JPH03258809A - Production of electrically conductive polymer substance - Google Patents

Production of electrically conductive polymer substance

Info

Publication number
JPH03258809A
JPH03258809A JP4510990A JP4510990A JPH03258809A JP H03258809 A JPH03258809 A JP H03258809A JP 4510990 A JP4510990 A JP 4510990A JP 4510990 A JP4510990 A JP 4510990A JP H03258809 A JPH03258809 A JP H03258809A
Authority
JP
Japan
Prior art keywords
polymerization
current
electrode
pole
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4510990A
Other languages
Japanese (ja)
Inventor
Mitsuharu Takagi
光治 高木
Hiroko Maeda
裕子 前田
Shigeru Kurushima
来嶋 茂
Takahiro Kawagoe
隆博 川越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP4510990A priority Critical patent/JPH03258809A/en
Publication of JPH03258809A publication Critical patent/JPH03258809A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To surely and efficiently obtain a homogeneous film of the subject substance suitable as an electrode material of cells or batteries without any unevenness by passing a heavy current in the initial period of polymerization, regulating a polymerization pole in a state suitable for electrolytic polymerization and then advancing the electrolytic polymerization at a low current. CONSTITUTION:A polymerization pole having a passivated film on the surface thereof and a counter pole are dipped in an electrolytic polymerization solution containing a polymerizable monomer to carry out electrolytic polymerization. In the process, the current in the initial period of polymerization is regulated to a heavy current so as to homogeneously destroy the passivated film of the polymerization pole or homogeneously form polymerization active points. The current is passed across both the above-mentioned electrodes at the aforementioned current value for a prescribed time and the polymerization reaction is then advanced at a low current without eluting a metal constituting the polymerization pole and afford the objective substance. Furthermore, the material of the polymerization pole and counter pole is preferably Fe, Ni, etc., and the shape thereof is preferably meshy.

Description

【発明の詳細な説明】 皮呈上皇剋朋公団 本発明は、導電性高分子物質を電解重合法により製造す
る方法に関し、更に詳述すると導電性高分子物質を重合
極上に密着性よく、しかも均一にムラなく重合析出させ
ることができ、電池電極用材料として好適な導電性高分
子物質膜を得ることができる導電性高分子物質の製造方
法に関する。
[Detailed Description of the Invention] The present invention relates to a method for producing a conductive polymer material by electrolytic polymerization, and more specifically, the present invention relates to a method for producing a conductive polymer material by electrolytic polymerization, and more specifically, it relates to a method for producing a conductive polymer material by an electrolytic polymerization method, and more specifically, it relates to a method for producing a conductive polymer material by an electrolytic polymerization method. The present invention relates to a method for producing a conductive polymer material that can be polymerized and deposited uniformly and evenly and that can yield a conductive polymer film suitable as a material for battery electrodes.

従来■及羽 近年、ポリアニリン、ポリピロール、ポリアセチレン等
からなる導電性高分子物質が電池電極材料、センサー材
料等の電子材料として注目されている。
BACKGROUND OF THE INVENTION In recent years, conductive polymer substances such as polyaniline, polypyrrole, and polyacetylene have attracted attention as electronic materials such as battery electrode materials and sensor materials.

従来、これら導電性高分子物質は、そのモノマーを化学
的又は電気化学的に重合して製造されている。特に、モ
ノマーを含む電解重合液中に浸漬した重合極及び対極間
に通電し、重合極上に目的とする高分子物質膜を電気化
学的に重合析出させる電解重合法は、触媒を使用しない
ので不純物を含まない高分子物質膜を得易く、また通電
電流量をコントロールすることによって生成量を容易に
コントロールすることができ、このため好ましく採用さ
れている。
Conventionally, these conductive polymer substances have been produced by chemically or electrochemically polymerizing their monomers. In particular, the electrolytic polymerization method, in which a current is applied between a polymerization electrode and a counter electrode immersed in an electrolytic polymerization solution containing monomers to electrochemically polymerize and precipitate the desired polymeric material film on the polymerization electrode, does not use a catalyst, so impurities are generated. It is easy to obtain a polymeric substance film that does not contain carbon, and the amount of produced material can be easily controlled by controlling the amount of current applied, and therefore, it is preferably employed.

)が”しようとする1 しかしながら、通常電解重合法においては、重合電極と
してステンレススチール等の金属を使用しているが、こ
れらの金属表面には通常不働態皮膜が形成されており、
この不働態皮膜の厚さ1種類1強固さ、崩壊され易さ2
重合活性等にバラツキがあるため、電解重合法により製
造された高分子物質膜には重合ムラが生じるおそれがあ
る。特に重合電極としてメツシュ状の金属を用いた場合
にはメツシュを構成する素線−本一本の不働態皮膜の状
態の相違により、生成物の初期の付着挙動に差を生じ、
重合ムラが生じ易く、更には重合物の付着量低下や金属
の露出、溶出等を生じる場合もある。
However, in the electrolytic polymerization method, metals such as stainless steel are usually used as polymerization electrodes, but a passive film is usually formed on the surface of these metals.
Thickness of this passive film 1 type 1 strength and ease of collapse 2
Due to variations in polymerization activity and the like, there is a risk that polymerization unevenness will occur in polymeric material films produced by electrolytic polymerization. In particular, when a mesh-like metal is used as a polymerization electrode, the initial adhesion behavior of the product will differ due to the difference in the state of the passive film of each strand making up the mesh.
Polymerization unevenness tends to occur, and furthermore, a decrease in the amount of polymer deposited, metal exposure, elution, etc. may occur.

本発明は、上記事情に鑑みなされたもので、重合電極の
表面状態にかかわらず、電池電極材料として好適に使用
される均一でムラのない導電性高分子膜を確実に形成す
ることができる導電性高分子物質の製造方法を提供する
ことを目的とする。
The present invention has been made in view of the above circumstances, and is a conductive material that can reliably form a uniform and even conductive polymer film suitable for use as a battery electrode material, regardless of the surface condition of the polymerized electrode. The purpose of the present invention is to provide a method for producing a polymeric substance.

i を7 するための 本発明者は、上記目的を達成すべく鋭意検討を行なった
結果、電解重合法により、重合極上に導電性高分子物質
膜を重合析出させる場合、重合初期に重合電極の不働態
皮膜が均一に崩壊するか又は重合活性点が均一に形成さ
れる大電流を所定時間通電し、次いで電極を構成する金
属の溶出が生じることのない低電流で重合反応を進行さ
せ、重合終了時までこの電流値を一定に保つか、又は該
電流値から段階的あるいは連続的に増加させることによ
り、金属の溶出を住じることなく、均一でムラのない導
電性高分子膜を電析し得ることを知見し、本発明を完成
したものである。
In order to achieve i 7, the present inventor conducted intensive studies to achieve the above object, and found that when a conductive polymer material film is polymerized and deposited on a polymerization electrode by an electrolytic polymerization method, the polymerization electrode is A large current is applied for a predetermined period of time so that the passive film is uniformly disintegrated or polymerization active sites are uniformly formed, and then the polymerization reaction is allowed to proceed with a low current that does not cause the elution of the metal constituting the electrode. By keeping this current value constant until the end of the process or by increasing it stepwise or continuously, a uniform and even conductive polymer film can be coated without metal elution. The present invention was completed based on the finding that the present invention can be analyzed.

従って、本発明は、重合性単量体を含む電解重合液中に
それぞれ浸漬した表面に不働態皮膜を有する重合極及び
対極の両電極間に通電し、重合極上に高分子物質膜を電
気化学的に重合析出させて導電性高分子物質を製造する
に際し、重合初期電流を上記重合極の不働態皮膜が均一
に崩壊するか又は重合活性点が均一に形成される大電流
とし、該電流値で所定時間通電した後、上記重合極を構
成する金属が溶出することのない低電流で重合反応を進
行させ、該電流値を重合終了時まで一定に保つか又は該
低電流値から段階的あるいは連続的に通it流を増加さ
せることを特徴とする導電性高分子物質の製造方法を提
供する。
Therefore, in the present invention, electricity is applied between a polymerization electrode and a counter electrode each having a passive film on the surface immersed in an electrolytic polymerization solution containing a polymerizable monomer, and a polymeric substance film is electrochemically applied on the polymerization electrode. When producing a conductive polymer substance by polymerization and precipitation, the initial current for polymerization is set to be a large current at which the passive film of the polymerization electrode uniformly collapses or the polymerization active sites are uniformly formed, and the current value After applying current for a predetermined period of time, the polymerization reaction is allowed to proceed at a low current that does not cause the metal constituting the polymerization electrode to elute, and the current value is kept constant until the end of polymerization, or the current value is gradually or gradually changed from the low current value. Provided is a method for producing a conductive polymer material, which is characterized by continuously increasing the flow rate.

以下、本発明につき更に詳しく説明する。The present invention will be explained in more detail below.

本発明の製造方法は、電解重合法により導電性高分子物
質を重合する場合に重合初期に大電流を通電して重合極
を電解重合に適した状態に調整した後、重合に適した低
電流で電解重合を進行させるものである。
In the production method of the present invention, when a conductive polymer substance is polymerized by electrolytic polymerization, a large current is applied at the initial stage of polymerization to adjust the polymerization electrode to a state suitable for electrolytic polymerization, and then a low current suitable for polymerization is applied. This is used to advance electrolytic polymerization.

ここで、本発明の製造方法により重合し得る導電性高分
子物質としては、特に限定はなく、本発明方法は、あら
ゆる種類の導電性高分子物質に適用することができる。
Here, the conductive polymer material that can be polymerized by the production method of the present invention is not particularly limited, and the method of the present invention can be applied to all kinds of conductive polymer materials.

例えば、ポリピロール、ポリチオフェン等の複素五員環
を主鎖に有するものやポリアズレン、ポリパラフェニレ
ン、ポリアニリン、ポリアセチレン等の重合に好適に採
用される。
For example, it is suitably employed in the polymerization of substances having a five-membered heterocyclic ring in the main chain such as polypyrrole and polythiophene, as well as polyazulene, polyparaphenylene, polyaniline, polyacetylene, and the like.

本発明の製造方法は、上記導電性高分子物質のモノマー
を含む電解重合液に浸漬した重合極と対極との間に通電
し、重合極上に導電性高分子物質膜を電気化学的に析出
するものであるが、この場合電解重合液としては、電解
重合されて上記導電性高分子物質となるモノマーを含む
ものであればその組成に制限はなく、通常の組成のもの
を用いることができ、重合する導電性高分子物質膜の種
類、膜厚、物性等に応じて適宜選定することができる。
The manufacturing method of the present invention includes passing an electric current between a polymerization electrode and a counter electrode immersed in an electrolytic polymerization solution containing monomers of the conductive polymer substance to electrochemically deposit a conductive polymer film on the polymerization electrode. However, in this case, the composition of the electrolytic polymerization solution is not limited as long as it contains a monomer that is electrolytically polymerized to become the conductive polymer substance, and a solution with a normal composition can be used. It can be appropriately selected depending on the type, thickness, physical properties, etc. of the conductive polymer material film to be polymerized.

例えば、重合するモノマーとしてアニリン又はアニリン
とその誘導体との混合物を用いる場合の重合液としては
、それらをア七ト二トリル等の有機溶剤にLiBF4等
の塩と共に溶解させても、また水溶液系にしてもよいが
、HBF4. HCA’0.。
For example, when using aniline or a mixture of aniline and its derivatives as a monomer to be polymerized, the polymerization solution can be prepared by dissolving them in an organic solvent such as a7tonitrile together with a salt such as LiBF4, or by dissolving them in an aqueous solution system. However, HBF4. HCA'0. .

HCI 、 HzSOa等の酸性水溶液とするのが好ま
しく、中でもHBF、水溶液が好ましい。この場合、ア
ニリン濃度は0,7〜2モル/lが好ましく、酸濃度は
HBF、を用いた場合1〜4モル/I!が好ましいが、
アニリン濃度に対し酸の濃度を1.2〜2倍とすること
が好ましい。
It is preferable to use an acidic aqueous solution such as HCI or HzSOa, and HBF or an aqueous solution is particularly preferable. In this case, the aniline concentration is preferably 0.7 to 2 mol/l, and the acid concentration is 1 to 4 mol/l when HBF is used! is preferable, but
It is preferable that the acid concentration is 1.2 to 2 times the aniline concentration.

また、上記重合極及び対極の材質に特に制限はないが、
鉄、ニッケル、クロム、アルミニウム。
In addition, there are no particular restrictions on the materials of the polymerization electrode and counter electrode, but
iron, nickel, chromium, aluminum.

チタン、ステンレススチール等の不働態皮膜を形成しや
すい金属を有効に使用することができる。
Metals that easily form a passive film, such as titanium and stainless steel, can be effectively used.

なお、電極の形状はメソシュ状とすることが好ましいが
、エキスバンドメタル状、板状等とすることもできる。
The shape of the electrode is preferably mesocheque, but it can also be expanded metal, plate, or the like.

この場合、重合極及び対極はその材質及び形状とも互い
に同一でも異なっていてもよい。
In this case, the material and shape of the polymerization electrode and the counter electrode may be the same or different from each other.

本発明方法は、上述したように上記電解重合液に上記重
合極及び対極を浸漬し、両極間に通電して重合極上に高
分子物質膜を電析させる際、時間に対して通電電流値を
制御するものである。
In the method of the present invention, as described above, the polymerization electrode and the counter electrode are immersed in the electrolytic polymerization solution, and when electricity is applied between the two electrodes to deposit a polymeric substance film on the polymerization electrode, the value of the applied current is varied with respect to time. It is something to control.

電流の制御の方法は、重合初期に大電流を供給して重合
極の表面状態を調整し、その後重合に適した低電流で重
合反応を進行させるものである。
The current control method is to supply a large current at the initial stage of polymerization to adjust the surface condition of the polymerization electrode, and then proceed with the polymerization reaction at a low current suitable for polymerization.

この場合、重合初期に供給する大電流は重合極の不働態
皮膜が均一に崩壊するか又は重合活性点が均一に形成さ
れる電流値とされ、一方重合反応を進行させる低電流は
重合極を構成する金属が溶出することのない電流値であ
るが、これら重合初期電流及び反応進行中の電流の具体
的な電流値は用いる電解重合液の組成、電極の材質、形
状等によって異なり、これらを考慮して決定される。具
体例を挙げると、例えば、モノマ一種にアニリン。
In this case, the large current supplied at the initial stage of polymerization is set to a value that uniformly disintegrates the passive film of the polymerization electrode or uniformly forms polymerization active sites, while the low current that advances the polymerization reaction This is a current value at which the constituent metals do not elute, but the specific current values of the initial polymerization current and the current during the progress of the reaction vary depending on the composition of the electrolytic polymerization solution used, the material and shape of the electrode, etc. Determined by consideration. To give a specific example, for example, aniline is one type of monomer.

酸種にHBF4を用いた水溶液とSOS 316からな
る100メツシユの電極とを使用した場合は、重合初期
に10〜50mA/cffl程度の電流密度で0.1〜
120秒程度通電し、次いで1〜5mA/ad程度の電
流密度で重合反応を進行させることが好ましい。
When an aqueous solution using HBF4 as the acid species and a 100-mesh electrode made of SOS 316 are used, a current density of 0.1 to 50 mA/cffl is applied at the initial stage of polymerization.
It is preferable to apply current for about 120 seconds and then proceed with the polymerization reaction at a current density of about 1 to 5 mA/ad.

この場合、重合終了時まで1〜5mA/C1i!の電流
密度を一定に保つようにしてもよいが、1〜5n+A/
−から20〜50mA/cJ程度の電流密度まで1段当
り1〜10mA/−程度ずつ多段階的に増加させたり、
又は0.5〜2 mA/ ci−min程度の速度で連
続的に増加させることもできる。なお、この時、重合極
の金属が溶出しないように電流の増加条件を制御するこ
とが肝要である。また、重合温度は、特に制限されない
が、通常1〜15℃とされる。
In this case, 1 to 5 mA/C1i! until the end of polymerization! The current density may be kept constant, but the current density is 1 to 5n+A/
- to a current density of about 20 to 50 mA/cJ, increasing it in multiple steps by about 1 to 10 mA/- per stage,
Alternatively, it can be increased continuously at a rate of about 0.5 to 2 mA/ci-min. At this time, it is important to control the conditions for increasing the current so that the metal of the polymerization electrode does not elute. Further, the polymerization temperature is not particularly limited, but is usually 1 to 15°C.

ここで、本発明方法は重合初期に供給する大電流で電極
、特には重合極の表面状態を適正化するものであるが、
この場合この初期電流が大きすぎると激しい金属溶出が
生じ、重合液に影響を与える場合があり、一方小さすぎ
ると本発明の効果が得られないものである。このため、
初期電流値の決定は上述したように電解液の組成、電極
の材質。
Here, the method of the present invention optimizes the surface condition of the electrode, especially the polymerization electrode, by supplying a large current at the initial stage of polymerization.
In this case, if this initial current is too large, severe metal elution may occur, which may affect the polymerization solution, while if it is too small, the effects of the present invention cannot be obtained. For this reason,
As mentioned above, the initial current value is determined by the composition of the electrolyte and the material of the electrode.

形状2重合温度等を考慮して慎重に行なう必要があり、
必要以上に大きくしないことが重要である。
Shape 2 It is necessary to carefully consider the polymerization temperature, etc.
It is important not to make it larger than necessary.

光尻■四果 本発明の導電性高分子物質の製造方法によれば、電池電
極用材料等として好適な均一でムラのない導電性高分子
物質膜を確実かつ効率的に製造することができる。
According to the method for producing a conductive polymer material of the present invention, it is possible to reliably and efficiently produce a uniform and even conductive polymer film suitable as a material for battery electrodes, etc. .

以下、実施例及び比較例を示し、本発明を具体的に説明
するが、本発明は下記実施例に制限されるものではない
EXAMPLES Hereinafter, the present invention will be specifically explained by showing examples and comparative examples, but the present invention is not limited to the following examples.

〔実施例〕〔Example〕

電解重合液としてアユ9フ1モル/l、ホウフフ化水素
酸2モル/1の混合水溶液を使用し、この重合液をステ
ンレススチール(SOS 316) 製のメソシュの重
合極(みかけの電極面積36 X58σ)及び対極(み
かけの電極面積36 X5Bcm)を具備した電解槽に
収容し、液温を約5℃に保持した。
A mixed aqueous solution of 1 mol/l of Ayu 9F and 2 mol/1 of fluoroboric acid was used as the electrolytic polymerization solution. ) and a counter electrode (apparent electrode area: 36 x 5 Bcm), and the liquid temperature was maintained at about 5°C.

次に、上記重合極と対極との間に第1図に示したパター
ンで通電し、重合極上にポリアニリン膜を重合析出させ
た。
Next, electricity was applied between the polymerization electrode and the counter electrode in the pattern shown in FIG. 1 to polymerize and deposit a polyaniline film on the polymerization electrode.

得られたポリアニリン膜は均一でムラのない肉厚の膜で
あった。また、重合後の重合液中F e ffH度をI
CP測定したところ、Fe量は1.91 ppmであり
、熔出Feは極微量であった。
The obtained polyaniline film had a uniform thickness with no unevenness. In addition, the F e ffH degree in the polymerization solution after polymerization is I
As a result of CP measurement, the amount of Fe was 1.91 ppm, and the amount of melted Fe was extremely small.

〔比較例1〕 通電パターンを第2図に示したパターンとした以外は実
施例と同様にして重合を行ない、ポリアニリン膜を得た
[Comparative Example 1] Polymerization was carried out in the same manner as in the example except that the current pattern was changed to the pattern shown in FIG. 2 to obtain a polyaniline film.

得られたポリアニリン膜は、重合極を構成するステンレ
ススチールメツシュの素線の活性のバラツキによりスジ
状の重合ムラが発生しており、ひどい部分では金属の露
出が確認された。
The resulting polyaniline film had streak-like polymerization unevenness due to variations in the activity of the stainless steel mesh strands constituting the polymerization electrode, and exposed metal was observed in severe areas.

〔比較例2〕 通電パターンを第3図に示したパターンとした以外は実
施例と同様にして重合を行ない、ポリアニリン膜を得た
[Comparative Example 2] Polymerization was carried out in the same manner as in the example except that the current pattern was changed to the pattern shown in FIG. 3 to obtain a polyaniline film.

得られたポリアニリン膜は、膜が荒く、スジ状の重合ム
ラが認められた。また、重合時に重合体(ポリアニリン
膜)の劣化による電極からの重合体の脱落が多く認めら
れ、また重合後の重合液中Pe量は35.7ppm+で
あり、多量のFeが溶出していた。
The obtained polyaniline film was rough and had streak-like polymerization unevenness. Further, during polymerization, a large amount of polymer (polyaniline film) was observed to fall off from the electrode due to deterioration, and the amount of Pe in the polymerization solution after polymerization was 35.7 ppm+, indicating that a large amount of Fe was eluted.

〔比較例3〕 通電パターンを第4図に示したパターンとした以外は実
施例と同様にして重合を行ない、ポリアニリン膜を得た
[Comparative Example 3] Polymerization was carried out in the same manner as in Example except that the energization pattern was changed to the pattern shown in FIG. 4 to obtain a polyaniline film.

得られたポリアニリン膜は、比較例2のものと同様に膜
が荒く、スジ状の重合ムラが認められた。
The obtained polyaniline film was rough like that of Comparative Example 2, and streak-like polymerization unevenness was observed.

また、重合後の重合液中Fe量は19.lppmであっ
た。
Further, the amount of Fe in the polymerization solution after polymerization was 19. It was lppm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は、それぞれ実施例及び比較例1〜3
の通電パターンを示すグラフである。 出 願 人 株式会社ブリデストン
Figures 1 to 4 show Examples and Comparative Examples 1 to 3, respectively.
It is a graph showing the energization pattern. Applicant Brideston Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1.重合性単量体を含む電解重合液中にそれぞれ浸漬し
た表面に不働態皮膜を有する重合極及び対極の両電極間
に通電し、重合極上に高分子物質膜を電気化学的に重合
析出させて導電性高分子物質を製造するに際し、重合初
期電流を上記重合極の不働態皮膜が均一に崩壊するか又
は重合活性点が均一に形成される大電流とし、該電流値
で所定時間通電した後、上記重合極を構成する金属が溶
出することのない低電流で重合反応を進行させ、該電流
値を重合終了時まで一定に保つか又は該低電流値から段
階的あるいは連続的に通電電流を増加させることを特徴
とする導電性高分子物質の製造方法。
1. Electricity is applied between the electrodes, a polymerization electrode and a counter electrode, each of which has a passive film on its surface, which is immersed in an electrolytic polymerization solution containing a polymerizable monomer, to electrochemically polymerize and precipitate a polymeric substance film on the polymerization electrode. When producing a conductive polymer substance, the initial current for polymerization is set to a large current at which the passive film of the polymerization electrode uniformly collapses or the polymerization active sites are uniformly formed, and after the current is passed at this current value for a predetermined period of time. , the polymerization reaction is allowed to proceed at a low current that does not cause the metal constituting the polymerization electrode to elute, and the current value is kept constant until the end of polymerization, or the current is applied stepwise or continuously from the low current value. 1. A method for producing a conductive polymer substance, characterized by increasing the conductivity.
JP4510990A 1990-02-26 1990-02-26 Production of electrically conductive polymer substance Pending JPH03258809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4510990A JPH03258809A (en) 1990-02-26 1990-02-26 Production of electrically conductive polymer substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4510990A JPH03258809A (en) 1990-02-26 1990-02-26 Production of electrically conductive polymer substance

Publications (1)

Publication Number Publication Date
JPH03258809A true JPH03258809A (en) 1991-11-19

Family

ID=12710104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4510990A Pending JPH03258809A (en) 1990-02-26 1990-02-26 Production of electrically conductive polymer substance

Country Status (1)

Country Link
JP (1) JPH03258809A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085574A1 (en) * 2005-02-10 2006-08-17 Japan Carlit Co., Ltd. Catalytic electrode for dye sensitized solar cell and dye sensitized solar cell including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085574A1 (en) * 2005-02-10 2006-08-17 Japan Carlit Co., Ltd. Catalytic electrode for dye sensitized solar cell and dye sensitized solar cell including the same
JP5308661B2 (en) * 2005-02-10 2013-10-09 日本カーリット株式会社 Catalyst electrode for dye-sensitized solar cell and dye-sensitized solar cell including the same

Similar Documents

Publication Publication Date Title
Prejza et al. Electropolymerization of pyrrole in the presence of fluoborate
Strike et al. Electrocatalytic oxidation of methanol on platinum microparticles in polypyrrole
Córdova et al. Effect of anions on the nucleation and growth mechanism of polyaniline
Blankespoor et al. Polymerized 3-methoxythiophen. A processable material for the controlled release of anions
Ortega Electrodeposition of copper on poly (o-aminophenol) modified platinum electrode
JPH03258809A (en) Production of electrically conductive polymer substance
US3826724A (en) Method of removing a metal contaminant
Hülser et al. Electrodeposition of polypyrrole powder on aluminum from aqueous electrolytes
Debiemme-Chouvy et al. Investigation by EQCM of the electrosynthesis and the properties of polypyrrole films doped with sulphate ions and/or a Keggin-type heteropolyanion, SiMo12O404−
Dini et al. EQCM Characterization of some substituted polyterthiophenes
Flamini et al. Characterization of polypyrrole films electrosynthesized onto titanium in the presence of sodium bis (2-ethylhexyl) sulfosuccinate (AOT)
Haseko et al. Reversal pulsing electrodeposition of Ni/polypyrrole composite film
Brandl et al. Influence of the preparation conditions on the properties of electropolymerised polypyrrole
US10604648B2 (en) PH controlled electrochemical deposition of polyelectrolyte complex films
JP3200807B2 (en) Organic thin film manufacturing method
JPH04285634A (en) Production of conductive polymeric substance
JP2675219B2 (en) Method for reactivating anode for continuous production of metal foil
DE3910314C2 (en) Current conductor coated with polymer gel, process for its production and its use as an electrode in an electrolysis cell
Izakovich et al. Composites of polyaniline/superconductor YBa2Cu3O7− δ: production and properties
JP2631910B2 (en) Polypyrrole molded article for polymer secondary battery and method for producing the same
Hernandez et al. Study of the Electrodeposition of Silver Nanoparticles on Glassy Carbon by Galvanostatic Control
JP2567537B2 (en) Metal foil electrolytic production equipment
JPS63199884A (en) Method for electrochemically preventing corrosion of metal
JPH03109421A (en) Polymerization of aniline
JPH0218423A (en) Production of electrically conductive high polymer material