JPH03259267A - Manufacture of electrophotographic sensitive body - Google Patents

Manufacture of electrophotographic sensitive body

Info

Publication number
JPH03259267A
JPH03259267A JP5927090A JP5927090A JPH03259267A JP H03259267 A JPH03259267 A JP H03259267A JP 5927090 A JP5927090 A JP 5927090A JP 5927090 A JP5927090 A JP 5927090A JP H03259267 A JPH03259267 A JP H03259267A
Authority
JP
Japan
Prior art keywords
substrate
film
anodic oxide
oxide film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5927090A
Other languages
Japanese (ja)
Inventor
Shigefumi Terasaki
成史 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5927090A priority Critical patent/JPH03259267A/en
Publication of JPH03259267A publication Critical patent/JPH03259267A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an image generating no interference pattern by forming a rough surface within the specific range on an electroconductive base surface and forming an anodic oxide film without alkaline or acid cleaning. CONSTITUTION:Without using alkaline or acid cleaning as a pretreatment on an A alloy substrate 1 having a surface 3a with a predetermined roughness by machining, the anodic oxide film 2a prepared in flat film forming conditions in the surface is provided. Without using the alkaline or acid cleaning as a pretreatment on the substrate 1, by forming the anodic oxide film 2a, the surface roughness of the surface does not change before or after the film forming and the rough surface in the range of 0.6-4.0mum by Rmax. is maintained. On the substrate surface, light beams of 660-800nm in wavelengths from the light source of a printer is reflected irregularly, so no intereference occurs between the reflected light on the substrate surface and the reflected light on the film sur face, even when the light beams pass through the anodic oxide film. Hence generation of the interference pattern of image is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、アルミニウムまたはアルミニウム合金から
なる導電性基体上に、有機系材料からなる電荷発生層、
有機系材料からなる電荷輸送層が順次積層されてなる電
子写真用感光体の製造方法に関し、詳しくは、導電性基
体の表面処理方法に関する。
Detailed Description of the Invention [Industrial Application Field] This invention provides a charge generation layer made of an organic material on a conductive substrate made of aluminum or an aluminum alloy;
The present invention relates to a method of manufacturing an electrophotographic photoreceptor in which charge transport layers made of organic materials are sequentially laminated, and more particularly to a method of surface treatment of a conductive substrate.

〔従来の技術〕[Conventional technology]

有機系材料を用いた電子写真用感光体は、高感度、繰り
返し特性安定性、耐久性などの要求に対応するために、
一般に、導電性基体上に電荷発生層、電荷輸送層をこの
順に塗布形成した感光層を有する機能分離型積層構造と
される。
Electrophotographic photoreceptors using organic materials are required to meet demands such as high sensitivity, repeated characteristic stability, and durability.
Generally, it has a functionally separated laminated structure having a photosensitive layer formed by coating a charge generation layer and a charge transport layer in this order on a conductive substrate.

電子写真用感光体の導電性基体には、従来よりアルミニ
ウム合金が多用されており、現在では主として^300
3 、^6063 、あるいは加工性などを考慮した特
殊な1m威のアルミニウム合金が用いられている。
Aluminum alloys have traditionally been widely used for the conductive substrates of photoreceptors for electrophotography, and currently, aluminum alloys are mainly used as aluminum alloys.
3, ^6063, or a special 1m-thick aluminum alloy that takes workability into consideration.

これらのアルミニウム合金からなる導電性基体を用いて
有機系材料による感光体を製造する場合には、基体上に
電荷発生層をサブミクロンオーダーの薄い厚さに塗布形
成し、その上に電荷輸送層を10μm〜30μmの膜厚
で形成する。高品質の電子写真画像が得られる感光体と
するためには、電荷発生層は異物などの巻き込みのない
非常に均一な膜でなければならない。そのため、基体の
表面には高い清浄度が要求される。
When manufacturing a photoreceptor using an organic material using a conductive substrate made of these aluminum alloys, a charge generation layer is coated on the substrate to a thin thickness on the order of submicrons, and a charge transport layer is formed on top of the charge generation layer. is formed with a film thickness of 10 μm to 30 μm. In order to provide a photoreceptor capable of producing high-quality electrophotographic images, the charge generation layer must be a very uniform film free from entrapped foreign matter. Therefore, high cleanliness is required for the surface of the substrate.

基体表面に異物が存在し電荷発生層に不均一な部位がで
きると、得られる画像上に黒点が発生する。ところが、
異物の存在がほとんど無視できるレベルにまで洗浄した
基体を用いても高温環境下で画像上に微小黒点が発生す
ることがある。これは導電性基体から電荷発生層にチャ
ージキャリアが注入されるためとされており、このチャ
ージキャリア注入を抑制するために基体と電荷発生層と
の界面に所要の抵抗値を有する電荷注入阻止層が設けら
れているものが多い。電荷注入阻止層としては、基体上
に塗布されたポリアミドなどに代表される比較的低抵抗
の樹脂膜、アルミニウム合金である基体の表面に陽極酸
化処理を施して形成した陽極酸化皮膜などが知られてい
る。なかでも、アルミニウム合金の陽極酸化皮膜は、成
膜条件(開極酸化条件、封孔処理条件)により膜質、抵
抗などを制御できる。電荷注入阻止層として好適な陽極
酸化皮膜を形成するためにはその成膜条件は比較的狭い
範囲に限定されるが、得られた皮膜は電荷注入阻止層と
して好適であるだけでなく硬く膜質が安定でしかも取り
扱いが容易であるために従来から多用されている。
If foreign matter is present on the surface of the substrate and uneven areas are formed in the charge generation layer, black spots will appear on the resulting image. However,
Even when using a substrate that has been cleaned to the point where the presence of foreign matter is almost negligible, minute black spots may appear on the image in a high-temperature environment. This is said to be due to charge carriers being injected from the conductive substrate into the charge generation layer, and in order to suppress this charge carrier injection, a charge injection blocking layer having a required resistance value is provided at the interface between the substrate and the charge generation layer. Many have them. Known charge injection blocking layers include relatively low-resistance resin films such as polyamide coated on a substrate, and anodized films formed by anodizing the surface of an aluminum alloy substrate. ing. Among these, the film quality, resistance, etc. of the anodic oxidation film of aluminum alloy can be controlled by film formation conditions (opening oxidation conditions, sealing treatment conditions). In order to form an anodic oxide film suitable as a charge injection blocking layer, the film formation conditions are limited to a relatively narrow range, but the resulting film is not only suitable as a charge injection blocking layer but also hard and has a good film quality. It has been widely used since it is stable and easy to handle.

ところが、上述の電荷注入阻止層として好適なアルミニ
ウム合金の陽極酸化皮膜は電子写真方式のプリンタに多
用される光源の波長域(660nm〜800nm)で透
明であることから次に述べるような電子写真画像上の問
題が生じる。すなわち感光体のアルミニウム合金からな
る導電性基体表面に形成される陽極酸化皮膜は平均膜厚
で5μm−10μm程度である。この膜がプリンタの光
源の波長に対して透明であると、感光体に入射した光は
基体の陽極酸化皮膜表面で一部反射し、一部は陽極酸化
皮膜を透過して基体のアルミニウム合金面に達してそこ
で反射する。これら二つの反射光は陽極酸化皮膜の膜厚
により生ずる光路差により干渉を起こす。この干渉は電
荷発生層と基体との界面で起こるため、モアレ模様と同
様の原理により画像上に干渉模様が発生するという問題
が生じる。この干渉模様は画像品質上あってはならない
ものであり、これを防ぐために従来より多くの工夫がな
されている。そのうち、一つは基体表面に陽極酸化皮膜
を形成するときの成膜条件を制御して皮膜表面の粗度を
あげ、入射光を皮膜表面で散乱させる方法であり、また
一つは、基体表面に陽極酸化皮膜を形成するときに、封
孔処理前に多孔質の皮膜表面を顔料で着色し、入射光に
対して不透明な着色皮膜を形成する方法である。
However, the anodic oxide film of the aluminum alloy suitable as the charge injection blocking layer described above is transparent in the wavelength range (660 nm to 800 nm) of the light source often used in electrophotographic printers, so it cannot be used as an electrophotographic image as described below. The above problem arises. That is, the average thickness of the anodic oxide film formed on the surface of the conductive substrate made of an aluminum alloy of the photoreceptor is about 5 μm to 10 μm. If this film is transparent to the wavelength of the printer's light source, part of the light incident on the photoconductor will be reflected by the surface of the anodic oxide film on the substrate, and some will be transmitted through the anodic oxide film and will pass through the aluminum alloy surface of the substrate. reaches and reflects there. These two reflected lights cause interference due to an optical path difference caused by the thickness of the anodic oxide film. Since this interference occurs at the interface between the charge generation layer and the substrate, a problem arises in that an interference pattern is generated on the image based on the same principle as a moiré pattern. This interference pattern must not exist in terms of image quality, and many efforts have been made to prevent this. One of these methods is to increase the roughness of the film surface by controlling the film formation conditions when forming the anodic oxide film on the substrate surface, and scatter the incident light on the film surface. In this method, when forming an anodized film on a porous film, the surface of the porous film is colored with a pigment before sealing treatment to form a colored film that is opaque to incident light.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、これらの方法のうち、前者では電荷発生
層を塗布する面があれでいるために良好な塗膜を安定し
て形成することが困難となり、電気的特性の悪化をもた
らす。また、基体の表面のあれが大きく、かつ、表面積
が広くなっているため異物が付着しやすく、感光体の外
観品質が悪化し、画像欠陥も多くなる。また後者では、
着色用の顔料が感光体の特性に影響を及ぼし、封孔処理
条件により感光体の電気的特性が大幅に変動し、時とし
て光減衰をしないものも発生するなどの問題があった。
However, among these methods, in the former method, the surface to which the charge generation layer is applied is rough, making it difficult to stably form a good coating film, resulting in deterioration of electrical characteristics. Furthermore, since the surface of the substrate is rough and has a large surface area, foreign matter tends to adhere to it, deteriorating the appearance quality of the photoreceptor and increasing the number of image defects. Also, in the latter
There have been problems in that the coloring pigment affects the characteristics of the photoreceptor, the electrical characteristics of the photoreceptor vary significantly depending on the sealing treatment conditions, and sometimes there is no light attenuation.

この発明は、上述の問題点を解消して、黒点のほとんど
発生しない高画質の画像が得られ、かつ、660nm〜
800nmの範囲の波長の光源を用いるプリンタに用い
ても干渉模様の発生しない画像が得られる有機系の電子
写真用感光体の製造方法を提供することを解決すべき課
題とする。
The present invention solves the above-mentioned problems, provides high-quality images with almost no black spots, and has a resolution of 660 nm to 660 nm.
An object of the present invention is to provide a method for manufacturing an organic electrophotographic photoreceptor that can produce images without interference patterns even when used in a printer that uses a light source with a wavelength in the 800 nm range.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は、この発明によれば、アルミニウムまたは
アルミニウム合金からなる導電性基体上に有機系材料か
らなる電荷発生層、有機系材料からなる電荷輸送層が順
次積層されてなる電子写真用感光体のl!!造方決方法
いて、導電性基体表面を最大高さRmaxで0.6μm
以上4.0μm以下の範囲内に粗面化し、その表面に前
処理としてのアルカリ洗浄および酸洗浄を行うことなし
に陽極酸化処理を施しさらに封孔処理を施して陽極酸化
皮膜を形成し、その上に前記の電荷発生層、電荷輸送層
を順次積層する製造方法とすることによって解決される
According to the present invention, the above-mentioned problem can be solved by an electrophotographic photoreceptor comprising a conductive substrate made of aluminum or an aluminum alloy, a charge generation layer made of an organic material, and a charge transport layer made of an organic material sequentially laminated. No l! ! Depending on the manufacturing method, the maximum height Rmax of the conductive substrate surface is 0.6 μm.
The surface is roughened to within a range of 4.0 μm or less, and the surface is anodized without performing alkaline cleaning or acid cleaning as pretreatment, and then sealed to form an anodized film. This problem can be solved by using a manufacturing method in which the charge generation layer and the charge transport layer described above are sequentially laminated thereon.

導電性基体表面の粗面化は、切削加工、研削加工、サン
ドブラスト、液体ホーニングなどの機械的手段により、
最適な粗さとなるように好適に行うことができる。
The conductive substrate surface can be roughened by mechanical means such as cutting, grinding, sandblasting, and liquid honing.
This can be suitably carried out to obtain the optimum roughness.

〔作用〕[Effect]

基体上に、前処理としてのアルカリ洗浄および酸洗浄を
行うことなく陽極酸化皮膜を形成することにより、皮膜
形成前後で基体表面形状は変化することはなく、 Rm
axで0.6μm以上4.0μm以下の粗面は保たれる
。 Rmaxで0.6μm以上4.0μm以下にあらさ
れている基体表面ではプリンタの光源の波長660nm
〜800nmの光は乱反射されるので、陽極酸化皮膜が
この光を透過させても、基体表面での反射光と皮膜表面
での反射光とが干渉を起こすことはなくなる。従って、
画像に干渉模様が発生しなくなるので、基体表面には、
上記波長光に対する透明性、皮膜表面の粗面化を考慮す
ることなく、電荷注入阻止に最適な膜質で、かつ、表面
平坦な皮膜を形成して良いことになる。皮膜を着色する
ための顔料は必要でなく、その影響はなくなり、平坦な
皮膜表面上には均一な電荷発生層を安定して塗布形成す
ることができる。かくして、良好な電荷注入阻止層、電
荷発生層を備えた、黒点がほとんどなく、かつ、波長6
60nm〜800nmの光源を用いたプリンタに用いて
も干渉模様のない高画質の画像の得られる有機系の感光
体が得られることになる。
By forming an anodic oxide film on the substrate without performing alkaline cleaning or acid cleaning as pre-treatment, the surface shape of the substrate does not change before and after film formation, and Rm
A rough surface of 0.6 μm or more and 4.0 μm or less in ax is maintained. For substrate surfaces whose Rmax is 0.6 μm or more and 4.0 μm or less, the wavelength of the printer's light source is 660 nm.
Since light of ~800 nm is diffusely reflected, even if the anodic oxide film transmits this light, there will be no interference between the light reflected on the substrate surface and the light reflected on the film surface. Therefore,
Since interference patterns will not occur in the image, the substrate surface will be
This means that it is possible to form a film that has a film quality that is optimal for blocking charge injection and has a flat surface without considering transparency to light of the above wavelengths or roughening of the film surface. Pigments for coloring the film are not required and their influence is eliminated, and a uniform charge generation layer can be stably coated and formed on the flat surface of the film. Thus, it has a good charge injection blocking layer and a charge generation layer, has almost no black spots, and has a wavelength of 6.
Even when used in a printer using a light source of 60 nm to 800 nm, an organic photoreceptor can be obtained that can produce high-quality images without interference patterns.

従来、アルミニウムまたはアルミニウム合金からなる基
体表面に陽極酸化処理を施すに際しては、前処理として
アルカリ洗浄および酸洗浄が行われていた。これらの処
理のうち、アルカリ洗浄は陽極酸化処理前に基体表面を
エツチングして新鮮な表面とすることにより皮膜を確実
に良好に形成させるために行うものであり、酸洗浄はア
ルカリ洗浄液を中和するために行うものである。ところ
が、このエツチング処理により基体表面形状は複雑に変
化し、その形状を管理することは事実上不可能である。
Conventionally, when anodizing the surface of a substrate made of aluminum or an aluminum alloy, alkali cleaning and acid cleaning have been performed as pretreatments. Of these treatments, alkaline cleaning is performed to ensure good film formation by etching the substrate surface to create a fresh surface before anodizing, while acid cleaning neutralizes the alkaline cleaning solution. It is something we do for the purpose of doing so. However, this etching process causes the surface shape of the substrate to change in a complex manner, making it virtually impossible to control the shape.

この発明の製造方法では、この前処理を行わないので、
機械的処理により最適粗さとした基体表面形状を変化さ
せることなく陽極酸化皮膜を形成させることになり、確
実な干渉模様防止効果が得られる。
In the manufacturing method of this invention, this pretreatment is not performed, so
An anodic oxide film is formed without changing the surface shape of the substrate, which has been made to have an optimal roughness by mechanical treatment, and a reliable effect of preventing interference patterns can be obtained.

〔実施例〕〔Example〕

第1図は、この発明に係わる導電性基体の一実施例の概
念的断面図であ“す、機械加工により表面を所要の粗さ
の表面3aに加工されたアルミニウム合金基体1上に、
前処理としてのアルカリ洗浄および酸洗浄を行わずに、
その表面が平坦となる成膜条件で形成された陽極酸化皮
膜2aを備えたものである。
FIG. 1 is a conceptual cross-sectional view of one embodiment of a conductive substrate according to the present invention.
Without alkaline and acid cleaning as pre-treatment,
It is provided with an anodic oxide film 2a formed under film-forming conditions that provide a flat surface.

実施例1〜4 アルミニウム合金基体表面を切削加工によりRmaxで
それぞれ0.6 μm、 0.8 μm、 1.0 μ
m、 4.0μmに粗面化し、前処理としてのアルカリ
洗浄および酸洗浄を行わずに、その膜表面が平坦となる
成膜条件でそれぞれ陽極酸化皮膜を形成し、その上に有
機系材料からなる電荷発生層、電荷輸送層を順次塗布形
成して、実施例1〜4の感光体を作製した。
Examples 1 to 4 The surface of the aluminum alloy substrate was cut to give Rmax of 0.6 μm, 0.8 μm, and 1.0 μm, respectively.
The surface was roughened to 4.0 μm, and an anodic oxide film was formed on the film under conditions such that the film surface was flat without performing alkaline cleaning or acid cleaning as a pretreatment. Photoreceptors of Examples 1 to 4 were prepared by sequentially coating and forming a charge generation layer and a charge transport layer.

実施例5 アルミニウム合金基体表面を切削加工でなく液体ホーニ
ングにより粗面化したこと以外は、実施例1と同様にし
て実施例5の感光体を作製した。
Example 5 A photoreceptor of Example 5 was produced in the same manner as in Example 1, except that the surface of the aluminum alloy substrate was roughened by liquid honing instead of cutting.

実施例6 アルミニウム合金基体表面を切削加工でなくサンドブラ
ストにより粗面化したこと以外は、実施例1と同様にし
て実施例6の感光体を作製した。
Example 6 A photoconductor of Example 6 was produced in the same manner as in Example 1, except that the surface of the aluminum alloy substrate was roughened by sandblasting instead of cutting.

比較例1〜6 それぞれ実施例1〜6に対応する粗面化加工を施した基
体に前処理としてのアルカリ洗浄および酸洗浄を行った
のち、その上に実施例と同様に電荷発生層、電荷輸送層
を順次塗布形成して、比較例1〜6の感光体を作製した
Comparative Examples 1 to 6 After carrying out alkali cleaning and acid cleaning as pretreatment on the substrates subjected to roughening processing corresponding to Examples 1 to 6, respectively, a charge generation layer and a charge generation layer were applied thereon in the same manner as in the examples. Photoreceptors of Comparative Examples 1 to 6 were prepared by sequentially coating and forming transport layers.

比較例7 第2図は、導電性基体の従来例の概念的断面図であり、
表面を鏡面に加工されたアルミニウム合金基体1上にそ
の膜表面が粗面3bとなる成膜条件で形成された陽極酸
化皮膜2bを備えたものである。この従来技術による基
体を用いて実施例と同様にして比較例7の感光体を作製
した。
Comparative Example 7 FIG. 2 is a conceptual cross-sectional view of a conventional example of a conductive substrate,
An anodic oxide film 2b is formed on an aluminum alloy substrate 1 whose surface is mirror-finished under film-forming conditions such that the film surface becomes a rough surface 3b. A photoreceptor of Comparative Example 7 was produced in the same manner as in the Examples using this conventional substrate.

このようにして得られた実施例および比較例の感光体に
ついて、半導体レーザビームプリンタを用いて画像評価
を行った。その結果を各感光体の基体処理内容と対応さ
せて第1表に示す。
For the photoreceptors of Examples and Comparative Examples thus obtained, image evaluation was performed using a semiconductor laser beam printer. The results are shown in Table 1 in correspondence with the substrate treatment details of each photoreceptor.

11表に見られるとおり、いずれの機械加工粗面化を施
した基体においても、それにアルカリ洗浄および酸洗浄
を行ったうえで陽極酸化皮膜を形成した基体を用いた比
較例1〜6の感光体では画像に干渉模様が生じるが、ア
ルカリ洗浄および酸洗浄を行わずに陽極酸化皮膜を形成
した基体を用いた実施例1〜6の感光体では画像に干渉
模様は発生せず、実施例の基板処理方法が極めて有効で
あることが判る。また、従来技術による基体を用いた比
較例7の感光体では画像に干渉模様は発生しないが、基
体表面の陽極酸化皮膜表面が粗れているためにその上に
電荷発生層を形成するときに塗布ムラが発生し、均一で
良好な電荷発生層が得られないという問題があった。
As seen in Table 11, the photoreceptors of Comparative Examples 1 to 6 used substrates on which an anodic oxide film was formed after performing alkali cleaning and acid cleaning on any of the substrates subjected to mechanical roughening. However, in the case of the photoreceptors of Examples 1 to 6, which used substrates on which anodic oxide films were formed without performing alkaline cleaning or acid cleaning, no interference patterns were generated in images. It turns out that the treatment method is extremely effective. In addition, in the photoreceptor of Comparative Example 7 using a substrate according to the conventional technology, no interference pattern occurs in the image, but because the surface of the anodic oxide film on the surface of the substrate is rough, when a charge generation layer is formed on it, There was a problem in that coating unevenness occurred and a uniform and good charge generation layer could not be obtained.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、アルミニウムまたはアルミニウム合
金からなる導電性基体表面を最大高さRmaxで0.6
μm以上4.0μm以下の範囲内に粗面化し、その表面
に前処理としてのアルカリ洗浄および酸洗浄を行うこと
なしに陽極酸化皮膜を形成し、その上に有機系材料から
なる電荷発生層、電荷輸送層を順次塗布形成して感光体
を製造する。
According to this invention, the surface of the conductive substrate made of aluminum or aluminum alloy has a maximum height Rmax of 0.6
The surface is roughened within a range of 4.0 μm or more, and an anodic oxide film is formed on the surface without performing alkali cleaning or acid cleaning as a pretreatment, and a charge generation layer made of an organic material is formed on the surface. A photoreceptor is manufactured by sequentially coating and forming a charge transport layer.

上述のように処理された基体を用いることにより、画像
に干渉模様は発生しなくなる。また、基体上には電荷注
入阻止能、皮膜表面の平滑性を最優先に考えた陽極酸化
皮膜を形成して良いことになる。かくして、良好な電荷
注入阻止層、電荷発生層を備えた、黒点のほとんど発生
しない高画質の画像が得られ、かつ、660nI11〜
800nT11の範囲の波長の光源を用いるプリンタに
用いても干渉模様の発生しない画像が得られる有機系の
電子写真用感光体が得られることになる。
By using a substrate treated as described above, no interference pattern will occur in the image. In addition, it is possible to form an anodized film on the substrate, giving top priority to the ability to prevent charge injection and the smoothness of the film surface. In this way, a high-quality image with a good charge injection blocking layer and charge generation layer and almost no black spots can be obtained.
This results in an organic electrophotographic photoreceptor that can produce images without interference patterns even when used in a printer that uses a light source with a wavelength in the range of 800 nT11.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係わる導電性基体の一実施例の概念
的断面図、第2図は導電性基体の一従来例の概念的断面
図である。 l アルミニウム合金基体、2a、2b  陽極第 1
 図 第 2 図
FIG. 1 is a conceptual sectional view of an embodiment of a conductive substrate according to the present invention, and FIG. 2 is a conceptual sectional view of a conventional example of a conductive substrate. l Aluminum alloy substrate, 2a, 2b anode first
Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1)アルミニウムまたはアルミニウム合金からなる導電
性基体上に有機系材料からなる電荷発生層、有機系材料
からなる電荷輸送層が順次積層されてなる電子写真用感
光体の製造方法において、導電性基体表面を最大高さR
maxで0.6μm以上4.0μm以下の範囲内に粗面
化し、その表面に前処理としてのアルカリ洗浄および酸
洗浄を行うことなしに陽極酸化処理を施しさらに封孔処
理を施して陽極酸化皮膜を形成し、その上に前記の電荷
発生層、電荷輸送層を順次積層することを特徴とする電
子写真用感光体の製造方法。
1) In a method for manufacturing an electrophotographic photoreceptor in which a charge generation layer made of an organic material and a charge transport layer made of an organic material are sequentially laminated on a conductive substrate made of aluminum or an aluminum alloy, the surface of the conductive substrate is maximum height R
The surface is roughened to a maximum of 0.6 μm or more and 4.0 μm or less, and the surface is anodized without alkali cleaning or acid cleaning as pretreatment, and then sealed to form an anodized film. 1. A method for producing an electrophotographic photoreceptor, which comprises forming a charge generating layer and a charge transporting layer thereon in order.
JP5927090A 1990-03-09 1990-03-09 Manufacture of electrophotographic sensitive body Pending JPH03259267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5927090A JPH03259267A (en) 1990-03-09 1990-03-09 Manufacture of electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5927090A JPH03259267A (en) 1990-03-09 1990-03-09 Manufacture of electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH03259267A true JPH03259267A (en) 1991-11-19

Family

ID=13108515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5927090A Pending JPH03259267A (en) 1990-03-09 1990-03-09 Manufacture of electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH03259267A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773175A (en) * 1995-03-03 1998-06-30 Sharp Kabushiki Kaisha Photosensitive body for electrophotographical use and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5773175A (en) * 1995-03-03 1998-06-30 Sharp Kabushiki Kaisha Photosensitive body for electrophotographical use and manufacturing method thereof
US6033815A (en) * 1995-03-03 2000-03-07 Sharp Kabushiki Kaisha Photosensitive body for electrophotographical use and manufacturing method thereof
US6180299B1 (en) 1995-03-03 2001-01-30 Sharp Kabushiki Kaisha Photosensitive body for electrophotographical use and manufacturing method thereof
US6180300B1 (en) 1995-03-03 2001-01-30 Sharp Kabushiki Kaisha Photosensitive body for electrophotographical use and manufacturing method thereof
US6258500B1 (en) 1995-03-03 2001-07-10 Sharp Kabushiki Kaisha Photosensitive body for electrophotographical use and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US4657805A (en) Dust cover superior in transparency for photomask reticle use and process for producing the same
EP0465973B1 (en) Process for forming photosensitive imaging members for suppressing the Plywood effect
CA2044340C (en) Novel photosensitive imaging member
JPH0514902B2 (en)
JPH03259267A (en) Manufacture of electrophotographic sensitive body
JP3224836B2 (en) Manufacturing method of photosensitive image member
US5215853A (en) Photosensitive imaging member and process for making same
US4936948A (en) Method for producing a light sensitive body for electronic photography use
EP0468502B1 (en) Light deflector
JPH07104497A (en) Conductive substrate for electrophotographic photoreceptor and substrate surface contour evalculation method
JP2844929B2 (en) Support for electrophotographic photosensitive member and method for producing the same
JP2936743B2 (en) Electrophotographic photoreceptor substrate and method of manufacturing the same
JPH02140787A (en) Hologram generating method
EP0551988B1 (en) Organic photosensitive device for electrophotography and a method of processing a substrate of the device
JP2787051B2 (en) Electrophotographic photoreceptor substrate and method of manufacturing the same
JPH02242264A (en) Production of electrophotographic sensitive body
JPS6218562A (en) Exposure method
JP2666501B2 (en) Electrophotographic photoreceptor
JP2980107B1 (en) Electroconductive substrate for electrophotographic photoreceptor and method for producing the same
JPH0580565A (en) Substrate for electrophotographic sensitive body and its production
JP2763925B2 (en) Organic photoreceptor substrate and organic photoreceptor inspection method
JPS6053871B2 (en) Exposure method
JPS60257453A (en) Light receiving member
JP2000338701A (en) Electrophotographic photoreceptor and its manufacture
JPS62150259A (en) Electrophotographic sensitive body