JPH0325860A - Reaction gas supply flow rate controller of fuel cell - Google Patents

Reaction gas supply flow rate controller of fuel cell

Info

Publication number
JPH0325860A
JPH0325860A JP1159192A JP15919289A JPH0325860A JP H0325860 A JPH0325860 A JP H0325860A JP 1159192 A JP1159192 A JP 1159192A JP 15919289 A JP15919289 A JP 15919289A JP H0325860 A JPH0325860 A JP H0325860A
Authority
JP
Japan
Prior art keywords
gas
flow rate
reaction
supply
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1159192A
Other languages
Japanese (ja)
Inventor
Heishiro Goto
後藤 平四郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1159192A priority Critical patent/JPH0325860A/en
Publication of JPH0325860A publication Critical patent/JPH0325860A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To suitably control of a reaction gas by detecting the measuring error of gas supply amount, time dependent deterioration of a fuel cell, and quality variation of reaction gas, and by correcting them. CONSTITUTION:If increase in reaction gas is smaller compared with increase in output current l, a fuel cell 1 is short in the gas. This concentration drop is detected at times t2, t3 with an analyzer 29, and supply amount correction circuit 21 outputs a correction signal 215 which requests additional gas supply to a flow rate control circuit 28. The flow rate control circuit 28 outputs a corrected flow rate control signal 28S which requests additional gas supply with the correction signal 21 to an electropneumatic positioner 4A to increase the opening of a supply control valve 4. The supply amount of reaction air is increased from the time t2 and that of fuel gas from the time t3 over the reference increase line. As a result, the concentration of oxygen in offgas and that of hydrogen are repeatedly controlled toward the reference concentration.

Description

【発明の詳細な説明】 〔産東上の利用分野〕 この発明は、燃料電池に供給する反応ガスとしての燃料
ガスおよび反応空気の供給量を負荷電力の増減に対応し
て過不足なく制御する反応ガス供給流量制御装置に関す
る. 〔従来の技術〕 第3図は従来の反応ガス供給流量制御装置を燃料電池の
燃料ガス給排系統の概略断面図とともに示す構或図であ
b1反応空気給排系統側も第1図に示すと同様に構成さ
れるので図面には省略してある。図において、1は単電
池の積層体からなる燃料電池(セルスタック)であシ、
各単電池にはマトリプクスを挾む1対の電極と、一方の
電極に燃料ガスを供給する燃料ガス通路、および他方の
電極に酸化剤としての反応空気を供給する酸化剤通路と
が互いに直交する方向に形或されることは周知の通シで
ある,2Aおよび2Bは燃料ガス通路に連通ずるよう燃
,am池1の側壁面に取シ付けられた入口,出ロ一対の
燃料ガスマニホールドであシ、水素金主戒分とする燃料
ガス19が入口配・q19A,人口側マニホールド2A
t−介して燃料ガス通路に供給され、図示しない酸化剤
マニホールドを介して供給される反応空気との直接反応
によって発電が行われ、水素濃度が低下したオフガス9
 Bハ出口側マニホールド2B>よび出口配管19Bを
介して例えば燃料改質器のパーナに送られて残存水素が
燃焼し、その生成熱が改質反応の熱源として利用される
[Detailed Description of the Invention] [Field of Application of Santojo] This invention provides a reaction system that controls the supply amount of fuel gas and reaction air as a reaction gas to be supplied to a fuel cell without excess or deficiency in response to an increase or decrease in load power. Regarding gas supply flow rate control device. [Prior Art] Fig. 3 is a configuration diagram showing a conventional reaction gas supply flow rate control device together with a schematic cross-sectional view of the fuel gas supply/discharge system of a fuel cell, and the b1 reaction air supply/discharge system side is also shown in Fig. 1. It is omitted from the drawing because it has the same structure as . In the figure, 1 is a fuel cell (cell stack) consisting of a stack of single cells;
Each unit cell has a pair of electrodes sandwiching a matrix, a fuel gas passage supplying fuel gas to one electrode, and an oxidizer passage supplying reaction air as an oxidizer to the other electrode, which are orthogonal to each other. 2A and 2B are a pair of fuel gas manifolds, an inlet and an outlet, which are attached to the side wall surface of the am tank 1 so as to communicate with the fuel gas passage. Fuel gas 19, which is mainly used as hydrogen fuel, is inlet q19A, population side manifold 2A
The off-gas 9 whose hydrogen concentration has been reduced by direct reaction with reaction air supplied through an oxidizer manifold (not shown) and which is supplied to the fuel gas passage through the
The residual hydrogen is sent to, for example, a PANA of a fuel reformer via the outlet side manifold 2B> and the outlet pipe 19B, and the residual hydrogen is combusted, and the generated heat is used as a heat source for the reforming reaction.

入口配管19Aには電空ボジッシッナ4Aによジドライ
エア駆動される燃料ガス流量の制御弁4、オリ7イス式
の流量検出器5,燃料ガス19のガス組戊分析計9が設
けられ、入口ガス19の水素績度がディスプレイ9Aに
表示される。筐た、7は燃料電池1の出力電流の検出器
、6は降圧チ奮ッパやインパータ等の電力変換器、6A
は電力変換器6の制御部でちゃ、燃料電池1の発電電力
は電力変換器6を介して負荷回路に供給される.燃料ガ
ス19の供給流量の制御回路8は、起動時釦?び定格負
荷の25′:Xないし100%の範囲での出力を指令す
る運転モード信号118が与えられると、これに見合う
ようあらかじめ記憶した基準燃料ガス量の供給金指令す
る制御信号8SをVt空ボジッシ目ナ5Aに向けて出力
し、供給制御弁の開口が空気圧によク制御される。規準
の燃料ガス量が供給されるか否かは流量検出器5で検知
さへ流量発振器5Aの出力信号5Sが流量制御回路8で
指令値と比較されることによう、指令供給量に近づける
制御が行なわれる。一方、燃料電池1の出力電流工の夷
際イ直は電流検出器7で検出され、その出力信号7Sが
流量制御回路8で運転モード信号118と比較されるこ
とによシ、指令制御信号8Sが補正され、出力IE流工
に見合った燃料ガスが供給′される。
The inlet piping 19A is provided with a fuel gas flow control valve 4 driven by dry air by an electro-pneumatic system 4A, an orifice type flow rate detector 5, and a gas assembly analyzer 9 for the fuel gas 19. The hydrogen performance is displayed on the display 9A. 7 is a detector for the output current of the fuel cell 1, 6 is a power converter such as a step-down chipper or an imperter, 6A
is the control section of the power converter 6, and the power generated by the fuel cell 1 is supplied to the load circuit via the power converter 6. The control circuit 8 for the supply flow rate of the fuel gas 19 is operated by a startup button? When the operation mode signal 118 that commands the output in the range of 25': The supply control valve is outputted toward the positioner 5A, and the opening of the supply control valve is controlled by air pressure. Whether or not the standard amount of fuel gas is supplied is detected by the flow rate detector 5, and the output signal 5S of the flow rate oscillator 5A is compared with the command value in the flow rate control circuit 8, so that control is performed to approach the commanded supply amount. will be carried out. On the other hand, the immediate output current of the fuel cell 1 is detected by the current detector 7, and the output signal 7S is compared with the operation mode signal 118 in the flow rate control circuit 8, whereby a command control signal 8S is generated. is corrected, and fuel gas commensurate with the output IE flow is supplied.

な唄、燃料電池の発電反応は酸素(0■)2分の1モル
と水素(Hz)1モルとが反応して(2×96500)
クーロンの電荷と1モルの水全生成するものであシ、こ
れklAの直流電流を1分間出力するに必要な常圧の水
素量および酸素量に換算すると水素量で6 . 9 6
 41Lt/―,反応空気量で3 . 4 8yd/M
iRとなる。したがって、運転モード信号118に見合
った基準供給ガス量を上記関係に基づいてあらかじめ求
め、この値を流量制御回路8の演算部に記憶させてかく
ことによシ、燃料電池1の出力電流に見合った燃料ガス
を供給することができる。なお、反応空気の供給系につ
いても同様である。
Nauta, the power generation reaction of a fuel cell is the reaction between 1/2 mole of oxygen (0■) and 1 mole of hydrogen (Hz) (2 x 96500)
The total amount of coulomb charge and 1 mole of water is generated, and when converted to the amount of hydrogen and oxygen at normal pressure required to output a DC current of klA for 1 minute, the amount of hydrogen is 6. 9 6
41Lt/-, reaction air amount 3. 4 8yd/M
It becomes iR. Therefore, by determining in advance the standard supply gas amount commensurate with the operation mode signal 118 based on the above relationship and storing this value in the arithmetic unit of the flow rate control circuit 8, it is possible to can supply fuel gas. The same applies to the reaction air supply system.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第4図は第3図にかける入口配管部分の拡大図である。 FIG. 4 is an enlarged view of the inlet piping section shown in FIG. 3.

図にかいて、燃料ガス19(普たは反応空気)は一般に
水分を含みプラントなどの長い配管19A内で冷却され
凝縮水を生威し管内にサビなどを発生させる。この水分
と管内の異物が反応ガスとともに流量検出器5のオリ7
イス5Bおよび発信器差圧管5C内に異物5F’tたは
5Gとして徐々に付着または溜ることになる。反応ガス
がオリ7イス5Bの固定穴を通過することにより、流量
に応じてオリフイス5Bの前と後で発生する微圧(0〜
10001WIA(1レベル)を検出して流量を測定す
る流量検出器では異物5F’,5Gが誤測定の原因とな
る.これは、各種の流量計検出にかいても同様である。
As shown in the figure, fuel gas 19 (or reaction air) generally contains moisture and is cooled in a long pipe 19A of a plant or the like, producing condensed water and causing rust etc. in the pipe. This moisture and foreign matter inside the pipe together with the reaction gas
Foreign matter 5F't or 5G gradually adheres or accumulates inside the chair 5B and the transmitter differential pressure pipe 5C. When the reaction gas passes through the fixed hole of the orifice 7 seat 5B, a slight pressure (from 0 to
In a flow rate detector that measures flow rate by detecting 10001WIA (1 level), foreign objects 5F' and 5G cause erroneous measurements. This also applies to various types of flow meter detection.

また、供給制御弁4の制御を決定するノズル4Bにかい
て次の不具合が使用ひん度が重なってくると発生する。
Further, the following problems occur in the nozzle 4B that determines the control of the supply control valve 4 when the frequency of use thereof increases.

すなわち流れをしめ切シ調整するしめ切部分が変形する
点と制御弁グランド4Cが固くなうノズルの動きを悪く
する.流量制御回路8の制御信号8Sを受けて電空ボジ
ッシ胃ナ4Aで発生する空気圧力を制御弁の駆動操作力
としてストロークすなわち開度が決塗る供給制御弁4で
は、空気圧力と弁の開度とが一定の関係に決められてい
るので、弁の動作が重くなった分だけ弁の開度が変化す
ることになる。
In other words, the tightening part that tightens and adjusts the flow becomes deformed, and the control valve gland 4C becomes stiff, making the movement of the nozzle worse. In the supply control valve 4, which receives the control signal 8S of the flow rate control circuit 8 and uses the air pressure generated in the electropneumatic gas cylinder 4A as the driving operation force of the control valve, the stroke, that is, the opening degree is determined, the air pressure and the opening degree of the valve are changed. Since these are determined to have a certain relationship, the opening degree of the valve will change by the amount that the valve operation becomes heavier.

したがって、弁および流量検出器の不具合によって供給
ガス量に5%から10%程度の測定誤差を生じ、これが
原因でガス不足,ガス余シ現象が頻繁に発生する。こと
に、これらの測定誤差によって燃料電池にガス不足が生
じた場合には燃料!池の寿命低下を招くという問題が発
生するが、ガス不足を検知する手段を持たない従来の装
置では上記寿命低下を阻止できないという欠点がある。
Therefore, malfunctions in the valves and flow rate detectors cause measurement errors of about 5% to 10% in the amount of supplied gas, which frequently causes gas shortages and gas surpluses. In particular, if the fuel cell runs out of gas due to these measurement errors, the fuel! A problem arises in that the lifetime of the pond is shortened, but conventional devices that do not have means for detecting gas shortage have the disadvantage of not being able to prevent the shortening of the lifetime.

さらに、燃料電池の発電電圧は発電の継続とともに徐々
に低下するものであシ、反応ガスの供給量を少しづつ増
加して径年劣化による電圧の低下を防ぐことが必要にな
る。しかしながら、従来の装置では定格出力の25%か
ら100%の範囲の運転モードに対して基準供給ガス量
が一定に決められているために、出力電圧の低下を阻止
できないという問題があり、かつ反応空気の圧力変化や
燃料ガスの水素濃度の変化などの質的変化にも対応でき
ないという問題がある。
Furthermore, the voltage generated by the fuel cell gradually decreases as power generation continues, and it is necessary to gradually increase the amount of reactant gas supplied to prevent the voltage from decreasing due to aging. However, in conventional devices, the standard supply gas amount is fixed for the operation mode in the range of 25% to 100% of the rated output, so there is a problem that it is impossible to prevent the output voltage from decreasing. There is a problem in that it cannot respond to qualitative changes such as changes in air pressure or changes in hydrogen concentration of fuel gas.

この発明の目的は、ガス供給量の測定誤差,燃料電池の
径年劣化,あるいは反応ガスの質的変化を検知してこれ
を補正することによシ、反応ガスの過不足のない制御を
実現することにある。
The purpose of this invention is to detect and correct errors in measurement of gas supply amount, deterioration of the fuel cell over time, or qualitative changes in the reactant gas, thereby realizing control to ensure that there is no excess or deficiency of the reactant gas. It's about doing.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、この発明によれば、単電池
の積層体からなり各単電池の燃料ガス通路および酸化剤
通路に反応ガスとしての燃料ガスおよび反応空気をそれ
ぞれ供給して発電を行う燃料電池が、前記反応ガスの入
口配管に設けられた一対の流量制御弁と、負荷の電力要
求によって定まる所定量の燃料ガスおよび反応空気の供
給流量の制御信号を前記流量制御弁に向けてそれぞれ出
力する流量制御回路とを備えたものにおいて、前記燃料
ガスおよび反応空気それぞれの出口配管に設けられてオ
フガス中の水素濃度および酸素濃度を連続的に分析する
一対の分析計と、この一対の分析計の分析結果とあらか
じめ定まる基準濃度とを比較して分析結果を基準濃度に
近づけるよう燃料ガスおよび反応空気の供給量を補正す
る信号を前記流量制御回路に向けて出力する供給量補正
回路とを備えるものとする。
In order to solve the above problems, according to the present invention, power is generated by supplying fuel gas and reaction air as a reaction gas to the fuel gas passage and the oxidizer passage of each cell, which is composed of a stack of cells. The fuel cell has a pair of flow control valves provided in the inlet piping for the reaction gas, and a control signal for supplying flow rates of predetermined amounts of fuel gas and reaction air determined by the power demand of the load to the flow control valves, respectively. a pair of analyzers installed in the outlet piping of each of the fuel gas and reaction air to continuously analyze the hydrogen concentration and oxygen concentration in the off-gas; a supply amount correction circuit that compares the analysis result of the meter with a predetermined reference concentration and outputs a signal to the flow rate control circuit to correct the supply amount of the fuel gas and reaction air so that the analysis result approaches the reference concentration. shall be prepared.

〔作用〕[Effect]

上記手段にかいて、燃料電池の反応ガス通路の出口側で
オフガス中の水素濃度および酸素濃度をそれぞれ連続的
に分析し、燃料電池の水素消費率および酸素消費率によ
ってあらかじめ決筐るオフガス中の基準濃度レよび基準
酸素濃度をそれぞれ一定に保つよう反応ガスとしての燃
料ガスおよび反応空気の供給t’t補正するよう構成し
たことによう、ガス不足,ガス余シの発生原因が測定誤
差,燃料電池の径年劣化,反応ガスの質的変化のいずれ
である場合にも、これを検知して反応ガスの供給量を適
正値に補正することができる.〔実施例〕 以下この発明を実施例に基づいて説明する.第1図はこ
の発明の実施例になる燃料電池の反応ガス供給流量制御
装置を燃料電池の燃料ガス系についてのみ示す構或図、
第2図は第1図に示す装置にかける制御状態を示すタイ
ムチャートであう、従来の装置と同じ部分には同一参照
符号を用いることによシ詳細な説明を省略する。図にお
いて、燃科電IlltIiは燃料ガス通路の出口側マニ
ホールド2Bに連通ずる出口配管19B側にオフガス9
Bを連続的に分析して水素濃度を求める分析計29を備
える。筐た、流量制御回路28には定格出力の何%で発
電運転するかを指定する運転モード信号11s,>よび
電力変換器6の制御部6Aからの出力増減指令信号12
8とが入力される。
By using the above means, the hydrogen concentration and oxygen concentration in the off-gas are each continuously analyzed at the exit side of the reactant gas passage of the fuel cell, and the off-gas concentration is determined in advance based on the hydrogen consumption rate and oxygen consumption rate of the fuel cell. The structure is configured to correct the supply of fuel gas and reaction air as reaction gases so as to keep the reference concentration level and reference oxygen concentration constant respectively. Whether it is due to aging of the battery or a qualitative change in the reactant gas, it is possible to detect this and correct the reactant gas supply amount to an appropriate value. [Example] This invention will be explained below based on an example. FIG. 1 is a configuration diagram showing only the fuel gas system of the fuel cell of a reactant gas supply flow rate control device for a fuel cell according to an embodiment of the present invention;
FIG. 2 is a time chart showing the control state applied to the apparatus shown in FIG. 1. The same reference numerals are used for the same parts as in the conventional apparatus, and detailed explanation thereof will be omitted. In the figure, the off gas 9 is connected to the outlet pipe 19B side which communicates with the outlet side manifold 2B of the fuel gas passage.
It is equipped with an analyzer 29 that continuously analyzes B to determine the hydrogen concentration. In addition, the flow rate control circuit 28 includes an operation mode signal 11s that specifies at what percentage of the rated output the power generation operation should be performed, and an output increase/decrease command signal 12 from the control unit 6A of the power converter 6.
8 is input.

また二つの信号11s>よび123はORゲート22を
介してANDゲート26にゲート信号として加えられ、
分析計29の出力濃度信号298とのAND条件によク
濃度信号29St−供給量補正回路21に向けて出力す
る.供給量補正回路21にはオフガス9B中の基準水素
濃度があらかじめ記憶させてあシ、濃度信号298が基
準水素濃度を下廻る場合には燃料ガス19の供給を増し
,上廻る場合には供給を減らす補正信号″f:流量制御
回路28に向けて出力する.また、燃料電池1の反応空
気系にも第1図に示したと同様な構或゛の反応空気供給
流量制御装置が設けられる。
Furthermore, the two signals 11s> and 123 are applied as gate signals to the AND gate 26 via the OR gate 22,
The concentration signal 29St is outputted to the supply amount correction circuit 21 according to the AND condition with the output concentration signal 298 of the analyzer 29. A reference hydrogen concentration in the off-gas 9B is stored in the supply amount correction circuit 21 in advance, and when the concentration signal 298 falls below the reference hydrogen concentration, the supply of the fuel gas 19 is increased, and when it exceeds the reference hydrogen concentration, the supply is stopped. A correction signal "f" to be reduced is outputted to the flow rate control circuit 28.A reaction air supply flow rate control device having a structure similar to that shown in FIG. 1 is also provided in the reaction air system of the fuel cell 1.

供給量補正回路21に設定する基準水素濃度としては、
燃料電池入口側での燃料ガス19中の水素濃度t−77
%,反応空気の酸素濃度を21%と仮定し、筐た、燃料
電池1の水素の利用率を75%.酸素の利用率を50%
とした場合、燃料電池出口側にかける燃料ガスのオフガ
ス9B中の水素濃度は約45.5%,図示しない反応空
気のオフガス中の酸素濃度は11.7%となシ、この値
が基準水素濃度および基準酸素濃度となる。
The reference hydrogen concentration to be set in the supply amount correction circuit 21 is as follows:
Hydrogen concentration t-77 in fuel gas 19 on the fuel cell inlet side
%, assuming that the oxygen concentration of the reaction air is 21%, and the hydrogen utilization rate of the fuel cell 1 is 75%. Oxygen utilization rate 50%
In the case of concentration and reference oxygen concentration.

上述のように構成された装置にかいて、第2図に示すよ
うに運転モード信号118によシ定格電流の例えば50
%に相当する出力電流工.。を出力している状態で、燃
料電池の流fffflJ御回路28に時刻tx時点で出
力電流の増加を要求する増減指令信号128が入力され
たと仮定する.流量制御回路28はこの増加要求に見合
う反応ガスの供給増加を指令する流量制御信号28St
−電空ボジッシlナ4Aに向けて出力し、供給制御弁4
の開度が増すことによb1反応空気卦よび燃料ガスの供
給量は第4図に示す基準増加ラインに沿って徐々に増加
する.しかし、出力電流Iの増加に比べて反応ガスの増
加量が少なかった場合、燃料電池1ぱガス不足気味とな
シ、オフガス中の酸素濃度および水素濃度はその基準濃
度11.7%および45.5%よシ少くなる.この濃度
低下は分析計29で時刻1, >よび1, でそれぞれ
検出され、供給量補正回路21が供給量の追加をうなが
す補正信号21Se流量制御回路28に向けて出力する
.流量制御回路28は補正信号213を受けて反応ガス
の追加供給をうながす補正した流量制御信号28St−
電空ボジクショナ4Aに向けて山力し、これによシ供給
制御弁4の開度が増すことによシ、反応空気は時刻12
時点から.燃料ガスはt,時点からそれぞれ供給量が基
準増加ラインを超えて増加し、その結果、オフガス中の
酸素釦よび水素の濃度を基準濃度に向けて安定化する制
御が繰シ返し行われる。なか、供給量の増加は流量検出
器5で検出され、流量発振器の出力信号5Sが流量制御
回路28で指令値と比較され、指令供給量に向けて安定
化する制御が行われる。なか、分析計29の分析に要す
る時間はあらかじめ把握できるので,マニホールドの容
積とも併せて大きめの補正信号213k出力するようそ
の演算条件金あらかじめ設定してかくことにより、時間
遅れの影響も含めて補正することができる.筐た、AN
Dゲート23を設けて濃度信号293と運転モード信号
11S,増減指令信号12Sのいずれかとが入力されな
いと供給量補正回路が動作しないよう構威したことによ
シ、分析計の故障などによって濃度信号298が著しく
低下した場合、供給量補正回路21が過大な補正信号2
1Sを出力し、過大な反応ガスが供給されることによる
ガス余シ現象を防止することができる。
In the device configured as described above, the operating mode signal 118 is used to set the rated current to 50, for example, as shown in FIG.
Output current equivalent to %. . Assume that an increase/decrease command signal 128 requesting an increase in the output current is input to the fuel cell flow fffflJ control circuit 28 at time tx while the output current is being output. The flow rate control circuit 28 sends a flow rate control signal 28St that commands an increase in the supply of reactant gas to meet this increase request.
- Output towards the electropneumatic body cylinder 4A, supply control valve 4
As the opening degree increases, the supply amount of b1 reaction air and fuel gas gradually increases along the reference increase line shown in Fig. 4. However, when the amount of increase in the reactant gas is smaller than the increase in the output current I, the fuel cell 1 tends to run out of gas, and the oxygen and hydrogen concentrations in the off-gas are 11.7% and 45%, respectively. 5% less. This decrease in concentration is detected by the analyzer 29 at times 1, > and 1, respectively, and the supply amount correction circuit 21 outputs a correction signal 21Se to the flow rate control circuit 28, which urges addition of the supply amount. The flow rate control circuit 28 receives the correction signal 213 and generates a corrected flow rate control signal 28St- for prompting the additional supply of the reaction gas.
The reaction air moves towards the electro-pneumatic positioner 4A, which increases the opening degree of the supply control valve 4.
From that point on. The supply amount of the fuel gas increases beyond the reference increase line from time point t, and as a result, control is repeatedly performed to stabilize the concentrations of oxygen and hydrogen in the off-gas toward the reference concentration. Among these, an increase in the supply amount is detected by the flow rate detector 5, and the output signal 5S of the flow rate oscillator is compared with a command value in the flow rate control circuit 28, and control is performed to stabilize the supply amount toward the commanded supply amount. Since the time required for analysis by the analyzer 29 can be known in advance, by setting the calculation conditions in advance to output a larger correction signal 213k in conjunction with the manifold volume, correction including the effect of time delay can be made. can do. Keita, AN
The D gate 23 was provided to prevent the supply amount correction circuit from operating unless the concentration signal 293, operation mode signal 11S, or increase/decrease command signal 12S were input. 298, the supply amount correction circuit 21 detects an excessive correction signal 2.
By outputting 1S, it is possible to prevent a gas surplus phenomenon caused by supplying an excessive amount of reaction gas.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように、オフガス中の水素濃度釦よび
酸素濃度を反応ガス供給流量制御の制御要件に加えて、
あらかじめ定1る基準濃度に対する偏差に応じて反応ガ
スの供給量を補正するようmgLた、その結果、供給流
量の測定誤差や反応ガスの質的変化などオフガス中の水
素または酸素濃度に直接影響を及ぼす異常はオフガス濃
度を検出して供給量金補正することによシ、ガス不足や
ガス余シ現象を抑さえて効率のよい発電運転を行うこと
ができる.一方、燃料電池の径年劣化による出力電圧の
低下は出力電力の低下金招くので、増加指令金電力によ
って行うことによって余分な反応ガスを供給するととも
に、それでも出力t力が不足することによって生じたガ
ス不足は、これをオフガス濃度で検知して反応ガスの供
給f’t補正することによシ、出力電圧の低下金招くこ
となく発電運転を侍続することができる。
As mentioned above, this invention adds the hydrogen concentration button and oxygen concentration in the off-gas to the control requirements for reaction gas supply flow rate control.
The reactant gas supply amount is corrected according to the deviation from the predetermined standard concentration, and as a result, there are no direct effects on the hydrogen or oxygen concentration in the off-gas, such as measurement errors in the supply flow rate or qualitative changes in the reactant gas. By detecting the off-gas concentration and correcting the supply amount, it is possible to suppress gas shortages and gas surpluses and perform efficient power generation operations. On the other hand, a decrease in output voltage due to age-related deterioration of the fuel cell leads to a decrease in output power, so by increasing the command power, extra reaction gas is supplied, and even then, the output power is insufficient. By detecting a gas shortage using the off-gas concentration and correcting the reaction gas supply f't, it is possible to continue the power generation operation without causing a drop in the output voltage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例になる燃料這池の反応ガス供
給流i制御装置を示す構或図、第2図は第1図に示す装
置にかける制御状態金示すタイムチャート、第6図は従
来の装置金示す構成図、第4図は従来の装置に釦ける入
口配管部分を拡大して示す断面図である。 1・・・燃料電M,2A,2B・・・マニホールド、4
・・・供給制御弁、4A・・・電動ボジッシヲナ、5・
・・流量検出器、6・・・電力変換器、7・・・電流検
出器、8,28・・・流量制御回路、9・・・分析計(
入口側)、9B・・・オフガス、19・・・燃料ガス、
19A・・・入口配管、19B・・・出口配管、21・
・・供給量補正回路29・・・分析計(出口@),11
S・・・運転モード信号、128・・・増′IA指令信
号(パワー信号)、8′8 2B 第4回
FIG. 1 is a configuration diagram showing a control device for reactant gas supply flow of a fuel tank according to an embodiment of the present invention, FIG. 2 is a time chart showing the control status applied to the device shown in FIG. 1, and FIG. 4 is a block diagram showing the configuration of a conventional device, and FIG. 4 is an enlarged cross-sectional view showing an inlet piping section connected to a button of the conventional device. 1... Fuel electric M, 2A, 2B... Manifold, 4
...Supply control valve, 4A...Electric body positioner, 5.
...Flow rate detector, 6...Power converter, 7...Current detector, 8, 28...Flow rate control circuit, 9...Analyzer (
Inlet side), 9B...off gas, 19...fuel gas,
19A...Inlet piping, 19B...Outlet piping, 21.
・・Supply amount correction circuit 29 ・・Analyzer (outlet @), 11
S... Operation mode signal, 128... Increased IA command signal (power signal), 8'8 2B 4th

Claims (1)

【特許請求の範囲】[Claims] 1)単電池の積層体からなり各単電池の燃料ガス通路お
よび酸化剤通路に反応ガスとしての燃料ガスおよび反応
空気をそれぞれ供給して発電を行う燃料電池が、前記反
応ガスの入口配管に設けられた一対の流量制御弁と、負
荷の電力要求によって定まる所定量の燃料ガスおよび反
応空気の供給流量の制御信号を前記流量制御弁に向けて
それぞれ出力する流量制御回路とを備えたものにおいて
、前記燃料ガスおよび反応空気それぞれの出口配管に設
けられてオフガス中の水素濃度および酸素濃度を連続的
に分析する一対の分析計と、この一対の分析計の分析結
果とあらかじめ定まる基準濃度とを比較して分析結果を
基準濃度に近づけるよう燃料ガスおよび反応空気の供給
量を補正する信号を前記流量制御回路に向けて出力する
供給量補正回路とを備えたことを特徴とする燃料電池の
反応ガス供給流量制御装置。
1) A fuel cell, which is composed of a stack of unit cells and generates electricity by supplying fuel gas and reaction air as a reaction gas to the fuel gas passage and oxidizer passage of each unit cell, respectively, is installed in the inlet piping for the reaction gas. a pair of flow rate control valves, and a flow rate control circuit that outputs control signals for supply flow rates of predetermined amounts of fuel gas and reaction air determined by the power demand of the load to the flow rate control valves, A pair of analyzers are installed in the outlet pipes of the fuel gas and reaction air to continuously analyze the hydrogen concentration and oxygen concentration in the off-gas, and the analysis results of the pair of analyzers are compared with a predetermined reference concentration. and a supply amount correction circuit that outputs a signal to the flow rate control circuit to correct the supply amount of fuel gas and reaction air so that the analysis result approaches the reference concentration. Supply flow control device.
JP1159192A 1989-06-21 1989-06-21 Reaction gas supply flow rate controller of fuel cell Pending JPH0325860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1159192A JPH0325860A (en) 1989-06-21 1989-06-21 Reaction gas supply flow rate controller of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1159192A JPH0325860A (en) 1989-06-21 1989-06-21 Reaction gas supply flow rate controller of fuel cell

Publications (1)

Publication Number Publication Date
JPH0325860A true JPH0325860A (en) 1991-02-04

Family

ID=15688328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1159192A Pending JPH0325860A (en) 1989-06-21 1989-06-21 Reaction gas supply flow rate controller of fuel cell

Country Status (1)

Country Link
JP (1) JPH0325860A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210047A (en) * 2005-01-26 2006-08-10 Toshiba Fuel Cell Power Systems Corp Fuel cell system
JP2007066845A (en) * 2005-09-02 2007-03-15 Denso Corp Fuel cell system
JP2008210629A (en) * 2007-02-26 2008-09-11 Kyocera Corp Fuel cell system
JP2010051167A (en) * 2009-07-31 2010-03-04 Equos Research Co Ltd Display for vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58133771A (en) * 1982-02-01 1983-08-09 Hitachi Ltd Control system of fuel cell power generating plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58133771A (en) * 1982-02-01 1983-08-09 Hitachi Ltd Control system of fuel cell power generating plant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210047A (en) * 2005-01-26 2006-08-10 Toshiba Fuel Cell Power Systems Corp Fuel cell system
JP4634163B2 (en) * 2005-01-26 2011-02-16 東芝燃料電池システム株式会社 Fuel cell system
JP2007066845A (en) * 2005-09-02 2007-03-15 Denso Corp Fuel cell system
JP2008210629A (en) * 2007-02-26 2008-09-11 Kyocera Corp Fuel cell system
JP2010051167A (en) * 2009-07-31 2010-03-04 Equos Research Co Ltd Display for vehicle

Similar Documents

Publication Publication Date Title
CA2632963C (en) Fuel cell system, moving object equipped with fuel cell system, and abnormality judgment method for fuel cell system
US20090233132A1 (en) Fuel Cell System and Mobile Article
US20100151343A1 (en) Fuel cell system and gas leakage detection device
JP4359856B2 (en) Fuel cell system and moving body
KR101190170B1 (en) Fuel cell system
US8956773B2 (en) System and method for detecting a fuel cell anode gas composition
JP2008218097A (en) Fuel cell system
WO2007013668A1 (en) Fuel cell system
CA2917986C (en) Fuel cell system and control method of fuel cell system
JPH0458463A (en) Output control device for fuel cell power generating system
CN101861671B (en) Fuel cell system
CN101405907A (en) Fuel cell assembly
CN110534770B (en) Fuel cell system
JPH0325860A (en) Reaction gas supply flow rate controller of fuel cell
JP4139311B2 (en) Shutoff valve open / close state determination system and shutoff valve open / close state determination method
JP2008293761A (en) Fuel cell system
JP2004342475A (en) Operation control of fuel cell system
JPS63310573A (en) Fuel line control system of fuel cell power generating facilities
JP2008262875A (en) Fuel cell system and output diagnosis method of fuel cell
JP2008140642A (en) Fuel cell system
JP6155795B2 (en) Fuel cell system
JP2008171623A (en) Fuel cell system
JPS60207255A (en) Fuel cell control system
CN116864732A (en) Fuel cell system in low-temperature environment and purging method
JPH07105964A (en) Fuel cell power generating device and method for controlling same