JPH032590B2 - - Google Patents

Info

Publication number
JPH032590B2
JPH032590B2 JP10161784A JP10161784A JPH032590B2 JP H032590 B2 JPH032590 B2 JP H032590B2 JP 10161784 A JP10161784 A JP 10161784A JP 10161784 A JP10161784 A JP 10161784A JP H032590 B2 JPH032590 B2 JP H032590B2
Authority
JP
Japan
Prior art keywords
laminate
rolling
copper
clad steel
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10161784A
Other languages
Japanese (ja)
Other versions
JPS60244491A (en
Inventor
Haruo Kaji
Masanori Matsuoka
Kenichi Ooe
Mitsuaki Shibata
Sadao Morimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP10161784A priority Critical patent/JPS60244491A/en
Publication of JPS60244491A publication Critical patent/JPS60244491A/en
Publication of JPH032590B2 publication Critical patent/JPH032590B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/22Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded
    • B23K20/227Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating taking account of the properties of the materials to be welded with ferrous layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/04Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a rolling mill

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、鋼材の表面に任意の厚みの銅又は銅
合金を強固に接合してなるクラツド鋼板の製造方
法に関するものである。 (従来技術) 炭素鋼、低炭素鋼、高合金鋼をはじめとする鉄
鋼材料の表面に銅又は銅合金層を形成したクラツ
ド鋼板は、銅又は銅合金の特徴を生かして、より
高度な材質への要求、即ち耐食性、防汚性等への
厳しい要求に応えうる複合金属材料であり、石油
精製装置、海水淡化装置、海水熱交換器等に広汎
に使用されるとともに、近年では船体外板にも適
用が検討されている。 銅又は銅合金クラツド鋼板の製造には、これま
で爆着圧延法、拡散圧延法、圧延接合法(オープ
ンサンドイツチ型、サンドイツチ型、セミサンド
イツチ型)等が用いられてきたが、これらの技術
には、以下のような難点があり、必ずしも満足し
得るべき方法とは言えない。 爆着圧延法、拡散圧延法、オープンサンドイ
ツチ型圧延接合法等の製造方法によりつくられ
る銅又は銅合金クラツド鋼板の合せ材表面に
は、加熱によつて酸化スケールが形成されるだ
けでなく、圧延過程でスケール疵あるいは鋼の
押し込み疵等が発生することから合せ材の表面
品質は極めて劣悪な状態となる。 サンドイツチ型圧延接合法やセミサンドイツ
チ型圧延接合法においては、分離材に起因して
生じる合せ材の表面品質の劣化が生じ、即ち、
圧延過程での分離材の押し込み疵、あるいは圧
延時の分離材の潤滑不良による表面粗度の増
大、また、分離材それ自身あるいは分離材から
の放出ガス等の合せ材への侵入による合せ材表
面材質特性の劣化、さらにはこれらの劣化に起
因した合せ材の表面割れ等が生じた。また、分
離材からの放出ガスに起因した合せ材と母材の
接合不良部が発生した。 、のために、従来の製造技術において
は、合せ材表面のスケール疵、割れあるいは合
せ材と母材鋼の接合不良部等の容接補修工程並
びに合せ材表面の研磨工程が不可避となること
から、スラブ設計の段階で予め疵、割れの手入
代とスケール除去のための研磨代を確保する必
要があつた。このため、歩留の低下をもたら
し、銅又は銅合金クラツド鋼板の製造コストを
低減し得ないという経済的難点があつた。 さらに、疵、割れあるいは接合不良部の溶接
補修部においては、合せ材と同等の材料特性、
特に耐食性を保証する必要があることから、そ
れらの溶接補修に際しては、母材鋼からの成分
希釈をできるだけ低く抑えるために、溶接入熱
を小さくしなければならないのみならず、多パ
ス溶接法の採用により一定数以上の積層数を確
保することが不可避となつてくる。この結果と
して、上記の溶接補修部の品質保証をし得る合
せ材の厚さの下限値が限定されてくる。加え
て、軽微な表面割れ、疵、スケール等を除去す
るための表面研磨工程においては、クラツド鋼
板の初期変形や研磨時に誘起される歪等のため
に研磨量を厳密に制御し得ない。これ故、合せ
材厚公差を部分的に満足しない個所が発生する
危険性があるのみならず、極薄の合せ材を形成
したクラツド鋼板の場合には、溶接補修すらし
得ない。 また、クラツド鋼板の製造において、現状技術
では上記のように補修工程および研磨工程を不可
避とすることから、薄被覆合せ材厚を有するクラ
ツド鋼板が製造し得ないという極めて大きな技術
的課題もあつた。 本発明者等は、特願昭58−212148号の特許出願
において、上記の難点を解決するため、分離材と
して窒化硼素(BN)を用いる合せ材の圧延後の
表面品質のすぐれたクラツド鋼のサンドイツチ型
およびセミサンドイツチ型圧延接合法を提案し
た。この方法においては、合せ材原板の両表面を
清浄にし、該両表面のうちの片方の表面粗度を
70μm以下に確保した面に窒化硼素を配置した
後、二個の合せ材原板の該一表面を向かい合わせ
且つ母材鋼と合せ材の各接合面が相対する形にし
てなるサンドイツチ型コンポジツトを、もしく
は、合せ材原板の該一表面とダミー鋼表面とを向
かい合わせ且つ母材鋼と合せ材の各接合面が相対
してなる形のセミサンドイツチ型コンポジツト
を、1パス当り3〜35%の圧下率で熱間圧延す
る。この方法において、圧延後の合せ材表面が無
疵で金属光沢を有し、且つ、該表面の粗度が
100μm以下に制御することができる。 ところで、この方法を銅又は銅合金クラツド鋼
に適用する場合、合せ材(銅又は銅合金)の融点
は比較的低く、熱間圧延温度が銅又は銅合金の融
点に近づくと、クラツド鋼の表面品質が劣化する
という不具合が生じる。 (発明の目的) 本発明の目的は、圧延接合法において、圧延後
のクラツド鋼板の合せ材の表面品質のすぐれた銅
又は銅合金クラツド鋼板の製造方法を提供するこ
とである。 下記の実施例に示すように、圧延後分離される
べき合せ材と合せ材(サンドイツチ型)あるいは
合せ材とダミー鋼(セミサンドイツチ型)との間
隙に配置する分離材として、窒化硼素を用い、且
つ、熱間圧延開始温度を合せ材の固相線より100
℃以上低い温度域に制限することが、合せ材の表
面品質に優れたクラツド鋼板を製造する上で有効
であることが判明した。その結果、製造方法とし
てサンドイツチ型あるいはセミサンドイツチ型圧
延接合法を採用し、圧延後分離されるべき合せ材
と合せ材あるいは合せ材とダミー材の間隙の窒化
硼素を配置し、且つ、熱間圧延開始温度を合せ材
の固相線より100℃以上低い温度域に制限するこ
とで、従来技術のもつ技術的経済的難点を一挙に
解決し得た。 (発明の構成) 本発明においては、銅又は銅合金クラツド鋼板
の圧延接合法において、合せ材原板の両表面を清
浄にし、該両表面のうちの片方の表面粗度を70μ
m以下に確保した面に窒化硼素を塗布し、二個の
合せ材原板の該一表面を向かい合わせ且つ母材鋼
と合せ材の各接合面が相対する形にしてなるサン
ドイツチ型コンポジツトを加熱し、もしくは、合
せ材原板の該一表面とダミー鋼表面とを向かい合
わせ且つ母材鋼と合せ材の各接合面が相対してな
る形のセミサンドイツチ型コンポジツトを加熱
し、熱間圧延開始温度を合せ材の固相線より100
℃以上低い温度として、3〜35%/パスの圧下率
で熱間圧延する。この方法において、圧延後の合
せ材表面が無疵で金属光沢を有し、且つ、該表面
の粗度を100μm以下に制御することができる。 第1図は、本発明に従つて銅又は銅合金クラツ
ド鋼板を製造するに際してのサンドイツチ型コン
ポジツト組立例を示す概略断面図である。第1図
において、1は母材鋼スラブ、2は合せ材として
の銅又は銅合金原板、3は分離材即ち窒化硼素、
4はインサート金属、5はZr、Ti等の酸化物窒
化物形成物質、6は枠材、7は排気口、8は排気
用パイプ、9はシールド溶接部、10は合せ材同
志の溶接部をそれぞれ示す。なお、11は接合面
であり、12は分離面である。 まず、合せ材2の清浄な表裏面のうち、分離面
となる一方の面の表面粗度を70μm以下とする。
第1図に示すように、合せ材2の分離面間隙に窒
化硼素3を配置する。しかる後、母材鋼1の一方
の面を清浄にし、第1図に示す如く、インサート
金属4を介して、合せ材2と母材鋼1のそれぞれ
の清浄な面が向かい合うように配置する。枠材6
と合せ材2との間隙にZr、Ti等のガス吸収物質
5を装入し、枠材6と母材鋼1をシールド溶接部
9で溶接後、排気口7と排気パイプ8を通して、
強制排気し、コンポジツト内部と外気とを遮断す
る。次いで、加熱し、熱間圧延開始温度を合せ材
の固相線より100℃以上低い温度にして1パス当
り3〜35%の圧下率で熱間圧延する。圧延後、両
端部を切断し、二枚のクラツド鋼板を分離する。 ここで、接合をより強固なものとするために、
(1)合せ材2と母材鋼1の間にイサート金属4を装
入する。(2)合せ材2と母材鋼1の接合面をより清
浄な面に保ち、また、接合不良部発生の原因とな
るコンポジツト内部の残留ガスおよび加熱時の放
出ガスを除去するために、ガス吸収物質5による
ガスの吸収および排気口7を介しての強制排気を
併用する。この結果、熱間圧延過程において、健
全な接合を図ることができる。 第2図は、セミサンドイツチ型コンポジツトの
概略断面図である。合せ材2の清浄な表裏面のう
ち、分離面となる一方の面12の表面粗度を70μ
m以下とする。このコンポジツトの組立において
は、合せ材2とダミー鋼13との間隙に窒化硼素
3を配置する。しかる後、母材鋼1の一方の面を
清浄にし、合せ材1の清浄な面11と向かい合う
ように配置する。枠材6と合せ材2との間隙にガ
ス吸引物質5を装入し、枠材6と母材鋼1をシー
ルド溶接する。9はシールド溶接部、10は合せ
材原板2とダミー鋼13との溶接部である。溶接
後、排気口7と排気パイプ8を通して強制排気
し、コンポジツト内部と外気とを遮断する。次い
で、加熱し、熱間圧延開始温度を合せ材の固相線
より100℃以上低い温度として、1パス当り3〜
35%の圧下率で熱間圧延する。 以下では、具体的な実施例を、主として、サン
ドイツチ型圧延接合法による銅又は銅合金クラツ
ド鋼板について説明するが、下記は単なる代表例
についての説明であり、特許請求の範囲の趣旨に
反しない範囲での変更実施はすべて本発明の範疇
に含まれる。たとえば、圧延接合法の他のタイ
プ、即ちセミサンドイツチ型によるクラツド鋼板
の製造あるいは2層以上の銅又は銅合金クラツド
鋼板の製造においても、下記の方法に準じあるい
は一部変更して実施することができ、それらが本
発明に含まれることは言うまでもない。 (実施例) 実施例 1 コンポジツト素材の合せ材として90/10キユプ
ロニツケル(CN)原板を用い、また、母材鋼と
してSM41Bの母材鋼スラブを用い、本発明の構
成に記載した手順にて第1図の如くのコンポジツ
トを多数組立てた。圧延後の分離されるべき合せ
材と合せ材の間隙には窒化硼素(BN)を配置し
ている。これらのコンポジツトを用い、圧延後の
合せ材の表面粗度に及ぼす圧延開始温度の影響を
調査した。調査結果を第1表及び第3図に示す。
すべてのクラツド鋼板の合せ材表面には、全く
疵、割れ等が発生しておらず、その表面は金属光
沢を保つている。また、第1表及び第3図から、
合せ材原板の表面粗度を70μm以下とし、分離材
として窒化硼素を用い、且つ、圧延開始温度を合
せ材の固相線から100℃低い温度(1000℃)以下
に制限することによつて、圧延後の合せ材の表面
粗度を100μm以下に制御できることが明らかで
ある。 実施例 2 第2表に示す大型の90/10キユプロニツケル
(CN)クラツド鋼用コンポジツトを実施例1と
同じ手順にて作製し、圧延開始温度を合せ材の固
(Industrial Application Field) The present invention relates to a method for manufacturing a clad steel plate, which is formed by firmly bonding copper or copper alloy of any thickness to the surface of a steel material. (Prior art) Clad steel sheets, which are made by forming a copper or copper alloy layer on the surface of steel materials such as carbon steel, low carbon steel, and high alloy steel, are developed into more advanced materials by taking advantage of the characteristics of copper or copper alloys. It is a composite metal material that can meet the strict requirements of corrosion resistance, antifouling properties, etc., and is widely used in oil refineries, seawater desalination equipment, seawater heat exchangers, etc., and in recent years has been used for ship hull skins. Application is also being considered. Until now, methods such as explosion rolling, diffusion rolling, and rolling joining methods (open sand German trench type, sand German trench type, semi-sand German trench type) have been used to manufacture copper or copper alloy clad steel sheets. This technique has the following drawbacks, and cannot be said to be a completely satisfactory method. Oxidized scales are not only formed on the surface of copper or copper alloy clad steel sheets made by manufacturing methods such as explosion rolling, diffusion rolling, and open sandwich rolling joining, but also due to heating. During the rolling process, scale flaws or steel indentation flaws occur, resulting in extremely poor surface quality of the laminated material. In the sandwich-type rolling joining method and the semi-sanding Germany-type rolling joining method, the surface quality of the laminate material deteriorates due to the separation material, that is,
Increased surface roughness due to indentation of the separating material during the rolling process or insufficient lubrication of the separating material during rolling, or the surface of the joining material due to intrusion of the separating material itself or gas released from the separating material into the joining material. Deterioration of material properties and surface cracking of the laminated material caused by these deteriorations occurred. In addition, defective joints between the laminate material and the base material occurred due to gas released from the separation material. Due to this, in conventional manufacturing technology, it is unavoidable to carry out a contact repair process for scale flaws, cracks, or poor joints between the cladding material and the base steel, as well as a polishing process for the surface of the cladding material. At the slab design stage, it was necessary to secure an allowance for cleaning defects and cracks and for polishing to remove scale. For this reason, there was an economic difficulty in that the yield was lowered and the manufacturing cost of copper or copper alloy clad steel sheets could not be reduced. Furthermore, when repairing defects, cracks, or joint defects by welding, material properties equivalent to those of laminated materials,
In particular, since it is necessary to guarantee corrosion resistance, when repairing these welds, it is necessary not only to reduce the welding heat input in order to keep the dilution of components from the base steel as low as possible, but also to use multi-pass welding methods. When adopted, it becomes inevitable to secure a certain number or more of laminated layers. As a result, the lower limit of the thickness of the laminate material that can guarantee the quality of the welded repair portion described above is limited. In addition, in the surface polishing step for removing minor surface cracks, scratches, scales, etc., the amount of polishing cannot be strictly controlled due to initial deformation of the clad steel plate, strain induced during polishing, and the like. Therefore, not only is there a risk that some parts may not satisfy the laminated material thickness tolerance, but also welding repair is not possible in the case of clad steel plates formed with extremely thin laminated materials. In addition, in the production of clad steel sheets, the repair and polishing processes described above are unavoidable with the current technology, so there was an extremely large technical problem in that it was impossible to manufacture clad steel sheets with a thin coating thickness. . In order to solve the above-mentioned difficulties, the inventors of the present invention have proposed, in the patent application No. 58-212148, a clad steel with excellent surface quality after rolling of a laminated material using boron nitride (BN) as a separating material. Sandwich-type and semi-sandwich-type rolling joining methods were proposed. In this method, both surfaces of the original laminate are cleaned, and the surface roughness of one of the two surfaces is adjusted.
After arranging boron nitride on a surface with a thickness of 70 μm or less, a sanderch type composite is made in which the surfaces of the two laminate original plates face each other and the joint surfaces of the base steel and the laminate face each other. Alternatively, use a semi-sandwich-type composite in which the surface of the original plate for the laminate and the surface of the dummy steel face each other, and the joint surfaces of the base steel and the laminate face each other at a rate of 3 to 35% per pass. Hot rolled at a reduction rate of . In this method, the surface of the laminated material after rolling is free from defects and has a metallic luster, and the roughness of the surface is
It can be controlled to 100 μm or less. By the way, when this method is applied to copper or copper alloy clad steel, the melting point of the cladding material (copper or copper alloy) is relatively low, and when the hot rolling temperature approaches the melting point of copper or copper alloy, the surface of the clad steel A problem occurs in which the quality deteriorates. (Object of the Invention) An object of the present invention is to provide a method for manufacturing copper or copper alloy clad steel sheets in which the surface quality of the laminate of the clad steel sheets after rolling is excellent in the rolling joining method. As shown in the examples below, boron nitride was used as a separating material placed in the gap between the cladding material and dummy steel (semi-sandermanti type) or between the cladding material and dummy steel (semi-sandermanti type) to be separated after rolling. and the hot rolling start temperature is 100° below the solidus line of the laminate.
It has been found that limiting the temperature to a temperature range lower than ℃ is effective in producing clad steel sheets with excellent surface quality of the laminated material. As a result, we adopted a sandwich-type or semi-sand-Germany type rolling joining method as a manufacturing method, placed boron nitride in the gap between the laminate and the dummy material, or between the laminate and the dummy material, which were to be separated after rolling. By limiting the rolling start temperature to a temperature range that is 100°C or more lower than the solidus line of the laminate, the technical and economical difficulties of the conventional technology were solved at once. (Structure of the Invention) In the present invention, in the rolling joining method of copper or copper alloy clad steel sheets, both surfaces of the laminate original sheet are cleaned, and the surface roughness of one of the two surfaces is set to 70 μm.
Boron nitride is applied to the surface secured to a thickness of less than m, and a sandwich-arch-type composite is heated, in which the surfaces of the two laminate original plates face each other, and the joint surfaces of the base steel and the laminate face each other. Alternatively, heat a semi-sandwich-type composite in which the one surface of the original laminate plate and the dummy steel surface face each other, and the joint surfaces of the base steel and the laminate face each other, and start hot rolling. Temperature 100 below the solidus line of the laminate
Hot rolling is carried out at a temperature lower than 0.degree. C. and a reduction rate of 3 to 35%/pass. In this method, the surface of the laminated material after rolling is free from defects and has a metallic luster, and the roughness of the surface can be controlled to 100 μm or less. FIG. 1 is a schematic cross-sectional view showing an example of a sandwich-type composite assembly for manufacturing a copper or copper alloy clad steel sheet according to the present invention. In Fig. 1, 1 is a base material steel slab, 2 is a copper or copper alloy original plate as a bonding material, 3 is a separating material, that is, boron nitride,
4 is an insert metal, 5 is an oxide-nitride forming substance such as Zr or Ti, 6 is a frame material, 7 is an exhaust port, 8 is an exhaust pipe, 9 is a shield welded part, and 10 is a welded part between the laminated materials. Each is shown below. Note that 11 is a joint surface, and 12 is a separation surface. First, the surface roughness of one of the clean front and back surfaces of the laminated material 2, which will be the separation surface, is set to 70 μm or less.
As shown in FIG. 1, boron nitride 3 is placed in the gap between the separated surfaces of the laminate 2. Thereafter, one surface of the base steel 1 is cleaned, and the mating material 2 and the base steel 1 are placed so that their respective clean surfaces face each other with the insert metal 4 in between, as shown in FIG. Frame material 6
A gas absorbing substance 5 such as Zr or Ti is charged into the gap between the frame material 6 and the base steel 1 at the shield welding part 9, and then passed through the exhaust port 7 and the exhaust pipe 8.
Force exhaust air to isolate the inside of the composite from outside air. Next, the material is heated, and the hot rolling start temperature is set to a temperature lower than the solidus line of the laminate by 100 DEG C. or more, and hot rolling is performed at a rolling reduction rate of 3 to 35% per pass. After rolling, both ends are cut to separate the two clad steel plates. Here, in order to make the bond stronger,
(1) Inserting the insert metal 4 between the cladding material 2 and the base steel 1. (2) In order to keep the bonding surface between the cladding material 2 and the base steel 1 cleaner, and to remove residual gas inside the composite and gas released during heating, which may cause poor bonding, Gas absorption by the absorbing substance 5 and forced exhaust through the exhaust port 7 are used together. As a result, sound bonding can be achieved during the hot rolling process. FIG. 2 is a schematic cross-sectional view of a semi-sandwich type composite. Among the clean front and back surfaces of the laminate material 2, the surface roughness of one surface 12, which will be the separation surface, is 70μ.
m or less. In assembling this composite, boron nitride 3 is placed in the gap between the mating material 2 and the dummy steel 13. Thereafter, one surface of the base steel 1 is cleaned and placed so as to face the clean surface 11 of the laminate 1. A gas suction substance 5 is charged into the gap between the frame material 6 and the mating material 2, and the frame material 6 and the base steel 1 are shield-welded. 9 is a shield welding portion, and 10 is a welding portion between the laminate original plate 2 and the dummy steel 13. After welding, the composite is forcibly exhausted through the exhaust port 7 and the exhaust pipe 8 to shut off the inside of the composite from outside air. Next, heating is performed, and the hot rolling start temperature is set to a temperature that is 100°C or more lower than the solidus line of the laminated material, and 3 to 30°C per pass is applied.
Hot rolled at a rolling reduction of 35%. In the following, specific examples will mainly be explained about copper or copper alloy clad steel sheets produced by the sand-deutsche type rolling joining method. All modified implementations are included within the scope of the present invention. For example, in the production of clad steel sheets using other types of rolling joining methods, such as the semi-sandwich type, or in the production of copper or copper alloy clad steel sheets with two or more layers, the following method may be followed or partially modified. Needless to say, these are included in the present invention. (Example) Example 1 A 90/10 cupronickel (CN) original plate was used as a composite material, and an SM41B base steel slab was used as the base steel, and the procedure described in the configuration of the present invention was carried out. A large number of composites as shown in Figure 1 were assembled. Boron nitride (BN) is placed in the gap between the laminates to be separated after rolling. Using these composites, the effect of rolling start temperature on the surface roughness of the laminate after rolling was investigated. The survey results are shown in Table 1 and Figure 3.
There are no scratches or cracks on the surfaces of all the clad steel plates, and the surfaces maintain a metallic luster. Also, from Table 1 and Figure 3,
By setting the surface roughness of the laminated material original plate to 70 μm or less, using boron nitride as a separating material, and limiting the rolling start temperature to a temperature 100 ° C lower than the solidus line of the laminated material (1000 ° C.) or less, It is clear that the surface roughness of the laminated material after rolling can be controlled to 100 μm or less. Example 2 A composite for large 90/10 cupronixel (CN) clad steel shown in Table 2 was produced using the same procedure as in Example 1, and the rolling start temperature was adjusted to the hardness of the laminate.

【表】【table】

【表】 表面状況………いずれも無疵、金属光沢
[Table] Surface condition: No defects, metallic luster

【表】 合せ材の表面状況………いずれも無疵、金
属光沢
相線より100℃低い1000℃として圧延した。圧延
後の合せ材の縦方向(L)と横方向(C)の表面粗度
の測定結果は、第2表に示すとおりである。同表
から、合せ材原板の表面粗度を70μm以下とし、
分離材として窒化硼素(BN)を用い、圧延開始
温度を合せ材の固相線から100℃低い温度(1000
℃)以下にすれば、圧延後の合せ材表面粗度を
100μm以下に制御できることがわかる。また、
圧延後の合せ材の表面は、実施例1の場合と同
様、無疵で金属光沢を保つている。 以上より、サンドイツチ型圧延接合法におい
て、合せ材原板の分離面の表面粗度を70μm以下
とし、また、窒化硼素を分離材として用い、且
つ、圧延開始温度を合せ材の固相線より100℃以
上低い温度に制限し、3〜35%/パスの圧下率の
熱間圧延条件のもとで熱間圧延を実施すれば、圧
延後の合せ材表面は無疵であり、かつ、金属光沢
外観を呈し、さらに合せ材表面粗度を100μm以
下に制御できることが判明した。 (発明の効果) 本発明では、分離材として窒化硼素を用いてい
ること、及び、圧延開始温度を合せ材の固相線よ
り100℃以上低い温度に制限して、3〜35%/パ
スの圧下率の範囲で熱間圧延を行うこと等によつ
て、窒化硼素が有効に機能して、製造されたクラ
ツド鋼板の合せ材表面は、金属光沢を有し、該表
面には疵、割れが全く発生せず、しかも合せ材表
面粗度を100μm以下にすることができる。 その結果、銅又は銅合金クラツド鋼板の製造に
おける合せ材の表面研磨工程も表面溶接補修工程
もともに省略できるという効果が得られるととも
に、従来の技術では製造し得なかつた薄被覆の銅
又は銅合金クラツド鋼板の製造が可能となつた。
[Table] Surface condition of laminated materials: All were rolled at 1000°C, 100°C lower than the metallic luster phase line, with no defects. The measurement results of the surface roughness in the longitudinal direction (L) and the transverse direction (C) of the laminated material after rolling are shown in Table 2. From the same table, the surface roughness of the original laminated material is 70μm or less,
Boron nitride (BN) is used as a separating material, and the rolling start temperature is set to 100°C lower than the solidus line of the laminated material (1000°C).
℃) or less, the surface roughness of the laminate after rolling can be improved.
It can be seen that it can be controlled to 100 μm or less. Also,
As in the case of Example 1, the surface of the laminated material after rolling was free from defects and maintained a metallic luster. From the above, in the sand-deutsch type rolling joining method, the surface roughness of the separation surface of the laminate original plate is set to 70 μm or less, boron nitride is used as the separation material, and the rolling start temperature is set to 100°C below the solidus line of the laminate. If hot rolling is carried out under hot rolling conditions with a rolling reduction rate of 3 to 35%/pass, the surface of the laminate after rolling will be free of defects and have a metallic luster appearance. It was found that the surface roughness of the laminated material could be controlled to 100 μm or less. (Effects of the Invention) In the present invention, boron nitride is used as a separating material, and the rolling start temperature is limited to 100°C or more lower than the solidus line of the laminate, and the rolling rate is 3 to 35%/pass. Boron nitride functions effectively by performing hot rolling within a range of rolling reduction, and the surface of the manufactured clad steel plate has a metallic luster, and there are no scratches or cracks on the surface. It does not occur at all, and the surface roughness of the laminated material can be reduced to 100 μm or less. As a result, it is possible to omit both the surface polishing process and the surface welding repair process of the laminate in the production of copper or copper alloy clad steel sheets, and it is also possible to omit the surface polishing process and surface welding repair process of the cladding material in the production of copper or copper alloy clad steel sheets. It became possible to manufacture clad steel sheets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、サンドイツチ型コンポジツトの概略
断面図である。第2図は、セミサンドイツチ型コ
ンポジツトの概略断面図である。第3図は、試作
材における合せ材の表面粗度に及ぼす熱間圧延開
始温度の影響を示すグラフである。 1……母材鋼、2……合せ材、3……窒化硼
素、11……接合面、12……分離面(圧延後の
合せ材表面)、13……ダミー鋼。
FIG. 1 is a schematic cross-sectional view of a sanderch type composite. FIG. 2 is a schematic cross-sectional view of a semi-sandwich type composite. FIG. 3 is a graph showing the influence of the hot rolling start temperature on the surface roughness of the laminated material in the prototype material. DESCRIPTION OF SYMBOLS 1... Base material steel, 2... Laminating material, 3... Boron nitride, 11... Joint surface, 12... Separation surface (laminating material surface after rolling), 13... Dummy steel.

Claims (1)

【特許請求の範囲】 1 銅又は銅合金を合せ材とした銅又は銅合金ク
ラツド鋼板の製造方法において、合せ材原板の両
表面を清浄にし、該両表面のうちの片方の表面粗
度を70μm以下に確保した面に窒化硼素を配置し
た後、二枚の合せ材原板の該一表面を向かい合わ
せ且つ母材鋼と合せ材の各接合面が相対する形に
してなるサンドイツチ型コンポジツトを加熱し、
もしくは、合せ材原板の該一表面とダミー鋼表面
とを向かい合わせ且つ母材鋼と合せ材の各接合面
が相対してなる形のセミサンドイツチ型コンポジ
ツトを加熱し、圧延開始温度を合せ材の固相線よ
り100℃以上低い温度として熱間圧延することに
よつて圧延後の合せ材表面が無疵で金属光沢を有
し、且つ、該表面の粗度を100μm以下に制御す
ることを特徴とした、接合性の優れた表面研磨省
略型の銅又は銅合金クラツド鋼板の製造方法。 2 特許請求の範囲第1項に記載されたクラツド
鋼板の製造方法において、上記のサンドイツチ型
もしくはセミサンドイツチ型コンポジツトの熱間
圧延における1パス当りの圧下率を3〜35%とし
たことを特徴とした銅又は銅合金クラツド鋼板の
製造方法。
[Claims] 1. In a method for manufacturing a copper or copper alloy clad steel sheet using copper or copper alloy as a laminating material, both surfaces of the laminating material original sheet are cleaned, and one of the two surfaces has a surface roughness of 70 μm. After placing boron nitride on the surfaces secured below, heat a sandwich-arch-type composite in which the surfaces of the two laminate original plates face each other and the bonding surfaces of the base steel and the laminate face each other. ,
Alternatively, heat a semi-sandwich-type composite in which the one surface of the original plate of the laminate and the surface of the dummy steel face each other, and the joint surfaces of the base steel and the laminate face each other, and adjust the rolling start temperature. By hot rolling at a temperature 100°C or more lower than the solidus line of the material, the surface of the laminate after rolling is free of defects and has a metallic luster, and the roughness of the surface is controlled to 100 μm or less. A method for producing a copper or copper alloy clad steel sheet with excellent bondability and omitting surface polishing, characterized by: 2. In the method for producing a clad steel sheet as set forth in claim 1, the reduction rate per pass during hot rolling of the above-mentioned sandwich arch type or semi-sand German arch type composite is set to 3 to 35%. A method for manufacturing featured copper or copper alloy clad steel sheets.
JP10161784A 1984-05-19 1984-05-19 Production of copper or copper alloy clad steel plate Granted JPS60244491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10161784A JPS60244491A (en) 1984-05-19 1984-05-19 Production of copper or copper alloy clad steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10161784A JPS60244491A (en) 1984-05-19 1984-05-19 Production of copper or copper alloy clad steel plate

Publications (2)

Publication Number Publication Date
JPS60244491A JPS60244491A (en) 1985-12-04
JPH032590B2 true JPH032590B2 (en) 1991-01-16

Family

ID=14305361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10161784A Granted JPS60244491A (en) 1984-05-19 1984-05-19 Production of copper or copper alloy clad steel plate

Country Status (1)

Country Link
JP (1) JPS60244491A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755383B2 (en) * 1986-09-10 1995-06-14 新日本製鐵株式会社 High efficiency slab assembly method
KR20020046844A (en) * 2000-12-15 2002-06-21 이계안 Method for producing bearing metal
CN104708222B (en) * 2015-03-13 2017-03-01 南京宝泰特种材料股份有限公司 A kind of red copper carbon steel composite board defect-restoration method therefor
CN106544611A (en) * 2017-01-19 2017-03-29 新昌县七星街道高欣机械厂 Cover copper method in a kind of surface of small-sized steel part

Also Published As

Publication number Publication date
JPS60244491A (en) 1985-12-04

Similar Documents

Publication Publication Date Title
EP2272616B1 (en) Clad stainless steel substrates and method for making same
JP2000153372A (en) Manufacture of copper of copper alloy clad steel plate having excellent working property
RU178157U1 (en) MULTI-LAYER BILL FOR HOT ROLLING
JPH032590B2 (en)
KR102164307B1 (en) Method of manufacturing clad steel
JP2663736B2 (en) Manufacturing method of extra thick steel plate
JP2514858B2 (en) Manufacturing method of clad steel plate
US3228103A (en) Metal cladding
JPH08187581A (en) Production of titanium clad steel sheet
JPH031114B2 (en)
KR102534890B1 (en) Fabrication method of aluminum alloy clad sheets and aluminum alloy clad sheets fabricated by the method
JPH06269961A (en) Production of composite material
JPS60250890A (en) Manufacture of multi-layer clad steel plate excellent in corrosion resistance
FR2473379A1 (en) PROCESS FOR PRODUCING PLATE STEEL PLATE BY HOT ROLLING WITH INTERPOSITION OF INTERMEDIATE LAYER
JPS60115384A (en) Production of composite material by brazing and rolling
KR101279112B1 (en) A manufacturing method of clad plate using the precipitation hardening cu alloys as the insert bonding materials and the clad plat obtained using the same
JPH05169283A (en) Manufacture of clad steel sheet
JPS5930516B2 (en) Manufacturing method of highly corrosion-resistant alloy clad steel sheet without carburizing the composite material surface
KR20160044120A (en) Clad plate improved bonding strength and dent-resistance and method for manufacturing the same
CN116423085A (en) Welding method of composite board
JPS6099493A (en) Production of clad plate
JPH0424156B2 (en)
KR20200072948A (en) Method of manufacturing clad steel using weld overlay
JPS61273278A (en) Production of clad steel plate by sandwich rolling method
JPS62191140A (en) Manufacture of clad steel plate having uniform clad materialthickness