JPH03258974A - Swash plate type compressor - Google Patents

Swash plate type compressor

Info

Publication number
JPH03258974A
JPH03258974A JP2055325A JP5532590A JPH03258974A JP H03258974 A JPH03258974 A JP H03258974A JP 2055325 A JP2055325 A JP 2055325A JP 5532590 A JP5532590 A JP 5532590A JP H03258974 A JPH03258974 A JP H03258974A
Authority
JP
Japan
Prior art keywords
suction
discharge
chamber
passage
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2055325A
Other languages
Japanese (ja)
Inventor
Ryoichi Abe
良一 阿部
Tatsuhisa Taguchi
辰久 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2055325A priority Critical patent/JPH03258974A/en
Publication of JPH03258974A publication Critical patent/JPH03258974A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it difficult for a space part to have the influence of the pressure pulsation in an inlet chamber caused by the successive inflow of a coolant gas into a cylinder through an inlet hole by providing a throttle part in which the passage sectional area from the space part provided in the inlet part of the inlet chamber to the inlet chamber having the inlet hole is 60-80% of the sectional area of an inlet passage. CONSTITUTION:A space part 38 is provided in the inlet part of an inlet chamber 34 communicated to an inlet passage 37. A throttle part part 39 in which the passage sectional area from the space part 38 to the inlet chamber 34 having an inlet hole 29 is 60-80% of the sectional area of the inlet passage. The space part 38 is difficult to have the influence of the pressure pulsation in the inlet chamber 34 caused by the successive inflow of a coolant gas in the intake chamber 34 from the inlet hole 29 into a cylinder 9 through an inlet valve 39, and the inlet pressure pulsation of the coolant gas entered from an inlet port 36 is reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は自動車の空調等に用いられるカーエアコン用斜
板式圧縮機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a swash plate compressor for car air conditioners used for air conditioning of automobiles.

従来の技術 斜板式圧縮機は軸方向に整合された複数のシリンダ内を
回転あるいは揺動運動する斜板に連動してピストンが往
復運動することにより、冷媒ガスを圧縮する。このとき
、複数のピストンは所定の位相差をもって順次、吸入、
圧縮、吐出を繰り返すため、吸入圧力及び吐出圧力には
脈動が発生し、振動、騒音の要因となっている。
A conventional swash plate compressor compresses refrigerant gas by reciprocating a piston in conjunction with a swash plate that rotates or oscillates within a plurality of axially aligned cylinders. At this time, the plurality of pistons sequentially perform suction and suction with a predetermined phase difference.
Since compression and discharge are repeated, pulsations occur in the suction pressure and discharge pressure, causing vibration and noise.

上記圧力脈動を低減する従来の技術としては、吸入室及
び吐出室そのものの内容積を大きくした構造や、特開平
1−138381号公報に記載のように、吸入室あるい
は吐出室に連通ずる吸入通路あるいは吐出通路に膨脂空
間を設けている。また、特開平1−138380号公報
に記載のように、吐出室内に開口する各吐出孔間に、吐
出流体の直接の相互干渉を防止する隔壁を設けた構造と
なっている。
Conventional techniques for reducing the above-mentioned pressure pulsations include a structure in which the internal volume of the suction chamber and the discharge chamber themselves are increased, and a suction passage communicating with the suction chamber or the discharge chamber, as described in Japanese Patent Application Laid-Open No. 1-138381. Alternatively, a fat expansion space is provided in the discharge passage. Further, as described in Japanese Patent Application Laid-Open No. 1-138380, a partition wall is provided between each discharge hole opening into the discharge chamber to prevent direct mutual interference of the discharged fluid.

発明が解決しようとする課題 上述した斜板式圧縮機において、吸入室−及び吐出室を
そのものの内容積を大きくとるのは、圧縮機の外観形状
寸法の制約上、特にカーエアコンに用いる場合はできな
い。
Problems to be Solved by the Invention In the above-mentioned swash plate compressor, it is impossible to increase the internal volume of the suction chamber and discharge chamber, especially when used in a car air conditioner, due to constraints on the external shape and dimensions of the compressor. .

また、吸入室あるいは吐出室に連通ずる吸入通路あるい
は吐出通路に膨脂空間を設けた構造では次のような問題
点が生じる。まず、吸入側においては、吸入冷媒ガスは
吸入室に連通した吸入孔から吸入弁を介して、複数のピ
ストンの往復運動に応して順次、シリンダ内に流入する
ため、吸入室内の冷媒ガスは流速及び方向が変化し、圧
力脈動を増大させる。このとき、膨脂空間から吸入室へ
連通する通路断面積が吸入ポートから膨脂空間へ連通ず
る通路断面積と同等あるいは大きい場合、吸入室の圧力
脈動の影響を受け、膨脂空間での圧力脈動も増大し、吸
入圧力脈動を低減する効果か得られない。また、吸入通
路に絞り部を有する部材を挿入して膨脂空間を形成した
場合、膨脂空間そのものの容積は大きくとれず、吸入圧
力脈動の低減がはかれないうえ、絞り部の通路断面積が
も小さくなり、圧力損失で圧縮機の効率が低下する。一
方、吐出側においては、シリンダ内で圧縮された冷媒ガ
ス吐出弁を介して、吐出孔から吐出室へ順次流出される
ため、吐出室内で圧力脈動が発生する。このとき、密閉
状の吐出室の共振周波数はおおよそIKHz前後に存在
し、この周波数モードにより腹にあたる吐出室外周部は
ど圧力脈動波に高周波成分がのり、圧力脈動を増大させ
る。したがって、吐出通路を吐出室の外周部に近い位置
で連通させると、流出する冷媒ガスには高周波成分の多
い圧力脈動が生じ、膨脂空間による吐出圧力脈動低減の
効果は得られない。
Further, in a structure in which a fat swelling space is provided in a suction passage or a discharge passage communicating with a suction chamber or a discharge chamber, the following problems arise. First, on the suction side, suction refrigerant gas flows into the cylinder from a suction hole communicating with the suction chamber via a suction valve in response to the reciprocating motion of multiple pistons, so the refrigerant gas in the suction chamber The flow rate and direction changes, increasing pressure pulsations. At this time, if the cross-sectional area of the passage communicating from the fat expansion space to the suction chamber is equal to or larger than the passage cross-sectional area communicating from the suction port to the fat expansion space, the pressure in the fat expansion space will be affected by pressure pulsations in the suction chamber. Pulsation also increases, and the effect of reducing suction pressure pulsation cannot be obtained. In addition, when a member having a constricted portion is inserted into the suction passage to form a fat expansion space, the volume of the fat expansion space itself cannot be increased, suction pressure pulsation cannot be reduced, and the passage cross-sectional area of the constriction portion cannot be increased. becomes smaller, and compressor efficiency decreases due to pressure loss. On the other hand, on the discharge side, the refrigerant gas compressed within the cylinder is sequentially discharged from the discharge hole to the discharge chamber via the discharge valve, so that pressure pulsations occur within the discharge chamber. At this time, the resonant frequency of the sealed discharge chamber exists around IKHz, and due to this frequency mode, a high frequency component is added to the pressure pulsation wave at the outer periphery of the discharge chamber, which corresponds to the antinode, increasing the pressure pulsation. Therefore, if the discharge passage is communicated at a position close to the outer periphery of the discharge chamber, pressure pulsations with many high frequency components will occur in the refrigerant gas flowing out, and the effect of reducing discharge pressure pulsations due to the fat expansion space will not be obtained.

さらに、吐出室内に開口する各吐出孔間に、吐出流体の
直接の相互干渉を防止する隔壁を設けた構造においても
、上記理由により、吐出室の共振周波数はずれるが、吐
出通路が吐出室の外周部に近い位置に連通されているた
め、高周波成分の多い圧力脈動波となり、吐出圧力脈動
が増大する。
Furthermore, even in a structure in which a partition wall is provided between each discharge hole opening into the discharge chamber to prevent direct mutual interference of the discharge fluid, the resonance frequency of the discharge chamber is shifted due to the above-mentioned reason, but the discharge passage is Since the pressure pulsation wave is connected to a position close to the part, the pressure pulsation wave has many high frequency components, and the discharge pressure pulsation increases.

本発明は上記問題点に鑑み、簡単な構造で吸入及び吐出
の出力脈動を低減することにより、脈動、騒音の少ない
高効率の斜板式圧縮機を提供するものである。
In view of the above problems, the present invention provides a highly efficient swash plate compressor with less pulsation and noise by reducing suction and discharge output pulsations with a simple structure.

課題を解決するための手段 上記問題点を解決するために本発明の第1の発明は、複
数のシリンダが形成されたシリンダブロックと、前記シ
リンダに嵌合され、斜板と連動して往復運動する複数の
ピストンと、前記シリンダに対応して吸入孔と吐出孔が
複数形成された弁板と、前記吸入孔及び吐出孔を開閉す
る吸入弁及び吐出弁と、前記シリンダの開口端を前記弁
板を介して閉塞するリアカバーと、前記リアカバー内に
密閉状に形成された前記吸入孔と連通ずる吸入室及び前
記吐出孔と連通する吐出室と、前記リアカバーに設けた
吸入ポートと前記吸入室を連通ずる吸入通路及び吐出ポ
ートと前記吐出室を連通ずる吐出通路を備えた斜板式圧
縮機において、前記吸入通路と連通ずる前記吸入室の入
口部分に空間部を設け、前記空間部から前記吸入孔が配
設された吸入室への通路断面積を前記吸入通路の断面積
の60〜80%とした絞り部を形成したものである。
Means for Solving the Problems In order to solve the above-mentioned problems, a first invention of the present invention includes a cylinder block in which a plurality of cylinders are formed, and a cylinder block that is fitted into the cylinders and moves reciprocatingly in conjunction with a swash plate. a plurality of pistons, a valve plate in which a plurality of suction holes and discharge holes are formed corresponding to the cylinders, a suction valve and a discharge valve that open and close the suction holes and the discharge holes, and an opening end of the cylinder that is connected to the valve plate; A rear cover closed through a plate, a suction chamber communicating with the suction hole and a discharge chamber communicating with the discharge hole formed in the rear cover in a sealed manner, and a suction port provided in the rear cover and the suction chamber. In a swash plate compressor having a communicating suction passage and a discharge passage communicating between a discharge port and the discharge chamber, a space is provided at an entrance portion of the suction chamber that communicates with the suction passage, and a space is provided from the space to the suction hole. A constricted portion is formed in which the cross-sectional area of the passage to the suction chamber in which the suction passage is disposed is 60 to 80% of the cross-sectional area of the suction passage.

また、第2の発明はリアカバーに形成した吐出通路を吐
出室の中央部に開口させ、前記吐出室と前記吐出通路を
連動させたものである。
In a second aspect of the invention, a discharge passage formed in the rear cover is opened at the center of the discharge chamber, and the discharge chamber and the discharge passage are interlocked.

作   用 上記構成による本発明の第1の発明の作用は吸入室の入
口部分に設けた空間部から吸入孔が配設された吸入室へ
の通路断面積を吸入通路の断面積の60〜80%とした
絞り部を形成したことにより、吸入室内の冷媒ガスか吸
入弁を介して吸入孔からシリンダ内へ順次流入して生じ
る吸入室内の圧力脈動の影響を空間部では受けに<<、
吸入ポートから流入する冷媒ガスの吸入圧力脈動は低減
される。
Effect The effect of the first aspect of the present invention with the above configuration is that the cross-sectional area of the passage from the space provided at the inlet portion of the suction chamber to the suction chamber in which the suction hole is arranged is 60 to 80 times the cross-sectional area of the suction passage. By forming the constricted part, the space part is able to absorb the influence of pressure pulsations in the suction chamber caused by the refrigerant gas in the suction chamber sequentially flowing into the cylinder from the suction hole through the suction valve.
Suction pressure pulsations of refrigerant gas flowing from the suction port are reduced.

また、第2の発明の作用は、吐出室の中央部に吐出通路
を開口させ、吐出室の共振周波数の周波数モードの節に
あたる中央部から吐出冷媒ガスを吐出通路を通じて流出
させるようにしたことにより、吐出弁を介して吐出孔か
ら吐出室へ流出した冷媒ガスの圧力脈動波に高周波成分
がのらず、吐出圧力脈動の低減をはかることができる。
Further, the second aspect of the present invention works because the discharge passage is opened in the center of the discharge chamber, and the discharged refrigerant gas is caused to flow out through the discharge passage from the center, which corresponds to the node of the frequency mode of the resonance frequency of the discharge chamber. Since no high frequency component is added to the pressure pulsation waves of the refrigerant gas flowing out from the discharge hole to the discharge chamber via the discharge valve, it is possible to reduce the discharge pressure pulsations.

したがって、吸入及び吐出の圧力脈動が低減できること
から、振動、騒音の発生を防止できるとともに、圧力損
失も少なく、効率が高いという利点を有する。
Therefore, since pressure pulsations during suction and discharge can be reduced, vibrations and noise can be prevented from occurring, pressure loss is small, and efficiency is high.

実  施  例 本発明の第1の実施例における斜板式圧縮機について、
第1図〜第3図を参照しながら説明する。
Example Regarding the swash plate compressor in the first example of the present invention,
This will be explained with reference to FIGS. 1 to 3.

第1図は可変容量型の揺動斜板式圧縮機の全体構造を示
したもので、1はシリンダブロックで、その両端をクラ
ンクケース2とリアカバー3で密閉されている。4はシ
ャフトでラジアル軸受56に支持され、さらに、スラス
ト軸受7.8により軸方向に保持されている。シリンダ
フロック1は軸方向に貫通する複数の円筒状シリンダ9
を有し、各シリンダ9内にはピストン10が往復運動可
能に嵌合されており、両端にボールジョインを有するロ
ッド11により、非回転の揺動板12と方向性自在に連
結されている。揺動板12は回転斜板13にスラスト軸
受14とラジアル軸受15を介して装着され、スラスト
座金16及び止め輪17により軸方向に保持される。
FIG. 1 shows the overall structure of a variable capacity rocking swash plate compressor. Reference numeral 1 denotes a cylinder block, both ends of which are sealed with a crankcase 2 and a rear cover 3. 4 is a shaft supported by a radial bearing 56 and further held in the axial direction by a thrust bearing 7.8. The cylinder flock 1 has a plurality of cylindrical cylinders 9 penetrating in the axial direction.
A piston 10 is fitted into each cylinder 9 so as to be able to reciprocate, and is directionally connected to a non-rotating rocking plate 12 by a rod 11 having ball joints at both ends. The swing plate 12 is attached to the rotating swash plate 13 via a thrust bearing 14 and a radial bearing 15, and is held in the axial direction by a thrust washer 16 and a retaining ring 17.

第2図に示すように、回転斜板13はシャフト4上に摺
動自在に装着されたスリーブ18と一対の枢軸ビン19
により回転自在に連結されており、枢軸ピン19の共通
軸線は回転斜板13及び揺動板12の傾斜を許容すべく
シャフト4の軸線と直角に交差している。シャフト4に
はドライブラグ20が締結されており、回転斜板■3の
傾斜を案内する案内スロット21を備えた突出部22を
有しており、突出部22は回転斜板13に形成された耳
23と係合し、案内スロット21内を摺動して案内され
る横ビン24により耳23に対して保持され、シャフト
4の回転にともなって回転斜板13を回転駆動する。揺
動板12の外周上位置にはガイド部25が形成されてお
り、球状軸受部を有するスライダ26が揺動板12の中
心方向にスライド可能に嵌合され、さらに、クランクケ
ース2とシリンダブロック1に保持され、シャフト4の
軸方向に配設されたガイド棒27と摺動自在に係合され
ているため、揺動板12は回転斜板13とともに傾斜可
能であるが、回転斜板13と一体に回転することを防止
している。
As shown in FIG. 2, the rotating swash plate 13 has a sleeve 18 slidably mounted on the shaft 4 and a pair of pivot pins 19.
The common axis of the pivot pin 19 intersects the axis of the shaft 4 at right angles to allow the tilting of the rotating swash plate 13 and the swing plate 12. A drive lug 20 is fastened to the shaft 4, and has a protrusion 22 with a guide slot 21 for guiding the inclination of the rotating swash plate 3, and the protrusion 22 is formed on the rotating swash plate 13. It is held against the ear 23 by a transverse pin 24 that engages with the ear 23 and is guided by sliding in the guide slot 21, and rotates the rotating swash plate 13 as the shaft 4 rotates. A guide portion 25 is formed on the outer periphery of the swing plate 12, and a slider 26 having a spherical bearing portion is fitted so as to be slidable toward the center of the swing plate 12. 1 and is slidably engaged with a guide rod 27 disposed in the axial direction of the shaft 4, the rocking plate 12 can tilt together with the rotating swash plate 13; This prevents them from rotating together.

第1図において、28は弁板で複数の吸入孔29及び吐
出孔30が形成されており、両端に吸入弁31と吐出弁
32及び吐出弁押え板33が対向して配設され、シリン
ダブロック1とリアカバー3の間に固定される。
In FIG. 1, 28 is a valve plate in which a plurality of suction holes 29 and discharge holes 30 are formed, and a suction valve 31, a discharge valve 32, and a discharge valve holding plate 33 are arranged facing each other at both ends of the cylinder block. 1 and the rear cover 3.

第3図に示すように、リアカバー3内には複数の吸入孔
29と連通ずる吸入室34と複数の吐出孔30と連通ず
る吐出室35が密閉状に形成される。36は吸入ポート
、37は吸入通路で吸入室34の入口部分に設けた空間
部38と連通する。
As shown in FIG. 3, a suction chamber 34 communicating with the plurality of suction holes 29 and a discharge chamber 35 communicating with the plurality of discharge holes 30 are formed in the rear cover 3 in a sealed manner. 36 is a suction port, and 37 is a suction passage which communicates with a space 38 provided at the entrance of the suction chamber 34.

39は空間部38から吸入室34への通路断面積を吸入
通路37の断面積の60〜80%とした絞り部で2ケ所
に設けられている。40は吐出ポート、41は吐出通路
で吐出室35と連通している。
Reference numeral 39 denotes constricted portions that have a cross-sectional area from the space 38 to the suction chamber 34 that is 60 to 80% of the cross-sectional area of the suction passage 37, and are provided at two locations. 40 is a discharge port, and 41 is a discharge passage, which communicates with the discharge chamber 35.

なお、第1図において、42はクランク室、43はシャ
フト4に装着された制御バネ、44はリアカバー3に配
設されたクランク室42の内圧を制御する制御弁である
In FIG. 1, 42 is a crank chamber, 43 is a control spring mounted on the shaft 4, and 44 is a control valve disposed in the rear cover 3 for controlling the internal pressure of the crank chamber 42.

以上のように構成された斜板式圧縮機の動作について説
明する。外部からシャフト4が駆動されると、ドライブ
ラグ20の突出部22と耳23で係合した回転斜板13
が傾斜角度をもって回転する。揺動板12は回転斜板1
3とスラスト軸受14とラジアル軸受15を介して摺動
可能に配置されており、揺動板12の外周上に位置する
ガイド部25に嵌合された球面軸受を有するスライダ2
6がガイド棒27に摺動自在に係合されているため、揺
動板12は回転を防止され、回転斜板13の傾斜面に応
じて、揺動することになる。したがって、両端にボール
ジヨイントを有するロッド11を介して揺動板12と方
向性自在に連結されたピストン10はシリンダ9内を軸
方向に往復運動する。これにより、吸入室34内の冷媒
ガスは、ピストン10が上死点から下死点に移動する吸
入行程で吸入弁31を介して吸入孔29からシリンダ9
へ流入し下死点から上死点に移動する圧縮、吐出行程で
吐出弁32を介して吐出孔30から吐出室35へ流出す
る。
The operation of the swash plate compressor configured as above will be explained. When the shaft 4 is driven from the outside, the rotary swash plate 13 engages with the protrusion 22 of the drive lug 20 through the ears 23.
rotates at an angle of inclination. The rocking plate 12 is the rotating swash plate 1
3, a slider 2 which is slidably arranged via a thrust bearing 14 and a radial bearing 15, and has a spherical bearing fitted into a guide portion 25 located on the outer periphery of the swing plate 12.
6 is slidably engaged with the guide rod 27, the swing plate 12 is prevented from rotating and swings according to the inclined surface of the rotary swash plate 13. Therefore, the piston 10, which is directionally connected to the rocking plate 12 via the rod 11 having ball joints at both ends, reciprocates in the axial direction within the cylinder 9. Thereby, the refrigerant gas in the suction chamber 34 is transferred from the suction hole 29 to the cylinder 9 via the suction valve 31 during the suction stroke in which the piston 10 moves from the top dead center to the bottom dead center.
and flows out from the discharge hole 30 to the discharge chamber 35 via the discharge valve 32 during the compression and discharge strokes in which the fluid flows from the bottom dead center to the top dead center.

冷房能力の制御は揺動板12の傾斜角度を変えて、ピス
トン10のストロークを可変、することにより、シリン
ダ9の容積、すなわち、排気量を無段階に変化させるも
のである。揺動板12の傾斜角度はピストン10の背後
のクランク室42の内圧を吸入圧力に対して制御する制
御弁44による圧力制御と、ピストン10前後に作用す
る力及び回転斜板13に作用する枢軸ビン19まわりの
モーメントの釣り合いにより決定される。したがって、
熱負荷が高いときは、吸入圧力とクランク室42の内圧
とに圧力差がないようにして揺動板12の傾斜角度を最
大にし、排気量を最大にする。一方、熱負荷が低く、吸
入圧力が制御弁44に設定された吸入圧力制御点より低
くなると、制御弁44が作動してクランク室44の内圧
を上昇させて揺動板12の傾斜角度を減少させ、その結
果、ピストン10のストロークが減少し、排気量が減少
することになる。
The cooling capacity is controlled by changing the inclination angle of the rocking plate 12 and varying the stroke of the piston 10, thereby continuously changing the volume of the cylinder 9, that is, the displacement amount. The inclination angle of the rocking plate 12 is determined by the pressure control by the control valve 44 that controls the internal pressure of the crank chamber 42 behind the piston 10 relative to the suction pressure, the force acting on the front and back of the piston 10, and the axis acting on the rotating swash plate 13. It is determined by the balance of moments around the bottle 19. therefore,
When the heat load is high, the inclination angle of the rocking plate 12 is maximized so that there is no pressure difference between the suction pressure and the internal pressure of the crank chamber 42, and the displacement is maximized. On the other hand, when the heat load is low and the suction pressure becomes lower than the suction pressure control point set in the control valve 44, the control valve 44 operates to increase the internal pressure of the crank chamber 44 and reduce the inclination angle of the rocking plate 12. As a result, the stroke of the piston 10 is reduced, and the displacement is reduced.

なお、揺動致12及び回転斜板13の位置決めは、スリ
ーブ18に連結された一対の枢軸ビン19と、ドライブ
ラグ20に形成した案内スロット21内に摺動する横ピ
ン24によって決められ、ピストン10に一定の上死点
位置を与える。
The positioning of the pivot pin 12 and the rotating swash plate 13 is determined by a pair of pivot pins 19 connected to the sleeve 18 and a horizontal pin 24 that slides into a guide slot 21 formed in the drive lug 20. 10 is given a constant top dead center position.

ここで、冷凍サイクルから帰還した吸入冷媒ガスは、吸
入ポート36から吸入通路37を経て吸入室34の入口
部に設けた空間部38に流入する。空間部38は吸入通
路37と比べてかなり大きな容積となっており、−旦、
冷媒ガスは膨脂し、2ケ所に設けられた絞り部39から
複数の吸入孔29が配設された吸入室34内に流入され
る。吸入室34内の冷媒ガスは、ピストン10の往復運
動に応じて、吸入弁31を介して吸入孔29からシリン
ダ9内に順次流入するため、吸入室34内の冷媒ガスは
流速、方向か変化して圧力脈動か生し、空間部38内に
も影響が及び、特に、空間部38に近い吸入孔29から
シリンダ9内に流入されるときほど大きくなるが、吸入
通路37の断面積の60〜80%とした2ケ所の絞り部
39により、空間部38内の圧力脈動の影響度合が小さ
くなり、その結果、吸入圧力脈動は低減される。
Here, the suction refrigerant gas returned from the refrigeration cycle flows from the suction port 36 through the suction passage 37 into the space 38 provided at the entrance of the suction chamber 34 . The space 38 has a considerably larger volume than the suction passage 37, and
The refrigerant gas expands and flows into the suction chamber 34 in which a plurality of suction holes 29 are provided through the throttle portions 39 provided at two locations. The refrigerant gas in the suction chamber 34 sequentially flows into the cylinder 9 from the suction hole 29 via the suction valve 31 in accordance with the reciprocating motion of the piston 10, so that the refrigerant gas in the suction chamber 34 changes in flow velocity and direction. This causes pressure pulsations, which also affects the inside of the space 38, and is particularly large when the flow is into the cylinder 9 from the suction hole 29 near the space 38. The two constricted portions 39, which are set at ~80%, reduce the degree of influence of pressure pulsations within the space 38, and as a result, suction pressure pulsations are reduced.

ここで、絞り部39の通路断面積は吸入通路37の断面
積の80%より大きい場合、絞り部39の効果はほとん
どなく、吸入圧力脈動は低減されない。一方、通路断面
積が60%以下になると、圧力損失が生じ、効率の低下
をもたらす。したがって、絞り部39の通路断面積は吸
入通路37の断面積の60〜80%が吸入圧力脈動の低
減に効果的である。。
Here, if the passage cross-sectional area of the constriction part 39 is larger than 80% of the cross-sectional area of the suction passage 37, the constriction part 39 has almost no effect and the suction pressure pulsation is not reduced. On the other hand, when the cross-sectional area of the passage is less than 60%, pressure loss occurs, resulting in a decrease in efficiency. Therefore, the passage cross-sectional area of the throttle portion 39 is 60 to 80% of the cross-sectional area of the suction passage 37, which is effective in reducing suction pressure pulsations. .

次に、本発明の第2の実施例について説明する。本実施
例は、第1の実施例(第1図、第3図参照)において、
リアカバー3に形成した吐出通路41を密閉状の吐出室
35の中央部に開口させ、吐出室34と吐出通41を連
通させた構成となっている。これにより、吐出室34の
共振周波数モードの節にあたる中央部から吐出室35内
の冷媒ガスを吐出通路41を通して吐出ポート40に流
出させるため、吐出弁32を介して吐出孔30から吐出
室35に順次流出した冷媒ガスの圧力脈動波に高周波成
分がのらず、吐出圧力脈動の低減をはかることができる
。第4図(a)、 fb)は吐出圧力脈動の波形を示し
ており、同図(b+は吐出通路41が吐出室35の外周
部に開口した比較例で、高周波成分が多く、圧力脈動を
増大させているが、吐出通路41を吐出室35の中央部
に開口させた本実施例では、同図(a)に示すように高
周波成分かはとんとのっておらず、圧力脈動は小さい。
Next, a second embodiment of the present invention will be described. In this embodiment, in the first embodiment (see FIGS. 1 and 3),
A discharge passage 41 formed in the rear cover 3 is opened at the center of a sealed discharge chamber 35, and the discharge chamber 34 and the discharge passage 41 are communicated with each other. Thereby, in order to cause the refrigerant gas in the discharge chamber 35 to flow from the central part of the discharge chamber 34 corresponding to the node of the resonance frequency mode through the discharge passage 41 to the discharge port 40, it flows from the discharge hole 30 to the discharge chamber 35 via the discharge valve 32. No high-frequency component is added to the pressure pulsation waves of the refrigerant gas that sequentially flowed out, and the discharge pressure pulsation can be reduced. Figure 4 (a), fb) shows the waveform of discharge pressure pulsation, and Figure 4 (b+) is a comparative example in which the discharge passage 41 opens at the outer periphery of the discharge chamber 35. However, in this embodiment in which the discharge passage 41 is opened at the center of the discharge chamber 35, as shown in FIG.

第5図は本発明の第3の実施例を示す。リアカバー3の
後端部に吐出ポート40が形成され、吐出通路41は吐
出室35の中央部に開口しており、上記実施例と同様の
効果を有する。
FIG. 5 shows a third embodiment of the invention. A discharge port 40 is formed at the rear end of the rear cover 3, and a discharge passage 41 opens at the center of the discharge chamber 35, and has the same effect as the above embodiment.

発明の効果 以上のように本発明においては、吸入室の入口部分に設
けた空間部から吸入孔が配設された吸入室への通路断面
積を吸入通路の断面積の60〜80%とした絞り部を形
成したことにより、冷媒ガスが吸入孔からシリンダへ順
次流入して生じる吸入室内の圧力脈動の影響を空間部で
は受けにくく、吸入圧力脈動を低減できる。
Effects of the Invention As described above, in the present invention, the cross-sectional area of the passage from the space provided at the inlet of the suction chamber to the suction chamber in which the suction hole is arranged is 60 to 80% of the cross-sectional area of the suction passage. By forming the throttle part, the space part is less susceptible to pressure pulsations in the suction chamber that occur when refrigerant gas sequentially flows into the cylinder from the suction hole, and suction pressure pulsations can be reduced.

また、吐出室の中央部に吐出通を開口させ、吐出室の共
振周波数モードの節にあたる中央部から吐出冷媒ガスを
吐出通路を通じて流出させることにより、冷媒ガスの圧
力脈動波に高周波成分がのらず、吐出圧力脈動を低域で
きる。
In addition, by opening the discharge passage in the center of the discharge chamber and letting the discharged refrigerant gas flow out through the discharge passage from the center, which corresponds to the node of the resonance frequency mode of the discharge chamber, high frequency components are prevented from entering the pressure pulsation waves of the refrigerant gas. First, the discharge pressure pulsation can be reduced to a low range.

したがって、部品を付加することなく簡単な構成で吸入
及び吐出圧力脈動が低減でき、圧力脈動に基づく振動、
騒音の発生を防止できるとともに、圧力損失も少なく、
効率の低下を防止できるものである。
Therefore, suction and discharge pressure pulsations can be reduced with a simple configuration without adding any parts, and vibrations due to pressure pulsations can be reduced.
Not only can noise generation be prevented, but pressure loss is also small.
This can prevent a decrease in efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例における斜板圧縮機の縦
断面図、第2図は同部分断面図、第3図は同実施例を示
すリマカノく−の正面部分断面図、明の第3の実施例に
おける斜板式圧縮機のリアカバーの縦断面図である。 1・・・・・・シリンダブロック、3・・・・・・リア
カッく−9・・・・・・シリンダ、10・・・・・・ピ
ストン、13・・・・・・斜板、28・・・・・・弁板
、29・・・・・・吸入孔、30・・・・・・吐出孔、
31・・・・・・吸入弁、32・・・・・・吐出弁、3
4・・・・・・吸入室、35・・・・・・吐出室、36
・・・・・・吸入ポート、37・・・・・・吸入通路、
38・・・・・・空間部、39・・・・・・絞り部、4
0・・・・・・吐出ポート、41・・・・・・吐出通路
FIG. 1 is a vertical cross-sectional view of a swash plate compressor according to a first embodiment of the present invention, FIG. 2 is a partial cross-sectional view of the same, and FIG. It is a longitudinal cross-sectional view of the rear cover of the swash plate compressor in the 3rd Example. 1...Cylinder block, 3...Rear cup-9...Cylinder, 10...Piston, 13...Swash plate, 28... ... Valve plate, 29 ... Suction hole, 30 ... Discharge hole,
31...Suction valve, 32...Discharge valve, 3
4...Suction chamber, 35...Discharge chamber, 36
...Suction port, 37...Suction passage,
38...Space part, 39...Aperture part, 4
0...Discharge port, 41...Discharge passage.

Claims (2)

【特許請求の範囲】[Claims] (1)複数のシリンダが形成されたシリンダブロックと
、前記シリンダに嵌合され、斜板と連動して往復運動す
る複数のピストンと、前記シリンダに対応して吸入孔と
吐出孔が複数形成された弁板と、前記吸入孔及び吐出孔
を開閉する吸入弁及び吐出弁と、前記シリンダの開口端
を前記弁板を介して閉塞するリアカバーと、前記リアカ
バー内に密閉状に形成され前記吸入孔と連通する吸入室
及び前記吐出孔と連通する吐出室と、前記リアカバーに
設けた吸入ポートと前記吸入室を連通する吸入通路及び
吐出ポートと前記吐出室を連通する吐出通路とを備えた
斜板式圧縮機において、前記吸入通路と連通する前記吸
入室の入口部分に空間部を設け、前記空間部から前記吸
入孔が配設された吸入室への通路断面積を前記吸入通路
の断面積の60〜80%とした絞り部を形成したことを
特徴とする斜板式圧縮機。
(1) A cylinder block in which a plurality of cylinders are formed, a plurality of pistons that are fitted into the cylinders and reciprocate in conjunction with a swash plate, and a plurality of suction holes and discharge holes are formed corresponding to the cylinders. a valve plate, a suction valve and a discharge valve that open and close the suction hole and the discharge hole, a rear cover that closes the open end of the cylinder via the valve plate, and the suction hole that is formed in a sealed manner in the rear cover. A swash plate type comprising a suction chamber communicating with the discharge hole, a discharge chamber communicating with the discharge hole, a suction passage communicating the suction port provided in the rear cover with the suction chamber, and a discharge passage communicating the discharge port with the discharge chamber. In the compressor, a space is provided at the entrance of the suction chamber that communicates with the suction passage, and the cross-sectional area of the passage from the space to the suction chamber in which the suction hole is arranged is 60% of the cross-sectional area of the suction passage. A swash plate compressor characterized by forming a constricted portion with a narrowing area of 80%.
(2)リアカバーに形成した吐出通路を吐出室の中央部
に開口させ、前記吐出室と前記吐出通路を連通させたこ
とを特徴とする請求項1記載の斜板式圧縮機。
(2) The swash plate compressor according to claim 1, wherein a discharge passage formed in the rear cover is opened at a central portion of the discharge chamber, and the discharge chamber and the discharge passage are communicated with each other.
JP2055325A 1990-03-07 1990-03-07 Swash plate type compressor Pending JPH03258974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2055325A JPH03258974A (en) 1990-03-07 1990-03-07 Swash plate type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2055325A JPH03258974A (en) 1990-03-07 1990-03-07 Swash plate type compressor

Publications (1)

Publication Number Publication Date
JPH03258974A true JPH03258974A (en) 1991-11-19

Family

ID=12995392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2055325A Pending JPH03258974A (en) 1990-03-07 1990-03-07 Swash plate type compressor

Country Status (1)

Country Link
JP (1) JPH03258974A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020000983A (en) * 2000-06-23 2002-01-09 신영주 Compressor
JP2002021725A (en) * 2000-07-06 2002-01-23 Zexel Valeo Climate Control Corp Reciprocating compressor
KR100687638B1 (en) * 2002-08-29 2007-02-27 한라공조주식회사 Compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020000983A (en) * 2000-06-23 2002-01-09 신영주 Compressor
JP2002021725A (en) * 2000-07-06 2002-01-23 Zexel Valeo Climate Control Corp Reciprocating compressor
KR100687638B1 (en) * 2002-08-29 2007-02-27 한라공조주식회사 Compressor

Similar Documents

Publication Publication Date Title
US5645405A (en) Reciprocating type compressor with muffling chambers
JPH10502151A (en) Free piston end position limiter
US5674054A (en) Reciprocating type compressor
US6296457B1 (en) Discharge pulsation damping apparatus for compressor
US5380166A (en) Piston type refrigerant compressor
KR101165947B1 (en) Variable capacity type swash plate type compressor
US6045342A (en) Refrigerant compressor
JPH0861231A (en) Full stroke positioning structure for variable volume type oscillating plate compressor
US6837695B2 (en) Inlet port for a reciprocating compressor
KR101452568B1 (en) swash plate type variable capacity compressor
JPH03258974A (en) Swash plate type compressor
KR20130092879A (en) Check valve assembly for compressor
KR20140025909A (en) Swash plate type variable capacity compressor
KR102229557B1 (en) Compressor
KR100457483B1 (en) Pulsation restricting structure in compressor
JPH089432Y2 (en) Variable capacity compressor
US5782614A (en) Reciprocating compressor in which gas is supplied to each of opposite ends of a suction chamber extending around a discharge chamber on a plane
JP3724112B2 (en) Linear reciprocating compressor
KR101184211B1 (en) Compressor
KR101543660B1 (en) Compressor and valve assembly for reducing pulsation thereof
JPH0861230A (en) Tilting plate type compressor
JP5391376B2 (en) Variable capacity reciprocating compressor
JP2005042624A (en) Compressor
JP2004278361A (en) Piston compressor
KR101452569B1 (en) swash plate type variable capacity compressor