの個数
であ&  241−Amの59.5keVのT線に対応
する光電ビーク17は半値幅が大きく、低波高側にテー
リングしたブロードなピークとなんまた暗電流の増加に
よりリーク成分16も大きく低いエネルギー分解能を示
す。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a radiation sensor array and a radiation image receiving device used in medical radiation diagnostic equipment, industrial non-destructive testing equipment, etc. Conventional technologySemiconductor radiation detectors are Scintillation detectors have a higher radiation absorption coefficient than gas detectors, so they are highly sensitive even in minute volumes, and photons of radiation incident on semiconductor crystals are directly converted into charges and output as electrical signals, making scintillation detectors Since it is not necessary to configure the detector with a separate photoelectric conversion system and the detector size can be kept small, its application to various applications is attracting attention. Although it is possible to reduce the size of the detection element and achieve a high positional resolution not found in conventional detectors, as is well known, the X-ray sensor array has a configuration in which a plurality of unit detection elements are arranged in a dimensional array. As the position resolution required for the sensor array increases, the size of the unit detection element must be reduced.1. N, 1 element
Therefore, in a semiconductor X-ray sensor array, a plurality of divided electrodes are arranged in the long plane direction on the radiation receiving surface of a strip-shaped semiconductor crystal to electrically form one semiconductor. Although multiple unit detection elements are formed in a crystal, in this case, there is a manufacturing limit to the length of one semiconductor crystal, so multiple sensor arrays made from one semiconductor crystal are used as a unit. The invention aims to solve the problem by arranging unit units in one dimension to construct an X-ray sensor array of arbitrary length.Now, regarding the factors that affect the characteristics of semiconductor radiation detectors, processing on the cut surface of semiconductor crystal Fig. 6 is a cross-sectional view of the device to explain the influence of the process-damaged layer.
8 is the processing deterioration ML that occurred on the cut surfaces at both ends of the element.
19 is radiation! 21. 22 is an electric power supply, 23 is a briance, and 24 is a high-voltage power source.In response to the radiation 19 incident on the semiconductor crystal 1, a charge 2] is generated.The charge 21 travels through the semiconductor crystal 1 and is collected on the electrode 2. However, the semiconductor crystal 1 has a process-affected layer 18 formed by processing such as cutting. There is a high probability that the charge 22 generated by the radiation 2o incident on the altered layer 18 will be captured by a trap before reaching the electrode l.1. % Therefore, the electric signal output by the charge 22 generated in the process-affected layer 18 has a lower wave height than the electric signal due to the charge 21 generated in other areas. C yo with a vessel
Even if radiation of a single energy is incident, there will be large variations in the wave height of the electrical signal output from the semiconductor detector. Also, the presence of the process-affected layer 18 will also lead to an increase in the surface leakage current between the electrodes 2 and 4. FIG. 7 shows the pulse height spectrum of the 241-Amy line measured with a semiconductor radiation detector in which a process-affected layer exists. In the figure, the horizontal axis is the wave height of the pulse, and the vertical axis is the number of pulses. The photoelectric peak 17 corresponding to the 59.5 keV T-line of 241-Am has a large half-width and a broad peak tailing to the lower wave height side. Furthermore, due to the increase in dark current, the leak component 16 also exhibits a significantly lower energy resolution.

以上のようなセンサアレイを用いたX線受像装置で被検
体の透過像を撮影すると単位検出素子のエネルギー分解
能が低いので、濃度分解能が劣った画像しか得られな賎
 また画像の再現性も単位検出素子の表面漏れ電流の変
動の影響を受けるので劣ったものとなも 本発明(友 上記問題点に鑑ム エネルギー分解能及び
再現性の優れた放射線センサアレイを提供するするとと
もに濃度分解能及び画像の再現性の優れた放射線受像装
置を提供することを目的とすも 課題を解決するための手段 上記課題を解決するために 本発明の放射線センサアレ
イは 単位ユニットにおける単位検出素子を形成する為
の分割電極の周囲に別の電極を形威すも またセンサアレイを構成するための単位ユニットの配列
方法として(よ 各単位ユニットの全ての分割電極がセ
ンサアレイ長手方向に等間隔に位置するよう、隣接する
単位ユニットを千鳥状に配置した構成とすム また 本発明の放射線受像装置は 千鳥状に配置された
単位ユニットの互いの位置ずれを補正して画像表示を行
なうためのデータ処理部を有すも作用 分割電極の周囲に形成された電極により、半導体結晶の
周囲に生じる加工変質層において入射する放射線によっ
て発生する電荷(よ 分割電極のそと即ち加工変質層に
より近く配設されf、分割電極の周囲に配された他の電
極に収集されもその結果 分割電極から出力される電気
信号からは加工変質層の影響が除かれも また表面漏れ
電流が分割電極に収集されることも防がれも従って単位
検出素子のエネルギー分解能は向上すム また 単位ユ
ニットは千鳥状に配設されるので、そのつなぎ目におい
て(よ 端部の単位検出素子間のピッチは単位ユニット
内の単位検出素子の配列ピッチと等しくすることが可能
となんまた 単位ユニットを千鳥状に配設することで各
単位ユニットから得られる信号にゆいては位置情報がず
れる力t このずれはデータ処理部により除去されるの
で、正常な画像表示等が行えも実施例 以下に本発明の実施例について図面を参照しながら説明
すも 第1図(a)は本発明のX線受像装置の一実施例を示す
斜視図であり、第1図(b)は本発明のX線センサアレ
イにおける単位ユニットの断面図であも 第1図(a)において1は半導体結晶 2は半導体結晶
1のX線受面に設けられた分割電極 3は 分割電極2
の周囲に配設された他の電極で、以隙 ガード電極と呼
名 このガード電極は分割電極2とは電気的に分離され
ていも 4は結晶lのX線受面の対向面に設けられた共
通電板 5は単位ユニットであり、この単位ユニット5
(よ 基板6上において複数個が千鳥状に配設される。
When a transmission image of a subject is captured using an X-ray image receiving device using a sensor array such as the one described above, the energy resolution of the unit detection element is low, so only images with inferior concentration resolution can be obtained. In view of the above problems, the present invention provides a radiation sensor array with excellent energy resolution and reproducibility, and also provides a radiation sensor array with excellent concentration resolution and image quality. An object of the present invention is to provide a radiation image receiving device with excellent reproducibility.Means for solving the problems In order to solve the above problems, the radiation sensor array of the present invention is divided into units to form unit detection elements in unit units. Another method of arranging the unit units to form a sensor array is to form another electrode around the electrode (so that all the divided electrodes of each unit are located at equal intervals in the longitudinal direction of the sensor array). The radiation image receiving apparatus of the present invention has a structure in which the units arranged in a staggered manner are arranged in a staggered manner.The radiation image receiving apparatus of the present invention also has a data processing section for correcting the mutual positional deviation of the units arranged in a staggered manner and displaying an image. The electrodes formed around the working divided electrodes allow the electric charges generated by the incident radiation in the process-affected layer that occurs around the semiconductor crystal (f) to be disposed on the other side of the divided electrodes, that is, closer to the process-affected layer. As a result, the influence of the machining-affected layer is removed from the electrical signal output from the split electrode, and surface leakage current is also prevented from being collected by the split electrode. Therefore, the energy resolution of the unit detection elements improves.Also, since the unit units are arranged in a staggered manner, the pitch between the unit detection elements at the end is the arrangement pitch of the unit detection elements within the unit unit. By arranging the units in a staggered manner, the positional information of the signal obtained from each unit is shifted by the force t.This shift is removed by the data processing section, so it is normal. Embodiments Below, embodiments of the present invention will be described with reference to the drawings. FIG. 1(a) is a perspective view showing an embodiment of the X-ray image receiving apparatus of the present invention. FIG. 1(b) is a cross-sectional view of a unit in the X-ray sensor array of the present invention. In FIG. 1(a), 1 is a semiconductor crystal, and 2 is a divided electrode provided on the X-ray receiving surface of the semiconductor crystal 1. 3 is split electrode 2
This guard electrode is electrically separated from the split electrode 2, but the gap between the electrodes 4 and 4 is provided on the opposite surface of the crystal l to the X-ray receiving surface. The common electric board 5 is a unit, and this unit 5
(A plurality of them are arranged in a staggered manner on the substrate 6.

7はセンサアレイの操作(移動)方向を示す欠取8はセ
ンサアレイの操作ライン、Plは単位ユニットの接続部
における隣接する単位ユニットの端部分割電極間のピッ
チ、P2は単位ユニット内の分割電極間のピッチであも 以上により分割電極2の数に相当する単位検出素子を有
する1次元の多チヤンネル型半導体放射線検出器が構成
されも 第1図(b)は第1図(a)の半導体結晶1の断面状態
を示す図で、 19、20は素子に入射する放射線21
.22は入射放射線19.20に応じて発生する電@ 
 23はプリアンプ、24は高圧電t 25は電気力線
の境界を示す。
7 indicates the direction of operation (movement) of the sensor array; cutout 8 indicates the operation line of the sensor array; Pl is the pitch between the end split electrodes of adjacent unit units at the connection part of the unit unit; P2 is the division within the unit unit. Even if a one-dimensional multi-channel semiconductor radiation detector having unit detection elements corresponding to the number of divided electrodes 2 is constructed by the pitch between the electrodes, FIG. 1(b) is the same as that of FIG. 1(a). This is a diagram showing a cross-sectional state of the semiconductor crystal 1, and 19 and 20 indicate radiation 21 incident on the element.
.. 22 is the electric current generated according to the incident radiation 19.20
23 is a preamplifier, 24 is a high-voltage electric current t, and 25 is a boundary between electric lines of force.

ガード電極3を設けることにより半導体結晶1内では第
1図(b)に示すように 分割電極2とガード電極3の
間に電気力線の境界25ができも半導体結晶1の両端部
には加工変質層18が切断等の加工により発生していも
 ガード電極3の電゛気力線には加工変質層I8を横切
る威勢が含まれてい4 −4  分割電極2の電気力線
は加工変質層18は横切らな(1 放射線20がトラップの多い加工変質層18に入射し 
発生する電荷22はガード電極3で収集され接地されも
 従って分割電極2にはトラップの少ない半導体中央部
に入射した放射線19により発生された電荷21のみと
なも また加工変質層18により増加する漏れ電流もガ
ード電極3から接地されるの玄 分割電極2からの出力
信号に悪影響を及ぼすことがな(1 第1図(a)において、単位ユニット5を千鳥状ではな
く一軸上に並べると、端部のガード電極3のためにつな
ぎ目のピッチが他の単位ユニット5内の分割電極2ピツ
チP2より大きくなり、更に単位ユニットの加工精度、
取り付は精度、熱膨張等の誤差要因の吸収を考慮すると
、このピッチに更にギャップを加える必要があa その
AX線画像を撮影すると、このつなぎ目に対応した画像
歪が生じも そこで、本実施例では 単位ユニット5を同図に示すよ
うに 千鳥状に基板6に固定すも 配列方法として(よ
 隣接する単位ユニットの端部分別電極間のピッチP1
が単位ユニット5内の分割電極間ピッチP2と等しくな
るようにする。この構成によりセンサアレイの操作ライ
ン8に対して垂直方向に同一ピッチで分割電極2が配置
されることとなム 第3図に本構成のX線センサアレイの各単位検出素子の
241−Am  y線のパルス波高スペクトルを示す。
By providing the guard electrode 3, a boundary 25 of electric lines of force is created between the divided electrode 2 and the guard electrode 3 within the semiconductor crystal 1, as shown in FIG. 1(b), but both ends of the semiconductor crystal 1 are processed. Even if the altered layer 18 is generated due to processing such as cutting, the lines of electric force of the guard electrode 3 include force that crosses the affected layer I8. (1) The radiation 20 is incident on the process-affected layer 18 with many traps.
The generated charge 22 is collected by the guard electrode 3 and grounded, but the split electrode 2 only contains the charge 21 generated by the radiation 19 incident on the central part of the semiconductor where there are few traps. Since the current is also grounded from the guard electrode 3, it will not adversely affect the output signal from the split electrode 2 (1) In Fig. 1(a), if the units 5 are arranged on one axis instead of in a staggered pattern, the end Because of the guard electrode 3 in the section, the pitch of the joint is larger than the pitch P2 of the divided electrodes 2 in the other unit 5, which further reduces the processing accuracy of the unit.
Considering installation accuracy and absorption of error factors such as thermal expansion, it is necessary to add an additional gap to this pitch. When the AX-ray image is taken, image distortion corresponding to this seam will occur, but this is why we implemented this method. In the example, as shown in the figure, the unit units 5 are fixed to the substrate 6 in a staggered manner.
is made equal to the pitch P2 between the divided electrodes in the unit unit 5. With this configuration, the divided electrodes 2 are arranged at the same pitch in the direction perpendicular to the operation line 8 of the sensor array. The pulse height spectrum of the line is shown.

同図の横軸は検出器より出力されたパルスの波高 縦軸
はパルスの個数を示す。59.5keV光電ビーク17
の半値幅が小さく、リーク威勢が少ない良好なエネルギ
ー分解能が得られていも以上の構成により、加工変質層
の影響が防がれ良好なエネルギー分解能を示す単位検出
素子が同一ピッチで配列されたX線センサアレイが提供
されも 第2図は第1図の変形で、基板を個々の単位ユニット5
に設けた実施例であも 効果は第1図と同様で説明は省
略すも 次に第4@ 及び第5図(a)、 (b)を用いて請求
項2記載の発明のX線受像装置の一実施例について説明
すも 第4図は実施例のX線受像装置を示す斜視図であも 第
4図において26はX線センサアレイ、27はX線発生
管、 28は被検体 29はX線ファンビー430はデ
ータ処理部 311;1cRT等の表示部であム 前記実施例で説明したX線センサアレイ26とX線発生
器27の間に被検体28が配置される。
In the figure, the horizontal axis shows the wave height of the pulse output from the detector, and the vertical axis shows the number of pulses. 59.5keV photoelectric peak 17
Although the half-value width of Although a line sensor array is provided, FIG. 2 is a variation of FIG.
Although the effect is the same as in FIG. 1 and the explanation is omitted, the X-ray image reception of the invention according to claim 2 will be explained using FIG. One embodiment of the apparatus will be described. FIG. 4 is a perspective view showing the X-ray image receiving device of the embodiment. In FIG. 4, 26 is an X-ray sensor array, 27 is an X-ray generating tube, and 28 is a subject 29 The X-ray fan 430 is a data processing section 311; a display section such as 1cRT. A subject 28 is placed between the X-ray sensor array 26 and the X-ray generator 27 described in the previous embodiment.

X線センサアレイ26とX線発生器27は同期して同一
方向7に移動す4X線発生器27から発生したX線ファ
ンビーム29は被検体28を通過し それぞれの単位ユ
ニット5に人射すもX線センサアレイ26からの信号は
データ処理部30で処理され表示部31に画像出力され
も画像出力時においてcat、、  千鳥状に配置され
た単位ユニット5Q センサアレイ移動方向のギャップ
(位置ずれ)を補正する必要があも この補正について
説明すも 第5図(a)は位置ずれが補正されていない状態 即ち
データ処理部への入力状態の説明図であも 同図で縦軸
7はセンサアレイの移動方詠 横軸13は単位検出素子
位置 14は千鳥状に並んだユニットのアレイ移動方向
でのピッチ(位置ずれ量)  (YO)、 15は画像
のサンプリングピッチ(Yl)、斜線塗りつぶし部はX
線濃度信号が出力される画素であも センサアレイは単位ユニットを千鳥状に配列したので、
アレイ移動方向にピッチ(Yo)が生じも従ってそのま
ま表示すると同図(a)に示すようにアレイ移動方向1
3にYoだけ位置ずれした画像が構成されも そこで画
像のサンプリングピッチ(Yl)をユニット間ピッチの
1 / n倍(nは整数)とし 同図(b)に示すよう
にn個ずらして出画することにより、アレイ移動方向の
位置ずれが補正されも 第5図(b)に補正後の画像の
マトリックスを示す。
The X-ray sensor array 26 and the X-ray generator 27 move synchronously in the same direction 7. The X-ray fan beam 29 generated from the four X-ray generators 27 passes through the subject 28 and is irradiated onto each unit 5. The signal from the X-ray sensor array 26 is processed by the data processing unit 30 and output as an image to the display unit 31. When outputting the image, the unit unit 5Q arranged in a staggered manner has a gap (positional shift) in the sensor array movement direction. Although it is necessary to correct this correction, Fig. 5(a) shows a state where the positional deviation is not corrected, that is, an explanatory diagram of the input state to the data processing section. In the same figure, the vertical axis 7 is the sensor Array movement method Horizontal axis 13 is the unit detection element position, 14 is the pitch (positional deviation amount) of the units arranged in a staggered array in the array movement direction (YO), 15 is the image sampling pitch (Yl), and the shaded area is X
Since the pixels in the sensor array that output linear density signals are arranged in a staggered manner,
Even if a pitch (Yo) occurs in the array movement direction, if it is displayed as is, the array movement direction 1 will be displayed as shown in the figure (a).
3, an image is created that is shifted by Yo. Therefore, the sampling pitch (Yl) of the image is set to 1/n times the inter-unit pitch (n is an integer), and the image is output with a shift of n as shown in Figure (b). By doing this, the positional deviation in the array movement direction can be corrected. FIG. 5(b) shows the image matrix after correction.

以上により位置ずれがなく濃度分解能に優れた再現性の
よい透過X線画像が撮影されるX線受像装置が提供され
も 発明の効果 以上の構成により、加工変質層の影響が防がれ良好なエ
ネルギー分解能を示す単位検出素子が一定ピッチで配列
された放射線センサアレイが提供されも また本発明の放射線受像装置では 歪のない良質な画像
が撮影されも
As described above, an X-ray image receiving device is provided which can take transmission X-ray images with excellent density resolution and good reproducibility without positional deviation. A radiation sensor array in which unit detection elements exhibiting energy resolution are arranged at a constant pitch is provided, and the radiation image receiving apparatus of the present invention can capture high-quality images without distortion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の一実施例の放射線センサアレイ
を示す斜視図、第1図(b)は同実施例の放射線センサ
アレイを構成する単位ユニットの断面図、第2図は本発
明の他の実施例を示す斜視図、第3図は第1図の実施例
における放射線センサアレイの特性図、第4図は本発明
の一実施例の放射線受像装置の斜視図、第5図(a)、
 (b)は第4図の実施例におけるX線受像装置のデー
タ処理法の説明図、第6図は従来例の半導体放射線検出
器の断面図、第7図は従来例の半導体放射線検出器の特
性図である。 1・・・半導体結晶、2・・・分割電極、3・・・ガー
ド電極、4・・・共通電極、5・・・単位ユニット、1
8・・・加工変質層、19.20・・・放射線、21.
22・・・電荷、26・・・X線センサアレイ、27・
・・X線発生器、28・・・被検体、29・・・X線フ
ァンビーム、30・・・データ処理部、31・・・表示
部。
FIG. 1(a) is a perspective view showing a radiation sensor array according to an embodiment of the present invention, FIG. 1(b) is a cross-sectional view of a unit constituting the radiation sensor array according to the same embodiment, and FIG. A perspective view showing another embodiment of the invention, FIG. 3 is a characteristic diagram of the radiation sensor array in the embodiment of FIG. 1, FIG. 4 is a perspective view of a radiation image receiving device of an embodiment of the invention, and FIG. (a),
(b) is an explanatory diagram of the data processing method of the X-ray image receiving device in the embodiment of FIG. 4, FIG. 6 is a sectional view of a conventional semiconductor radiation detector, and FIG. 7 is a diagram of a conventional semiconductor radiation detector. It is a characteristic diagram. DESCRIPTION OF SYMBOLS 1...Semiconductor crystal, 2...Divided electrode, 3...Guard electrode, 4...Common electrode, 5...Unit unit, 1
8... Process-affected layer, 19.20... Radiation, 21.
22... Charge, 26... X-ray sensor array, 27.
... X-ray generator, 28... Subject, 29... X-ray fan beam, 30... Data processing section, 31... Display section.

Claims (2)

【特許請求の範囲】[Claims] (1)放射線に感応する半導体結晶からなる単位ユニッ
トを複数個配列した放射線センサアレイであって、前記
単位ユニットは前記半導体結晶の放射線の受面において
、その長手方向に一定ピッチで配列された複数個の分割
電極と前記分割電極を囲む電極を有し、また前記受面の
対向面において前記分割電極に対する共通電極を有して
おり、この様に構成された複数個の単位ユニットを、千
鳥状にかつ全ての単位ユニットの分割電極が長手方向に
等間隔で配列するように配列した事を特徴とする放射線
センサアレイ。
(1) A radiation sensor array in which a plurality of unit units made of semiconductor crystals sensitive to radiation are arranged, the unit units being a plurality of units arranged at a constant pitch in the longitudinal direction on the radiation receiving surface of the semiconductor crystal. It has a plurality of divided electrodes and an electrode surrounding the divided electrodes, and a common electrode for the divided electrodes on a surface opposite to the receiving surface. A radiation sensor array characterized in that the divided electrodes of all the units are arranged at equal intervals in the longitudinal direction.
(2)少なくとも放射線発生器と、放射線センサアレイ
と、前記放射線センサアレイから得たデータの処理部と
、前記データ処理部を通して得られた映像を表示する表
示部を有した放射線受像装置であって、前記放射線セン
サアレイは請求項1記載の放射線センサアレイであり、
前記データ処理部においては、前記放射線センサアレイ
の単位ユニットが千鳥状に配列されることにより生ずる
位置ずれの補正が行なわれることを特徴とする放射線受
像装置。
(2) A radiation image receiving device comprising at least a radiation generator, a radiation sensor array, a processing section for data obtained from the radiation sensor array, and a display section for displaying an image obtained through the data processing section, , the radiation sensor array is the radiation sensor array according to claim 1,
The radiation image receiving apparatus is characterized in that the data processing section corrects positional deviations caused by arranging the units of the radiation sensor array in a staggered manner.
JP2058285A 1990-03-09 1990-03-09 Radiation sensor array and radiation image-receiving device Pending JPH03259569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2058285A JPH03259569A (en) 1990-03-09 1990-03-09 Radiation sensor array and radiation image-receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2058285A JPH03259569A (en) 1990-03-09 1990-03-09 Radiation sensor array and radiation image-receiving device

Publications (1)

Publication Number Publication Date
JPH03259569A true JPH03259569A (en) 1991-11-19

Family

ID=13079927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2058285A Pending JPH03259569A (en) 1990-03-09 1990-03-09 Radiation sensor array and radiation image-receiving device

Country Status (1)

Country Link
JP (1) JPH03259569A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5640018A (en) * 1995-02-09 1997-06-17 J. Morita Manufacturing Corporation Image detecting device and medical X-ray imaging apparatus
US6873678B2 (en) * 2000-12-28 2005-03-29 Ge Medical Systems Global Technology Company Llc Methods and apparatus for computed tomographic cardiac or organ imaging
JP2005322909A (en) * 2004-05-04 2005-11-17 General Electric Co <Ge> Solid-state x-ray detector having improved spatial resolution
CN105682553A (en) * 2013-10-22 2016-06-15 皇家飞利浦有限公司 X-ray system, in particular a tomosynthesis system and a method for acquiring an image of an object

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5640018A (en) * 1995-02-09 1997-06-17 J. Morita Manufacturing Corporation Image detecting device and medical X-ray imaging apparatus
US6873678B2 (en) * 2000-12-28 2005-03-29 Ge Medical Systems Global Technology Company Llc Methods and apparatus for computed tomographic cardiac or organ imaging
JP2005322909A (en) * 2004-05-04 2005-11-17 General Electric Co <Ge> Solid-state x-ray detector having improved spatial resolution
CN105682553A (en) * 2013-10-22 2016-06-15 皇家飞利浦有限公司 X-ray system, in particular a tomosynthesis system and a method for acquiring an image of an object

Similar Documents

Publication Publication Date Title
JP5162085B2 (en) Solid X-ray detector with improved spatial resolution
US6823044B2 (en) System for collecting multiple x-ray image exposures of a sample using a sparse configuration
US7615757B2 (en) Semiconductor radiological detector and semiconductor radiological imaging apparatus
CA1282192C (en) Method and apparatus for utilizing an electro-optic detector in a microtomography system
KR101104173B1 (en) Radiation detector and radiation inspecting apparatus
JPS6298284A (en) Positron radiation tomographic radiation camera
JPS61122847A (en) Radiation image pick-up apparatus
CN1135430C (en) Computerized tomograph camera
US6859232B1 (en) Two-dimensional array type radiation detector
EP0089148A1 (en) Multiple line detector for use in radiography
US6229877B1 (en) Radiation image recording and read-out method and apparatus
US20140348290A1 (en) Apparatus and Method for Low Capacitance Packaging for Direct Conversion X-Ray or Gamma Ray Detector
JP5070637B2 (en) Radiation image detection module
JPH08211199A (en) X-ray image pickup device
JPH11337646A (en) Radiation semiconductor detector, radiation semiconductor detector array and collimator installating device
JP4934826B2 (en) Radiation image detection module and radiation image detection apparatus
JPH03259569A (en) Radiation sensor array and radiation image-receiving device
EP0856748B1 (en) Multi-resolution detection for increasing resolution in an x-ray imaging implementation of an object
US20110297837A1 (en) Radiation detection module and radiation image-capturing device
WO1988009050A1 (en) Device for slit radiography with image equalization
JP4464998B2 (en) Semiconductor detector module, and radiation detection apparatus or nuclear medicine diagnostic apparatus using the semiconductor detector module
JPH03189585A (en) X-ray sensor array and x-ray image receiving device
US7209541B2 (en) X-ray analysis apparatus
JP5136736B2 (en) Radiation image detection module and radiation image detection apparatus
EP1481262B1 (en) Apparatus and method for detection of radiation