JPH03258396A - Sewage treating device - Google Patents

Sewage treating device

Info

Publication number
JPH03258396A
JPH03258396A JP2054989A JP5498990A JPH03258396A JP H03258396 A JPH03258396 A JP H03258396A JP 2054989 A JP2054989 A JP 2054989A JP 5498990 A JP5498990 A JP 5498990A JP H03258396 A JPH03258396 A JP H03258396A
Authority
JP
Japan
Prior art keywords
tank
filter
treated water
raw water
filter layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2054989A
Other languages
Japanese (ja)
Inventor
Katsuyuki Kataoka
克之 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP2054989A priority Critical patent/JPH03258396A/en
Publication of JPH03258396A publication Critical patent/JPH03258396A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To produce treated water with high efficiency by forming a bed packed with a granular filter medium having a specified sp.gr. at the upper part in a tank, providing an air diffuser below or in the filter medium bed, using the lower part as a settling part and furnishing a raw water inlet part to the settling part and a treated water outlet part at the upper part of the tank. CONSTITUTION:The raw water contg. SS, soluble BOD, etc., such as sewage is introduced into the settling part 5 in the tank from the raw water inlet part 6 to settle and separate SS in the raw water. The raw water with the SS separated and removed in the settling part 5 is passed as an upward flow through the bed 2 packed with the granular filter medium having >=1.0 sp.gr. at the upper part of the tank, hence the fine SS which has not been settled and separated at the settling part 5 is filtered off, and the soluble SS is removed and the NH4 is converted to N by the action of the biological membrane deposited on the surface of the filter medium constituting the bed 2. The oxygen necessary for the absorbing action of the biological membrane deposited on the filter medium surface is supplied from the diffuser and allowed to ascend in the bed 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、下水、し尿系汚水、各種有機性産業廃水など
のSS、 BOD、 NH,−N等を含む有機性汚水の
新規な処理装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a novel treatment device for organic wastewater containing SS, BOD, NH, -N, etc. such as sewage, human waste water, and various organic industrial wastewater. It is related to.

〔従来の技術〕[Conventional technology]

代表的な有機性汚水の処理として、下水の処理を例に挙
げて従来の技術を説明すれば、下水処理の最も代表的な
方法は、活性汚泥法であり、適用範囲が広いという重要
な長所をもっており、最も多く採用されている。
To explain conventional technologies using sewage treatment as an example of a typical organic sewage treatment, the most typical method for sewage treatment is the activated sludge method, which has the important advantage of being widely applicable. and is the most widely used.

一方、近年、好気性生物濾床法が開発されている。この
方法は、砂、アンスラサイト、活性炭などの粒状濾材か
らなる炉床に下水を下向流で流過させると共に、散気管
等から空気泡を上昇させ、向流接触させて処理するもの
である。その場合、炉床の濾材表面には、BOD資化菌
、硝化菌などの好気性生物膜が付着しており、この炉床
において生物処理とSSの濾過除去が同時に行われるこ
とが最大の特徴となっている。
On the other hand, in recent years, an aerobic biological filter bed method has been developed. In this method, sewage flows downward through a hearth made of granular filter media such as sand, anthracite, and activated carbon, and air bubbles are raised from a diffuser pipe, etc., and the sewage is treated by countercurrent contact. . In this case, aerobic biofilms such as BOD-assimilating bacteria and nitrifying bacteria are attached to the surface of the filter medium in the hearth, and the biggest feature is that biological treatment and SS filtration removal are performed at the same time in this hearth. It becomes.

また、下水等を生物学的脱窒素処理する場合、というフ
ローで行われている。
In addition, biological denitrification treatment of sewage, etc. is carried out as follows.

一方、近年、砂、アンスラサイトなどの濾材を用いた好
気性生物が床法及び嫌気性生物濾床法が開発され、これ
らを用いた生物学的硝化脱窒素プロセスが試験されてい
る。即ち、 というフローで硝化脱窒素を行う方法が、試験的に検討
されている。
On the other hand, in recent years, an aerobic biological bed method and an anaerobic biological filter bed method using filter media such as sand and anthracite have been developed, and biological nitrification and denitrification processes using these have been tested. In other words, a method of performing nitrification and denitrification using the following flow is being experimentally studied.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記従来の活性汚泥処理法は、次のよう
な大きな欠点をもっている。
However, the conventional activated sludge treatment method has the following major drawbacks.

■ 最初沈殿池−エアレーシツンタンクー最終沈殿池と
いう3つの別個の槽を必要とするため、設置面積が大き
く、建設費も高額となる。
■ Three separate tanks are required: an initial sedimentation tank, an air precipitation tank, and a final sedimentation tank, resulting in a large installation area and high construction costs.

■ エアレーション動力効率が良(ないので、エアレー
ションコストが多額となる。
■ Aeration power efficiency is good (there is no, so aeration costs are high).

■ 最終沈殿池におけるSSのキャリオーバーが避けら
れず、最初沈殿池のSS除去効果も70%程度の除去率
しか得られない。
■ Carryover of SS in the final sedimentation tank is unavoidable, and the removal rate of SS in the first sedimentation tank is only about 70%.

■ 放流される処理水のSSを20■/It以下にする
ためには、最終沈殿池のあとに砂が適地を必要とする。
■ In order to reduce the SS of the treated water to 20 / It or less, a suitable place for sand is required after the final settling tank.

■ 活性汚泥の沈降性がしばしば悪化する。■ Sedimentability of activated sludge often deteriorates.

また、好気性生物濾床法も次のような欠点をもっている
Furthermore, the aerobic biological filter bed method also has the following drawbacks.

■ 原水SSが多い場合は、前段に沈殿池を設けなけれ
ばならない、さもないと、炉床の目づまりが早く、実用
的でない。
■ If there is a lot of raw water SS, it is necessary to install a settling tank at the front stage, otherwise the hearth will clog quickly and it is not practical.

■ 原水BODが高い場合にも、生物膜の増殖量が多く
なり、炉床の目づまりが速やかに進行してしまうため、
適用できない。
■ Even when the raw water BOD is high, the amount of biofilm growth increases and the clogging of the hearth progresses rapidly.
Not applicable.

■ 炉床目づまり時の洗浄用水として、好気性生物濾床
装置からの清澄が通水を消費しなけらばならず、そのた
め処理水の生産効率が悪い。
■ As water for cleaning when the hearth is clogged, clarification from the aerobic biological filter bed device must consume water, which results in poor production efficiency of treated water.

■ 洗浄排水の処理に、別個の沈殿槽を必要とする。■ A separate sedimentation tank is required to treat washing wastewater.

■ 炉床の下部の炉床支持構造、散気方式が複雑なため
、建設費が高く、スケールアンプも必ずしも容易ではな
い。
■ Construction costs are high because the hearth support structure at the bottom of the hearth and the air diffusion system are complicated, and it is not always easy to build a scale amplifier.

また、前記従来の生物学的脱窒素処理においては、設備
の設置面積、建設費が多大であり、NH4−11の硝化
用の空気ブロワ−の動力も大きいという問題点があり、
しかも“最初沈殿池”と“最終沈殿池゛におけるSSの
沈降分離が不安定であり、処理水質の悪化をしばしば招
いていた。
In addition, in the conventional biological denitrification treatment, the installation area and construction cost of the equipment are large, and the power of the air blower for nitrification of NH4-11 is also large.
Moreover, the sedimentation and separation of SS in the "initial settling tank" and the "final settling tank" was unstable, which often led to deterioration of the quality of the treated water.

本発明は、前記従来技術の欠点のすべてを解決し、極め
て高度の処理水を生産効率高(得ることができる汚水処
理装置を提供することを目的とする。
An object of the present invention is to solve all of the drawbacks of the prior art described above and to provide a sewage treatment device that can produce extremely high quality treated water with high production efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の請求項1では、槽内の上方部に比重1.0以上
の粒状が材を充填した濾材層を浸漬保持し、該濾材層の
下部又は内部に散気装置を配備し、その下方部を沈殿部
として該沈殿部に原水流入部を設け、さらに槽上部に処
理水流出部を設けたことを特徴とする汚水処理装置であ
り、 本発明の請求項2では、請求項1における濾材層の洗浄
時の洗浄排水を前記沈殿部へ返送する洗浄排水返送路を
設けたことを特徴とする汚水処理装置であり、 本発明の請求項3では、槽内の上方部に濾材層を浸漬保
持し、槽内下方部を沈殿部として該沈殿部に原水流入部
を設けると共に槽上部に1次処理水流出部を設けた第1
の楢と、槽内の上方部に比重1.0以上の粒状濾材を充
填した濾材層を浸漬保持すると共に該濾材層の下部又は
内部に散気装置を配備し、その下方を沈殿部とし、槽上
部に最終処理水流出部を設けた第2の槽とを並設し、前
記第1の槽の1次処理水流出部と前記第2の槽内下方の
沈殿部とを連通せしめたことを特徴とする汚水処理装置
であり、 本発明の請求項4では、槽内の上方部に比重1.0以上
の粒状濾材を充填した濾材層を浸漬保持し、該濾材層内
に散気装置を埋設して濾材層の散気装置より上部の部分
を好気性生物膜処理部とすると共に散気装置より下部の
部分を嫌気性生物膜処理部とし、さらに槽内下方部を沈
殿部として該沈殿部に原水流入部を設け、槽上部に処理
水流出部を設けたことを特徴とする汚水処理装置であり
、本発明の請求項5では、請求項4における処理水流出
部から流出する処理水の一部を濾材層下部へ循環する循
環路を設けたことを特徴とする汚水処理装置であり、 本発明の請求項6では、槽内の上方部に比重1.0以上
の粒状濾材を充填した濾材層を浸漬保持し、該濾材層の
下部又は内部に散気装置を配備し、槽内下方部を沈殿部
として該沈殿部に原水流入部を設けると共に槽上部に1
次処理水流出部を設けた処理槽と、比重1.0以上の粒
状濾材の炉床を設けた好気性生物J床装置とを並設し、
前記処理槽の1次処理水流出部と前記好気性生物が床装
置とを連通せしめたことを特徴とする汚水処理装置であ
る。
In claim 1 of the present invention, a filter layer filled with granular material having a specific gravity of 1.0 or more is immersed and held in the upper part of the tank, and an aeration device is provided below or inside the filter layer. A sewage treatment device characterized in that a part is a sedimentation part, a raw water inflow part is provided in the sedimentation part, and a treated water outflow part is further provided in the upper part of the tank. A sewage treatment device characterized in that a washing waste water return path is provided for returning washing waste water during washing of the layer to the settling section, and in claim 3 of the present invention, the filter medium layer is immersed in the upper part of the tank. The lower part of the tank is a settling part, and the settling part is provided with a raw water inflow part, and the upper part of the tank is provided with a primary treated water outflow part.
A filter medium layer filled with a granular filter medium having a specific gravity of 1.0 or more is immersed and held in the upper part of the tank, and an aeration device is provided below or inside the filter medium layer, and the lower part thereof is used as a settling part, A second tank having a final treated water outflow part at the upper part of the tank is installed in parallel, and the primary treated water outflow part of the first tank is communicated with the sedimentation part in the lower part of the second tank. A sewage treatment device characterized in that, in claim 4 of the present invention, a filter layer filled with granular filter media having a specific gravity of 1.0 or more is immersed and held in the upper part of the tank, and an aeration device is installed in the filter layer. The part of the filter layer above the aeration device is used as an aerobic biofilm treatment section, the section below the aeration device is used as an anaerobic biofilm treatment section, and the lower part of the tank is used as a sedimentation section. A sewage treatment device characterized in that a raw water inlet is provided in the sedimentation part and a treated water outflow part is provided in the upper part of the tank, and in claim 5 of the present invention, the treatment water flowing out from the treated water outflow part in claim 4 is provided. A sewage treatment device is characterized in that a circulation path is provided for circulating part of the water to the lower part of the filter layer, and in claim 6 of the present invention, a granular filter medium having a specific gravity of 1.0 or more is provided in the upper part of the tank. The filled filter layer is immersed and held, an aeration device is installed below or inside the filter layer, the lower part of the tank is used as a sedimentation area, and a raw water inlet is provided in the sedimentation area.
A treatment tank equipped with a secondary treated water outlet and an aerobic biological J-bed device equipped with a hearth of granular filter media with a specific gravity of 1.0 or more are installed side by side,
The sewage treatment device is characterized in that a primary treated water outflow portion of the treatment tank and the aerobic organism are connected to a floor device.

〔作 用〕[For production]

まず、請求項1の本発明では、第1図に示すように、槽
内の沈殿部5に、原水流入部から下水などのSS性物質
と溶解性BOD等を含む原水を流入させ、原水中のSS
を沈降分離する。この沈殿部5でSSが分II2 除去
された原水は、上向流で濾材層2を流過するが、その間
に沈殿部5で沈降分離されなかった微細SSがが過除去
されると同時に、濾材層2を形成する濾材表面に付着し
た生物膜の作用によって、溶解性BODの除去、 NH
4−Nの硝化が行われる。また、濾材表面に付着した生
物膜の呼吸活動に必要な酸素は、散気装置から供給され
、濾材層2中を上昇する。
First, in the present invention as claimed in claim 1, as shown in FIG. SS of
is separated by sedimentation. The raw water from which SS has been removed in the sedimentation section 5 flows upward through the filter layer 2, but at the same time, fine SS that has not been sedimented and separated in the sedimentation section 5 is removed. Due to the action of the biofilm attached to the surface of the filter medium forming the filter layer 2, soluble BOD is removed and NH
4-N nitrification is performed. Further, oxygen necessary for the respiratory activity of the biofilm attached to the surface of the filter medium is supplied from the air diffuser and rises in the filter medium layer 2.

このようにして、原水中のSSの沈降及び濾過による除
去や、有機物やNH,−)lの生物学的除去が行われて
清澄となった処理水は、上部の処理水流出部から流出し
てゆく。
In this way, the treated water, which has become clear through the removal of SS in the raw water by sedimentation and filtration and the biological removal of organic matter and NH, -), flows out from the upper treated water outlet. I'm going to go.

この処理水中に微量残留するSS、 BOD、 NH,
−Nをさらに高度にポリッシング除去するには、アンス
ラサイト、活性炭などの好気性粒状が材炉床装置(炉床
下部からエアレーションを行い、粒状濾材の表面の生物
膜によって生物処理を同時に行うもので、好気性生物濾
床装置といわれる。)に、処理水を供給するようにする
のが最適である。この場合、原水中のSS、 BODの
大部分がすでに除去されているので、好気性生物濾床の
目づまり進行は極めて緩慢であり、メンテナンスは非常
に容品化される。
Trace amounts of SS, BOD, NH, and
- To remove N to a higher degree by polishing, aerobic granules such as anthracite and activated carbon are used in a hearth device (a device that performs aeration from the bottom of the hearth and simultaneously performs biological treatment using a biofilm on the surface of the granular filter medium. It is best to supply the treated water to an aerobic biological filter (called an aerobic biological filter). In this case, since most of the SS and BOD in the raw water have already been removed, the progress of clogging of the aerobic biological filter bed is extremely slow, making maintenance extremely easy.

さて、濾材層2においてSSの濾過除去と生物膜処理が
進行するにつれ、濾材層2のが抗が増加してゆくので、
所定の炉抗に達した時点で濾材層2の洗浄を行う。
Now, as SS filtration removal and biofilm treatment progress in the filter layer 2, the resistance of the filter layer 2 increases.
When a predetermined furnace resistance is reached, the filter layer 2 is cleaned.

濾材層2の洗浄方法としては種々の方法が採用でき、例
えば、 (a)  散気装置からの散気量を急激に増加して濾材
層2を攪乱し、捕捉されているSSを、流入する原水の
上向流に同伴させて上部に流出させ、請求項2の本発明
のように、この洗浄排水を沈殿部5に返送してSSを沈
降分離することが好ましく、洗浄排水の返送中に、カチ
オンポリマなどの凝集剤を注入し、SSの沈降分離性を
促進することが極めて好ましい。
Various methods can be used to clean the filter layer 2. For example, (a) the amount of air diffused from the air diffuser is suddenly increased to disturb the filter layer 2 and the trapped SS flows in; It is preferable that the SS be allowed to flow out to the upper part along with the upward flow of the raw water, and as in the present invention as claimed in claim 2, this washed waste water is returned to the sedimentation section 5 to separate the SS by sedimentation. It is highly preferred to inject a flocculant, such as a cationic polymer, to promote sedimentation and separation of the SS.

(bl  上記洗浄操作を行う前に、槽内水を抜いて水
位を下げておき、散気量を急増させて濾材層2の撹乱運
動を促進する。
(bl) Before performing the above cleaning operation, the water in the tank is drained to lower the water level, and the amount of aeration is rapidly increased to promote the agitation movement of the filter layer 2.

このような洗浄によって、濾材層2のが抗が初期の値に
復帰するので、再び散気量を定常時の量に減少させ、処
理を特徴する 請求項30本発明では、第2図に示すように、第1の槽
2)内の沈殿部25に、原水流入部から下水などのSS
性物質と溶解性BOD等を含む原水を流入させ、原水中
の沈降性SSを沈降分離する。この時、SSの沈降分離
を促進するために、原水に適当な凝集剤を注入可能にし
ても良い。
By such washing, the resistance of the filter medium layer 2 returns to its initial value, so that the aeration amount is reduced again to the steady state amount, and the processing is characterized by the following: As shown in FIG.
Raw water containing soluble substances, soluble BOD, etc. is introduced, and sedimentary SS in the raw water is separated by sedimentation. At this time, an appropriate flocculant may be injected into the raw water in order to promote sedimentation and separation of SS.

また、この第1の槽2)内の沈殿部25をSSの沈降分
離に有利な形状とすることが好ましい。
Further, it is preferable that the sedimentation section 25 in the first tank 2) has a shape that is advantageous for sedimentation and separation of SS.

第1の槽2)の底部にSSの大部分が沈降分離された原
水は、上向きに反転し、濾材層22に下方から進入し、
沈降しきれなかった微細SSがが遇除去されると共に、
濾材層22内のが材表面に発達している嫌気性生物膜又
は好気性生物膜によって溶解性BOD成分が分解除去さ
れる。
The raw water in which most of the SS has been sedimented and separated at the bottom of the first tank 2) is turned upward and enters the filter medium layer 22 from below,
The fine SS that could not be completely settled is removed, and
The soluble BOD component is decomposed and removed by the anaerobic biofilm or aerobic biofilm developed on the surface of the filter medium layer 22 .

なお、濾材層22内の濾材表面に好気性生物膜を発達さ
せるためには、濾材層22の下部又は内部に散気装置を
配備して、酸素含有ガスを散気すれば良く、濾材層22
内のが材表面に嫌気性生物膜を発達させるには、散気す
ることなくそのままにしておく。
In addition, in order to develop an aerobic biofilm on the surface of the filter medium in the filter medium layer 22, an aeration device may be provided below or inside the filter medium layer 22 to diffuse oxygen-containing gas.
To develop an anaerobic biofilm on the surface of the wood, leave it as is without aeration.

しかして、濾材層22の上部から流出してくる1次処理
水は、1次処理水流出部から第2の槽41内の下方の沈
殿部45に流入し、その後濾材層42に下方から進入し
てゆり、濾材層42には散気装置によって酸素含有ガス
が散気されて好気性状態が保たれており、濾材表面にB
OD責化菌、硝化菌などの好気性生物膜が発達する。従
って、第1のN2)から流出する1次処理水の残留80
D、アンモニアは、濾材1i42内で発達し、た好気性
生物膜によって極めて効果的に除去され、同時に残留す
る微細SSも高度に濾過除去され、ss、 aonのい
ずれも数■/lの清澄な最終処理水が濾材層42の上部
から泉のように湧き出し、最純処理水流出部から流出す
る。
Thus, the primary treated water flowing out from the upper part of the filter layer 22 flows from the primary treated water outlet to the settling section 45 in the lower part of the second tank 41, and then enters the filter layer 42 from below. Then, the filter medium layer 42 is kept in an aerobic state by being diffused with oxygen-containing gas by an aeration device, and B is kept on the surface of the filter medium.
An aerobic biofilm containing OD-producing bacteria and nitrifying bacteria develops. Therefore, the remaining 80% of the primary treated water flowing out from the first N2)
D. Ammonia is very effectively removed by the aerobic biofilm that develops within the filter medium 1i42, and at the same time, the remaining fine SS is also highly filtered out, and both ss and aon have a clear concentration of several ■/l. The final treated water gushes out like a spring from the upper part of the filter medium layer 42 and flows out from the purest treated water outlet.

さて、処理を継続するにつれ、第1の槽2)のt1材層
22及び第2の槽41の?戸材層42のSS捕捉量が増
加し、炉抗が増加するので、所定の枦抗(500■Fl
zO程度に設定するとよい)に達した時点で、各F材層
の洗浄を行うや 濾材層の洗浄方法としては種々の方法が考えられ、任意
の方法を採用して良いが、例えば次のような方法が推奨
できる。
Now, as the treatment continues, the t1 material layer 22 of the first tank 2) and the material layer of the second tank 41? Since the amount of SS trapped in the door material layer 42 increases and the furnace resistance increases, the predetermined resistance (500 F
zO), each F material layer is cleaned. Various methods can be considered for cleaning the filter media layer, and any method may be adopted, but for example, the following A method can be recommended.

第1の槽2)の濾材層22の洗浄は、濾材層22の下部
又は内部に散気装置を配備して散気量を急激に増加させ
、濾材層22内に激しい気液混相流を起こし、濾材層2
2内にそれまで捕捉、蓄積されていたSSを押し出す。
To clean the filter layer 22 of the first tank 2), an aeration device is provided below or inside the filter layer 22 to rapidly increase the amount of air diffused, thereby creating an intense gas-liquid multiphase flow within the filter layer 22. , filter layer 2
Push out the SS that had been captured and accumulated within 2.

従来の好気性生物濾床装置における炉床の洗浄時には、
原水の流入を停止させなければならなかったが、本発明
では原水の流入を停止する必要は全くなく、逆に原水の
流入によって濾材層22めSSを空気洗浄と共に洗出す
る。即ち、原水自体をが材[22の洗浄用水として利用
できるという重要な長所がある。
When cleaning the hearth in a conventional aerobic biological filter bed device,
Although it was necessary to stop the inflow of raw water, in the present invention there is no need to stop the inflow of raw water, and on the contrary, the filtering medium layer 22 SS is washed out together with the air by the inflow of raw water. That is, there is an important advantage that the raw water itself can be used as water for washing the wood.

第1の檜2)の濾材層22から洗出されたSSを含んだ
洗浄排水は、第2の槽41内下方の沈殿部45に流入し
、洗浄排水中のSSが沈降分離されるが、第2の槽41
に流入する洗浄排水中に高分子凝!!荊を添加できるよ
うにしておくと、洗浄排水中のSSの沈降分離を著しく
促進できる。
The washing wastewater containing SS washed out from the filter medium layer 22 of the first cypress 2) flows into the settling section 45 located in the lower part of the second tank 41, and the SS in the washing wastewater is sedimented and separated. Second tank 41
Polymer condensation occurs in the cleaning wastewater flowing into the water! ! If it is possible to add psyllium, the sedimentation and separation of SS in the washing waste water can be significantly promoted.

次に、第2の槽41の濾材層42の洗浄について説明す
る。
Next, cleaning of the filter medium layer 42 of the second tank 41 will be explained.

濾材層42の炉抗の増加速度は緩慢である。なぜなら、
前段の第1の槽2)で、沈降分離と濾材層22によって
、原水中のSSとBOrlの大部分が除去されているた
めである。しかし、長時間運転を続けるにつれ、炉抗が
所定値に達するので、洗浄を行う必要がある。洗浄は次
のように行われるや即ち、散気装置から吐出す散気量を
、定常運転時よりも大幅に上昇させ、濾材層42内のS
Sを洗出し、この洗浄排水を原水と共に第1の槽2)o
)沈殿部25に流入させてSSを分離すると良い、なお
、濾材層42の洗浄排水を、第2の槽41内下方の沈殿
部45にリサイクルしてSSを沈降分離し、清澄化され
た洗浄排水を濾材層42の洗浄用水として再利用するこ
とも極めて好適な実施態様であり、このリサイクル途中
に高分子凝集剤を添加すれば、リサイクルされる洗浄排
水中のssの沈降分離を促進できる。
The rate of increase in the furnace resistance of the filter medium layer 42 is slow. because,
This is because most of the SS and BOrl in the raw water have been removed by sedimentation and separation and the filter medium layer 22 in the first tank 2) in the previous stage. However, as the furnace continues to operate for a long period of time, the furnace resistance reaches a predetermined value, so it is necessary to perform cleaning. As soon as the cleaning is performed as follows, the amount of diffused air discharged from the diffuser is significantly increased compared to during normal operation, and the S in the filter medium layer 42 is increased.
S is washed out, and this washing wastewater is sent to the first tank 2) along with the raw water.
) It is preferable to let the SS flow into the sedimentation section 25 to separate the SS. Furthermore, the cleaning waste water of the filter medium layer 42 is recycled to the sedimentation section 45 in the lower part of the second tank 41 to sediment and separate the SS, and the clarified cleaning water is recycled. It is also an extremely preferred embodiment to reuse the wastewater as water for washing the filter medium layer 42, and if a polymer flocculant is added during this recycling, the sedimentation and separation of ss in the recycled washing wastewater can be promoted.

以上のような洗浄操作により、各I材層内のSSは洗い
出され、炉抗が初期値に復帰するので、散気装置からの
散気量を定常処理時に戻し、処理を再開する。
By the cleaning operation as described above, the SS in each I material layer is washed out and the furnace head is returned to its initial value, so the amount of air diffused from the air diffuser is returned to the normal process and the process is restarted.

さらに、この請求項3の本発明の他の好ましい処理操作
を次に列挙する。
Furthermore, other preferred processing operations of the present invention according to claim 3 are listed below.

■ 原水の溶解性BOD濃度が高濃度(例えばBOI1
1000■/!程度)の場合は、第2の槽41の好気性
濾材層42から流出する最終処理水の一部を、第1の槽
2】内下方部に導いて原水を希釈すると、該槽内のtP
材層22内の嫌気化を防止できる。勿論、濾材層22で
嫌気性生物膜処理を行う場合は、このような操作を行う
必要はない。
■ If the soluble BOD concentration in the raw water is high (for example, BOI1
1000■/! degree), a part of the final treated water flowing out from the aerobic filter layer 42 of the second tank 41 is guided into the lower part of the first tank 2] to dilute the raw water, and the tP in the tank is
Anaerobic formation within the material layer 22 can be prevented. Of course, when performing anaerobic biofilm treatment on the filter medium layer 22, it is not necessary to perform such an operation.

■ 難生物分解性CODの除去を同時に行う場合は、第
1の槽2)から流出する1次処理水に粉末活性炭を添加
し、この粉末活性炭粒子を第2の槽41の濾材層42で
捕捉し、粒状活性炭吸着塔と同様なメカニズムでCOD
を除去するようにすると、粉末活性炭のCOD吸着能力
を最大限に発揮させることができ、しかも濾材層42内
の好気性生物による活性炭の生物再生も期待できる。
■ When removing non-biodegradable COD at the same time, powdered activated carbon is added to the primary treated water flowing out from the first tank 2), and the powdered activated carbon particles are captured by the filter layer 42 of the second tank 41. COD is reduced by a mechanism similar to that of a granular activated carbon adsorption tower.
By removing this, the COD adsorption ability of the powdered activated carbon can be maximized, and biological regeneration of the activated carbon by aerobic organisms within the filter medium layer 42 can also be expected.

■ 第2の槽41の濾材層42の濾材よりも第1の槽2
)の濾材層22の濾材粒径を大にし、空隙率を高めてお
くと、第1の槽2)の濾材層22のSS捕捉量が向上す
る。
■ The filter medium of the filter layer 42 of the second tank 41 is higher than that of the first tank 2.
) The amount of SS captured in the filter layer 22 of the first tank 2) is improved by increasing the particle size of the filter layer 22 and increasing the porosity.

■ 原水BODが高濃度の場合、第1の槽2)の濾材層
22を嫌気的状態に維持し、メタン発酵菌生物膜を発達
させ、発生したメタンガスを回収するようにするのが良
い。
(2) When the raw water BOD has a high concentration, it is preferable to maintain the filter layer 22 of the first tank 2) in an anaerobic state to develop a methane-fermenting bacteria biofilm and collect the generated methane gas.

■ リン酸イオンの除去を行う場合には、水中に硫酸ア
ルミニウム7ボリ塩化アルミニウム、塩化第2鉄などの
無機凝集側を注入し、不溶化リンを含むフロックを第1
の槽2)又は第2の槽41で沈降分離する。
■ When removing phosphate ions, inorganic flocculants such as aluminum sulfate 7-polyaluminum chloride, ferric chloride, etc. are injected into the water, and flocs containing insolubilized phosphorus are first
Sedimentation is carried out in tank 2) or second tank 41.

■ 硝化脱窒素処理を行う場合には、第1の槽2)の濾
材層22を嫌気的状態に保ち、第2の槽4】の最終処理
水の一部を第1の槽2)の濾材層22の下部に循環させ
る。
■ When performing nitrification and denitrification treatment, the filter layer 22 of the first tank 2) is kept in an anaerobic state, and a part of the final treated water in the second tank 4 is transferred to the filter layer 22 of the first tank 2). Circulate to the bottom of layer 22.

請求項4の本発明では、第3図に示すように、槽内の沈
殿部55に、原水流入部から下水などのSS性物質と溶
解性BOII等を含む原水を流入させ、原水中の沈降性
SSを沈殿分離する。この場合、SSの沈降性の促進と
脱リンを目的として、原水中に凝集剤を注入することが
好ましい。
In the present invention according to claim 4, as shown in FIG. 3, raw water containing SS substances such as sewage and soluble BOII is caused to flow into the sedimentation part 55 in the tank from the raw water inflow part, and the sedimentation in the raw water is reduced. The SS is precipitated and separated. In this case, it is preferable to inject a flocculant into the raw water for the purpose of accelerating the sedimentation of SS and dephosphorizing it.

この沈殿部55でSSが分離、除去された原水は、上方
向へ反転し、濾材層520散気装置より下部の嫌気性状
態に維持された嫌気性生物膜処理部52−2へ好ましく
は上向流速20〜30m/日程度で流入してゆく、この
嫌気性生物膜処理部52−2における濾材の表面には、
有機酸生成菌、メタン生成菌、脱窒素面などが付着して
おり、原水中の溶解性BODが嫌気的に除去されると同
時に、沈殿部55にて沈殿しきれなかった微細SSがが
過除去される。
The raw water from which SS has been separated and removed in the sedimentation section 55 is reversed upward and preferably sent to the anaerobic biofilm treatment section 52-2 maintained in an anaerobic state below the filter layer 520 and the aeration device. On the surface of the filter medium in this anaerobic biofilm treatment section 52-2, flowing at a countercurrent speed of about 20 to 30 m/day,
Organic acid-producing bacteria, methane-producing bacteria, denitrifying surfaces, etc. are attached, and soluble BOD in the raw water is removed anaerobically, and at the same time, fine SS that has not been completely precipitated in the settling section 55 is removed. removed.

このように、嫌気性生物膜処理部52−2で嫌気性生物
膜処理を受けた原水は、濾材層52の散気装置より上部
の好気性状態に維持された好気性生物膜処理部52−1
に上昇してゆく。好気性生物膜処理部52−1には、そ
の下の散気装置から空気。
In this way, the raw water that has undergone anaerobic biofilm treatment in the anaerobic biofilm treatment section 52-2 is maintained in an aerobic state above the air diffuser of the filter layer 52. 1
It continues to rise. Air is supplied to the aerobic biofilm processing section 52-1 from the air diffuser below.

酸素富化空気などの酸素含有ガスが散気され、が材表面
に好気性生物膜が増殖発達して付着しており、嫌気性生
物膜処理部52−2において除去しきれなかった残留B
OD、 N11d−Nが、好気性微生物によって効果的
に除去される。
Oxygen-containing gas such as oxygen-enriched air is diffused, and aerobic biofilm grows and develops and adheres to the wood surface, and residual B that could not be completely removed in the anaerobic biofilm treatment section 52-2
OD, N11d-N is effectively removed by aerobic microorganisms.

しかして、沈殿部55.11!気性生物膜処理部52−
2.好気性生物膜処理部52−1を流通する間に、原水
中のSSが沈殿分離、濾過によって除去され、かつ原水
中の溶解性BOD、 NH,、−Nが嫌気的体物作用→
好気性生物作用によって除去された清澄処理水は、濾材
層52の上部から泉のように湧き出して、処理水流出部
から流出してゆく、なお、処理水中に微量残留している
BOD、 SS、 NH,−Nを高度に除去する場合に
は、この処理水を、さらに後続して設けた砂、アンスラ
サイト、活性炭などの粒状濾材を充填した好気性生物が
床により生物処理とが過処理を同時に行う好気性生物濾
床装置に導くのが良い。
However, the precipitation part is 55.11! Temperature biofilm processing section 52-
2. While flowing through the aerobic biofilm treatment section 52-1, SS in the raw water is removed by precipitation and filtration, and soluble BOD, NH, -N in the raw water undergoes anaerobic biological action →
The clarified treated water removed by aerobic biological action gushes out like a spring from the upper part of the filter layer 52 and flows out from the treated water outflow section.In addition, trace amounts of BOD and SS remain in the treated water. , NH, -N is to be removed to a high degree, the treated water is further treated with biological treatment and overtreatment using an aerobic biological bed filled with granular filter media such as sand, anthracite, and activated carbon. It is best to introduce it to an aerobic biological filter bed device that performs this at the same time.

前記嫌気性生物膜処理部52−2は、単にSSO炉遇及
び嫌気性生物膜処理を遂行するだけでなく、次のような
重要な機能を併せもっている。即ち、嫌気性生物膜処理
部52−2が散気装置の下部に存在しない場合、散気装
置から吐出される気泡の上昇運動によって、沈殿部55
の水流が乱れ、沈殿機能を阻害してしまうが、嫌気性生
物膜処理部52−2が存在するために、散気装置からの
気泡による水流の乱れが抑止される。この結果、沈殿部
55にまで水流の乱れが波及せず、理想的状況で原水の
SSを沈殿分離することができる。
The anaerobic biofilm treatment section 52-2 not only performs SSO operation and anaerobic biofilm treatment, but also has the following important functions. That is, when the anaerobic biofilm treatment section 52-2 is not present at the bottom of the air diffuser, the sedimentation section 55 is caused by the upward movement of the bubbles discharged from the air diffuser.
However, since the anaerobic biofilm treatment section 52-2 exists, the disturbance of the water flow due to air bubbles from the air diffuser is suppressed. As a result, the turbulence of the water flow does not extend to the settling section 55, and the SS of the raw water can be separated by precipitation under ideal conditions.

さて、運転を継続するに従い、濾材層52にSSが蓄積
され、炉抗が増加するので、所定のが抗(500〜10
00100O程度)に達した時点で濾材層52を洗浄す
る。
Now, as the operation continues, SS is accumulated in the filter layer 52 and the furnace resistance increases, so that the predetermined resistance (500 to 10
00100O), the filter medium layer 52 is washed.

濾材層52の洗浄方法には、種々の方法が考えられるが
、例えば、散気量を急激に増加させ、濾材層52に激し
い水流と気流を発生させて濾材層52を攪乱し、捕捉さ
れているSSを洗出する方法が推奨できる。この濾材層
52の洗浄において、濾材層52内に埋設されている散
気装置からの散気以外に、濾材層52の嫌気性生物膜処
理部52−2の下部にも洗浄用散気装置を配設し、洗浄
時に、さらに散気を行うようにすることも好ましい手段
である。
Various methods are conceivable for cleaning the filter layer 52, but for example, the amount of air diffused can be rapidly increased to generate intense water and air currents in the filter layer 52 to disturb the filter layer 52 and remove trapped particles. A method to identify existing SSs is recommended. In cleaning the filter layer 52, in addition to the air diffused from the air diffuser embedded in the filter layer 52, a cleaning air diffuser is also provided under the anaerobic biofilm treatment section 52-2 of the filter layer 52. It is also a preferable means to further diffuse air during cleaning.

上記洗浄の際には、原水の流入を止める必要はなく、原
水の上岡流によって濾材層52から@離されたSSを押
し出すようにするのが好適である。
During the above-mentioned washing, it is not necessary to stop the inflow of the raw water, and it is preferable that the SS separated from the filter medium layer 52 be pushed out by the Kamioka flow of the raw water.

即ち、濾材層52の洗浄に清澄処理水を使う必要がなく
、非常に合理的である。また、洗浄排水は、沈殿部55
にリサイクル供給し、洗浄排水中のSSを沈殿分離する
と良(、洗浄排水のリサイクル途中にカチオンポリマな
どの高分子凝集剤を添加すれば、洗浄排水中のSSの沈
殿を著しく促進できる。
That is, it is not necessary to use clarified water to wash the filter medium layer 52, which is very rational. In addition, the washing wastewater is collected in the sedimentation section 55.
It is recommended to recycle the wastewater and separate the SS in the washing wastewater by precipitation.If a polymer flocculant such as a cationic polymer is added during the recycling of the washing wastewater, the precipitation of SS in the washing wastewater can be significantly promoted.

このように、濾材層52の洗浄時に原水の供給を停止す
る必要がなく、清澄処理水を洗浄用水とし消費すること
がなく、洗浄排水中のSSを除去するための別個の沈殿
槽等のSS除去設備を省略するともできる。
In this way, there is no need to stop the supply of raw water when cleaning the filter media layer 52, the clarified water is not consumed as cleaning water, and a separate settling tank or other SS is used to remove SS from the cleaning wastewater. It is also possible to omit the removal equipment.

請求項5の本発明では、前記請求項4の本発明の作用と
大部分が同じであるが、さらに脱窒素効果をねらってお
り、その点について以下に第4図を参照して説明する。
The present invention according to claim 5 has most of the same effects as the present invention according to claim 4, but further aims at a denitrification effect, and this point will be explained below with reference to FIG. 4.

濾材槽52の内部には散気装置から空気などの酸素含有
ガスが散気され、散気装置の上方が好気性生物膜処理部
52−L下方が嫌気性生物膜処理部52−2に構成され
ており、嫌気性生物膜処理部52−2には主に脱窒素面
の生物膜が優占種として発達しているため、上向流する
原水は、沈殿部55で沈降しきれなかった微細SSが濾
過除去されると共に、生物学的な脱窒素(No□−Nの
Ntへの還元反応)が進行する。この嫌気性生物#処理
部52−2から上方に流れる水は、さらに硝化菌の生物
膜が優占種として発達している好気性生物膜処理部52
−1に進入し、散気装置から供給される酸素を利用して
、N11.−Nの硝化反応が進行する。
Inside the filter medium tank 52, oxygen-containing gas such as air is diffused from an aeration device, and the upper part of the aeration device is an aerobic biofilm treatment section 52-L, the lower part is an anaerobic biofilm treatment section 52-2. In the anaerobic biofilm treatment section 52-2, the biofilm on the denitrification surface has developed as the dominant species, so the raw water flowing upward could not be completely settled in the settling section 55. While fine SS is filtered out, biological denitrification (reduction reaction of No□-N to Nt) progresses. The water flowing upward from this anaerobic organism #processing section 52-2 is further transferred to the aerobic biofilm processing section 52 in which a biofilm of nitrifying bacteria has developed as a dominant species.
-1, and using oxygen supplied from the air diffuser, N11. -N nitrification reaction progresses.

なお、嫌気性生物膜処理部52−2において生成するN
2ガス気泡も、好気性生物膜処理部52−1内を通過し
て、水面から大気中に散逸する。
Note that the N generated in the anaerobic biofilm treatment section 52-2
The two gas bubbles also pass through the aerobic biofilm treatment section 52-1 and dissipate from the water surface into the atmosphere.

このようにして、濾材層52の上部から泉のように湧出
する清澄な処理水は公共用水域に放流されるが、この処
理水にはN0W−Nが含まれているため、流出する処理
水の一部を濾材層52の下部ヘリサイクルし、上向流で
嫌気性生物膜処理部52−2内に進入させ、脱窒素面生
物膜によって、水中のN0X−NがN、ガスに還元され
る。
In this way, the clear treated water that gushes out like a spring from the upper part of the filter media layer 52 is discharged into public water bodies, but since this treated water contains N0W-N, the treated water that flows out A part of the water is recycled to the lower part of the filter medium layer 52 and enters the anaerobic biofilm treatment section 52-2 in an upward flow, and the NOX-N in the water is reduced to N and gas by the denitrification surface biofilm. Ru.

なお、原水中の有機炭素源が不足する場合には、メタノ
ール、エタノール、酢酸などのを機炭素源を返送させる
処理水と共に添加し、脱窒素のための水素供与体とする
In addition, when the organic carbon source in the raw water is insufficient, methanol, ethanol, acetic acid, etc. are added together with the treated water to which the organic carbon source is returned to serve as a hydrogen donor for denitrification.

さらに、請求項6の本発明では、第5図に示すように、
処理W!81内の沈殿部85内に、原水流入部から下水
などのSSと溶解性BOD等を含む原水を流入させ、原
水中の沈降性SSを沈殿させる。 SSの大部分が沈殿
除去された原水は、上向きに反転し、槽内上方部の濾材
層82に上向流で進入し、沈殿しきれなかった微細SS
がが過除去されると共に、散気装置からの酸素含有ガス
の散気によって濾材層82のが材表面に発達した好気性
生物膜により、原水中の溶解性BODが分解除去される
Furthermore, in the present invention of claim 6, as shown in FIG.
Processing W! Raw water containing SS such as sewage, soluble BOD, etc. is caused to flow into the settling part 85 in the raw water inlet 81 from the raw water inflow part, and the sedimentable SS in the raw water is precipitated. The raw water in which most of the SS has been precipitated and removed is reversed upward and enters the filter layer 82 in the upper part of the tank in an upward flow, and the fine SS that has not been completely precipitated is
At the same time, soluble BOD in the raw water is decomposed and removed by an aerobic biofilm developed on the surface of the filter layer 82 due to the diffusion of oxygen-containing gas from the aeration device.

しかして、濾材層82の上部から流出してくる1次処理
水は好気性生物濾床装置101の上部又は下部に流入し
、好気性条件下で炉床102を下向流又は上向流で流遇
し、1次処理水に少量残留している5S、 BODはさ
らに高度に浄化され、しがもNl(、−N (7)硝化
も十分に進み、55. BOD、 NH*−Nとも数a
t/1以下の浄化処理水が得られる。この好気性生物濾
床装置101の炉床102へ流入する1次処理水は、S
S、 BODが少量となっているために、下向流通水に
よっても炉床102の目づまりは極めて緩慢であり、長
時間、炉床102の洗浄が不要であり、維持管理が容易
である。また、炉床102への通水を上向流で行う場合
も、SSが少ないので炉床102下部の支持床の目づま
りが起きないという重要な特徴がある。
Therefore, the primary treated water flowing out from the upper part of the filter layer 82 flows into the upper or lower part of the aerobic biological filter bed device 101, and flows downward or upward through the hearth 102 under aerobic conditions. 5S and BOD, which remain in small amounts in the primary treated water, are further purified to a higher degree, and nitrification has also progressed sufficiently, and both 55.BOD and NH*-N are purified. number a
Purified water of t/1 or less can be obtained. The primary treated water flowing into the hearth 102 of this aerobic biological filter bed device 101 is S
Since S and BOD are small, the hearth 102 clogs extremely slowly even with the downward flowing water, and there is no need to clean the hearth 102 for a long time, making maintenance easy. Also, when water is passed through the hearth 102 in an upward flow, there is an important feature that the support bed at the bottom of the hearth 102 will not be clogged because the SS is small.

さて、上記のような処理を続けるにつれて、濾材層82
におけるSS蓄積量の増加、生物膜の増殖に起因して、
が過抵抗が所定の設定値(1m、8.0程度)に達する
ので、この時点で濾材層82の洗浄を行う。
Now, as the above process continues, the filter medium layer 82
Due to the increase in SS accumulation and the growth of biofilm,
Since the excessive resistance reaches a predetermined set value (1 m, about 8.0), the filter medium layer 82 is cleaned at this point.

洗浄方法としては種々の方法が考えられ、任意の方法を
採用して良いが、例えば次のような方法が推奨できる。
Various methods can be considered as the cleaning method, and any method may be adopted. For example, the following method is recommended.

即ち、原水の流入を行ったまま、散気装置からの散気量
を急増させて、濾材層82内で激しい気液混和流を生起
させると、濾材層82内の過剰のSS分が洗い出され、
洗浄排水に同伴されて流出する。このSSを含んだ洗浄
排水は、再び槽内下方部の沈殿部85内に導くようにす
ると良く、要すれば凝集剤などを注入し、沈殿部85内
でのSSの沈殿分離を促進すると良い@SSが分離され
た洗浄排水は再び上方部の濾材層82の洗浄用水として
再利用することができる。
That is, if the amount of air diffused from the aeration device is rapidly increased while raw water continues to flow in, and a strong gas-liquid mixing flow is generated within the filter layer 82, the excess SS content within the filter layer 82 will be washed out. is,
It is carried away by washing wastewater and flows out. This cleaning wastewater containing SS is preferably guided again into the sedimentation section 85 in the lower part of the tank, and if necessary, a flocculant or the like may be injected to promote precipitation and separation of SS within the sedimentation section 85. The cleaning wastewater from which @SS has been separated can be reused as water for cleaning the upper filter medium layer 82.

かくして、所定時間洗浄した後は、散気量を定常時に復
帰させる。
In this way, after cleaning for a predetermined period of time, the amount of diffused air is returned to the normal state.

次に、好気性生物濾床装置101の炉床102も、緩慢
ではあるが、が過抵抗が増加する。濾過抵抗が設定値に
達した時は、この炉床102も洗浄することになる。洗
浄方法としては種々の方法が採用できるが、次のように
することが極めて好ましい。
Next, the overresistance of the hearth 102 of the aerobic biological filter device 101 also increases, albeit slowly. When the filtration resistance reaches the set value, this hearth 102 will also be cleaned. Although various methods can be used as the cleaning method, the following method is extremely preferable.

即ち、処理槽81の1次処理水流出部と好気性生物濾床
装置101との連通路に貯留槽110を介在させて、1
次処理水を一旦貯留槽110に貯留するようにし、この
貯留された1次処理水を好気性生物濾床装置101の炉
床102下部へ圧入する流路を付設する。従って、好気
性生物濾床装置101のが床102を洗浄する時には、
貯留槽110内の1次処理水を炉床102下部に圧入し
て炉床102を逆洗撹乱し洗浄を行う、この時、炉床1
02を好気性状態に保つための散気は止めなくとも良い
。また、洗浄排水は前段の処理槽8Iの沈殿部85に導
き、処理後貯留槽110に流入させ、必要に応して洗浄
用水として再利用することができる。
That is, the storage tank 110 is interposed in the communication path between the primary treated water outflow part of the treatment tank 81 and the aerobic biological filter device 101.
The secondary treated water is temporarily stored in a storage tank 110, and a flow path is provided for pressurizing the stored primary treated water into the lower part of the hearth 102 of the aerobic biological filter device 101. Therefore, when the aerobic biological filter bed device 101 cleans the bed 102,
The primary treated water in the storage tank 110 is forced into the lower part of the hearth 102 to backwash and agitate the hearth 102 for cleaning.
There is no need to stop air diffusion to keep 02 in an aerobic state. Further, the cleaning waste water is guided to the sedimentation part 85 of the treatment tank 8I in the previous stage, and is allowed to flow into the post-treatment storage tank 110, where it can be reused as cleaning water if necessary.

このように、処理槽81の濾材層82の洗浄及び好気性
生物濾床装置101の炉床102の洗浄は、従来装置の
ように、清澄な処理水を浪費する必要が全くなく、処理
水の生産効率が高い。
In this way, cleaning the filter layer 82 of the treatment tank 81 and cleaning the hearth 102 of the aerobic biological filter bed device 101 eliminates the need to waste clear treated water, unlike conventional devices, and High production efficiency.

さらに、請求項6の本発明の好ましい処理操作を次に示
す。
Further, preferred processing operations of the present invention according to claim 6 are shown below.

■ 原水中のリン除去を行う場合には、原水中に硫酸ア
ルミニウム、ポリ塩化アルミニウム、塩化第2鉄、ポリ
硫酸鉄などの無機凝集側を添加し、生成するフロックを
処理槽81の濾材層82と好気性生物濾床装置101の
が床102で捕捉する。
■ When removing phosphorus from raw water, inorganic flocculants such as aluminum sulfate, polyaluminum chloride, ferric chloride, and polyferric sulfate are added to the raw water, and the generated flocs are transferred to the filter layer 82 of the treatment tank 81. and of the aerobic biological filter bed device 101 are trapped in the bed 102.

■ CODの高度除去が要求される場合には、原水又は
1次処理水中に粉末活性炭を添加し、この粉末活性炭を
処理槽81の沈殿部85、濾材層82又は好気性生物濾
床装置101の炉床102で捕捉する。
■ When high-level removal of COD is required, powdered activated carbon is added to the raw water or primary treated water, and the powdered activated carbon is poured into the sedimentation section 85 of the treatment tank 81, the filter layer 82, or the aerobic biological filter bed device 101. It is captured in the hearth 102.

■ 色度の除去、BODの高度除去(例えばBOD 2
q/I!以下にしたい時)を行う場合は、好気性生物濾
床装置101の炉床102の下部からオゾンを散気する
。この操作は、オゾンの吸収効率を著しく高めることが
できることが見出された。
■ Chromaticity removal, BOD height removal (e.g. BOD 2
q/I! When performing the following), ozone is diffused from the lower part of the hearth 102 of the aerobic biological filter device 101. It has been found that this operation can significantly increase the ozone absorption efficiency.

〔実施例〕〔Example〕

請求項1及び2の本発明の一実施例を第1図に基づいて
説明すれば、槽1内上方部には、比重1.0以上のスポ
ンジ、軽量骨材、プラスチック粒子、セラミック、アン
スラサイト、活性炭、砂などの粒状濾材を充填した濾材
層2が多孔性の支持部材3によって、水中に浸漬、保持
されている。
An embodiment of the present invention according to claims 1 and 2 will be described based on FIG. A filter medium layer 2 filled with granular filter medium such as activated carbon or sand is immersed and held in water by a porous support member 3.

これら粒状濾材のうち、比重が1.0に近いものを使用
する場合には、濾材層2の上部をネットなどの多孔性の
支持部材3′によって覆い、濾材層2の上部からの流出
を防ぐようにするのも良い、また、比重が2.0以下の
ものは、気泡流や水流により撹乱されやすく、洗浄が効
果的になるために好ましい。
When using one of these granular filter media with a specific gravity close to 1.0, the upper part of the filter media layer 2 is covered with a porous support member 3' such as a net to prevent outflow from the upper part of the filter media layer 2. Also, those with a specific gravity of 2.0 or less are preferred because they are easily disturbed by air bubbles or water currents, making cleaning more effective.

濾材Fi2の下部には散気管4が配備され、処理中に空
気その他の酸素含有ガスを散気して濾材層2に酸素を供
給し、濾材層2の洗浄時には散気量を増加して濾材層2
の撹乱を行うことができるようになっている。
An aeration pipe 4 is installed at the bottom of the filter medium Fi2, and diffuses air or other oxygen-containing gas during processing to supply oxygen to the filter medium layer 2. When cleaning the filter medium layer 2, the amount of air diffused is increased to layer 2
It is now possible to perform disturbances.

槽内の散気管4より下方部は沈殿部5とし、この沈殿部
5内に原水流入管6に連なるフィードウェル7を設け、
沈殿部5内底部には、駆動袋N8により回転する回転軸
9の下方部に連結された沈殿汚泥10の濃縮促進用のレ
ーキ11と掻寄機12とが設けられている。
A part below the aeration pipe 4 in the tank is a sedimentation part 5, and a feedwell 7 connected to a raw water inflow pipe 6 is provided in this sedimentation part 5.
A rake 11 and a scraper 12 for promoting concentration of the settled sludge 10, which are connected to the lower part of the rotating shaft 9 rotated by the drive bag N8, are provided at the inner bottom of the settling section 5.

また、散気管4を水平方向に回転可能にし、濾材層2へ
の散気量の均等化を助長するようにすることも好ましく
、第1図示例のように、レーキ11等の回転軸9を中空
軸とし、この回転軸9中に空気ブロワ−13からの空気
を導入すゐようにし、濾材層2の下部の位置に空気吐出
口を設けて散気管4を連結すると良い。
It is also preferable to make the aeration tube 4 rotatable in the horizontal direction to help equalize the amount of aeration to the filter layer 2. It is preferable to use a hollow shaft so that air from an air blower 13 is introduced into the rotary shaft 9, and to provide an air outlet at a position below the filter layer 2 to connect the air diffuser pipe 4.

さらに、槽1の上部には、越流ロンダー14が設けられ
て処理水流出管15が連結される一方、越流ロング−1
4に洗浄排水返送管16を連結するのが好ましく、洗浄
排水返送管16は沈殿部5に連なるように、原水流入管
6に連結される。
Furthermore, an overflow launder 14 is provided at the top of the tank 1, and a treated water outflow pipe 15 is connected thereto, while an overflow long-1
4 is preferably connected to a washing wastewater return pipe 16, and the washing wastewater return pipe 16 is connected to the raw water inflow pipe 6 so as to continue to the sedimentation section 5.

なお、洗浄排水の返送途中に、洗浄排水中のSSの沈降
分離を促進するために、カチオンポリマなどの凝集荊注
人管17を設けるのが好ましく、図示例では、原水流入
管6に設けである。
In order to promote sedimentation and separation of SS in the washing wastewater, it is preferable to provide an aggregation pipe 17 made of cationic polymer or the like during the return of the washing wastewater. be.

図中、18は中間水抜きであって、槽lの適当な位置に
開口させ、濾材層2の洗浄時に槽内水位を下げて散気に
よる濾材層2の撹乱運動を促進させるためのもので、1
9は槽底に連結された濃縮汚泥の排泥管を示す。
In the figure, reference numeral 18 denotes an intermediate water drain, which is opened at an appropriate position in the tank 1 and is used to lower the water level in the tank when cleaning the filter layer 2 and promote the agitation movement of the filter layer 2 by aeration. ,1
9 shows a thickened sludge drainage pipe connected to the bottom of the tank.

請求項3の本発明の一実施例を第2図に基づいて説明す
れば、2)は第1槽で、槽内下方部には底部に沈殿濃縮
部22′を有する沈殿部25が形成され、槽内上方部に
は粒状濾材を充填した濾材層22が浸漬、保持されてい
る。
An embodiment of the present invention according to claim 3 will be explained based on FIG. 2. 2) is a first tank, and a sedimentation part 25 having a sedimentation concentration part 22' at the bottom is formed in the lower part of the tank. A filter layer 22 filled with granular filter media is immersed and held in the upper part of the tank.

濾材層22を構成するための粒状濾材としては、任意の
ものを選ぶことができる。例えば、アンスラサイト砂、
セラミックなどは比重が大きいので、頑丈で気泡と水が
円滑に通過することができる多孔性の支持部材23で支
持する必要がある。
Any granular filter medium can be selected for forming the filter medium layer 22. For example, anthracite sand,
Since ceramic has a high specific gravity, it needs to be supported by a porous support member 23 that is strong and allows air bubbles and water to pass through smoothly.

好ましいのは、比重が1.0未満の浮上性粒状濾材(ス
ポンジ、プラス千ツク粒子、木材チップ、軽石、パーラ
イト、ガラスマイクロバルーンなど)、あるいは水に沈
むが、比重が1.0よりわずかに大きな軽い粒状濾材〈
ポリウレタンスポンジ、軽量骨材など)であり、水中に
投入するだけで極めて簡単に浸漬濾材層を形成すること
ができる。
Preferred are buoyant granular filter media (sponge, plastic particles, wood chips, pumice, perlite, glass microballoons, etc.) with a specific gravity of less than 1.0, or those that sink in water but have a specific gravity of slightly less than 1.0. Large light granular filter media
(polyurethane sponge, lightweight aggregate, etc.), and can form an immersed filter medium layer extremely easily by simply throwing it into water.

比重1.0未満の浮上性粒状濾材を用いるときは、上部
にが材の流出を阻止するための多孔板、ネットなどの支
持部材23′を設け、比重が1.0よりわずかに大きな
軽い濾材を用いるときは、濾材の上部及び下部に簡単な
ネッ)23’、23などを設ければよい、いずれにせよ
、支持部材は使用濾材によって、必要により上部又は下
部、あるいは両方に設ければよい。
When using a buoyant granular filter medium with a specific gravity of less than 1.0, a supporting member 23' such as a perforated plate or a net is provided on the top to prevent the material from flowing out, and a light filter medium with a specific gravity of slightly more than 1.0 is used. When using a filter, simple nets 23', 23, etc. may be provided at the top and bottom of the filter medium.In any case, the support member may be provided at the top or bottom, or both, depending on the filter medium used. .

濾材層22の下部又は内部には、散気装置、例えば散気
管24を配備して空気ブロワ−27から空気を導くよう
にし、濾材層22の濾材表面に好気性生物膜を発達させ
るためには散気を行い、濾材表面に嫌気性生物膜を発達
させるには散気は行わない、しかし、濾材層22の洗浄
時には、何れの場合も散気を行うのが良い。
An aeration device, for example, an aeration tube 24 is provided below or inside the filter layer 22 to guide air from an air blower 27 to develop an aerobic biofilm on the surface of the filter layer 22. Aeration is not performed when aeration is performed to develop an anaerobic biofilm on the surface of the filter medium.However, when cleaning the filter medium layer 22, aeration is preferably performed in either case.

第1槽2)内下方の沈殿部25には、原水槽28の原水
をポンプ29によって流入させる原水流入管26が開口
し、原水流入管26の途中には凝集剤注入管30を連結
すると良い。
First tank 2) A raw water inlet pipe 26 is opened in the inner lower sedimentation part 25 through which raw water from the raw water tank 28 is introduced by a pump 29, and it is preferable that a coagulant injection pipe 30 is connected to the middle of the raw water inlet pipe 26. .

第1槽2)の上部には、下方から上昇して濾材層22を
流過した1次処理水を流出させる1次処理水流出口31
が開口され、また、濾材層22より上部の液相部と濾材
層22の下部とを連結するポンプ32を有する循環配管
33を設けるのも好ましい。第2図中、39は第1槽2
)の底部に連結された排泥管を示す。
At the top of the first tank 2), there is a primary treated water outlet 31 through which the primary treated water that rises from below and flows through the filter layer 22 flows out.
It is also preferable to provide a circulation pipe 33 having an opening and having a pump 32 that connects the liquid phase portion above the filter medium layer 22 and the lower part of the filter medium layer 22. In Figure 2, 39 is the first tank 2
) shows the sludge drainage pipe connected to the bottom of the tank.

41は第1槽2)と並設された第2槽で、槽内下方を沈
殿部45とし、底部に沈殿濃縮部42′が形成され、槽
内上方部には前述した第1図示例のような比重1.0以
上の粒状が材を充填した濾材層42が多孔性の支持部材
43で浸漬、保持され1、その上部を必要によりネット
などの多孔性の支持部材43′で覆い、濾材層42の流
出を防ぐこともできる。
Reference numeral 41 denotes a second tank installed in parallel with the first tank 2), in which the lower part of the tank is a sedimentation part 45, the bottom part is formed with a sedimentation concentration part 42', and the upper part of the tank has the same structure as in the first illustrated example described above. A filter medium layer 42 filled with particles having a specific gravity of 1.0 or more is immersed and held in a porous support member 43, and if necessary, the upper part is covered with a porous support member 43' such as a net, and the filter medium is It is also possible to prevent the layer 42 from flowing out.

濾材層42の下部又は内部には、酸素含有ガス、例えば
空気ブロワ−27′よりの空気を散気する散気管44が
配備され、散気管44より上部の濾材層部分を好気的状
態に保つ。
An aeration pipe 44 for diffusing oxygen-containing gas, such as air from the air blower 27', is provided below or inside the filter layer 42 to keep the portion of the filter layer above the aeration pipe 44 in an aerobic state. .

第2槽41の上部には、越流ロング−46が設けられて
最終処理水流出管47が連結されている。
An overflow long 46 is provided at the upper part of the second tank 41 to which a final treated water outflow pipe 47 is connected.

49は底部に連結された排泥管である。49 is a mud drainage pipe connected to the bottom.

さらに、第1槽2)の1次処理水流出口31と第2槽4
1内下方の沈殿部45とは、流路40によって連通され
ており、この流路40内に凝集剤注入管30′を開口す
ることも好ましい。
Furthermore, the primary treated water outlet 31 of the first tank 2) and the second tank 4
The sedimentation section 45 located in the lower part of the container 1 is communicated with a flow path 40, and it is also preferable that the flocculant injection pipe 30' is opened in this flow path 40.

なお、第2槽41の最終処理水流出管47に洗浄排水管
34を分岐し、この洗浄排水管34を開閉弁35を介し
て原水槽28に開口させたり、あるいは洗浄排水槽36
に開口させて洗浄排水槽36内の洗浄排水をポンプ37
によって凝集剤注入管30″を連結した洗浄排水返送管
38から第2槽41内の下方の沈殿部45へ返送するよ
うにするのが好ましい、また、第2槽41のが材Ji4
2より上部の液相部と第1槽2)の濾材層22の下部と
を、ポンプ37′を有する循環配管4日で連結すれば、
硝化脱窒処理を行う場合に好適となる。
Note that the cleaning drain pipe 34 is branched to the final treated water outflow pipe 47 of the second tank 41, and the cleaning drain pipe 34 is opened to the raw water tank 28 via the on-off valve 35, or the cleaning drainage pipe 36
The cleaning drainage tank 36 is opened to the pump 37.
It is preferable that the cleaning waste water is returned to the settling section 45 in the lower part of the second tank 41 from the cleaning waste water return pipe 38 connected to the flocculant injection pipe 30''.
If the liquid phase part above 2) and the lower part of the filter layer 22 of the first tank 2) are connected by a circulation pipe equipped with a pump 37' in 4 days,
It is suitable for performing nitrification and denitrification treatment.

請求項4の本発明の一実施例を第3図に基づいて説明す
れば、槽51内の上方部には前述した第1図示例のよう
な比重1.0以上の粒状が材を充填した濾材層52が多
孔性の支持部材53で浸漬5保持され、その上部を必要
によって金網などの多孔性の支持部材53′によって覆
い1.濾材層52の流出を防いでいる。
An embodiment of the present invention according to claim 4 will be explained based on FIG. The filter medium layer 52 is immersed and held in a porous support member 53, and the upper part thereof is covered with a porous support member 53' such as a wire mesh if necessary.1. This prevents the filter medium layer 52 from flowing out.

濾材層52の内部には酸素含有ガス、例えば空気を散気
する散気管54が埋設され、濾材層52の散気管54よ
り上部の部分を好気性生物膜処理部52−1とし、散気
管54より下部の部分を嫌気性生物処理部52−2とす
る。濾材層52の下部には、濾材層52の洗浄時に使用
する洗浄用散気管54′を配設することが好ましい。
An aeration pipe 54 for diffusing oxygen-containing gas, such as air, is buried inside the filter layer 52, and a portion of the filter layer 52 above the aeration pipe 54 is an aerobic biofilm treatment section 52-1, and the aeration pipe 54 The lower part is an anaerobic biological treatment section 52-2. It is preferable that a cleaning aeration pipe 54' for use in cleaning the filter layer 52 is disposed below the filter layer 52.

槽内の濾材層52より下方部は沈殿部55とし、この沈
殿部55内に原水流入管56に連なるフィードウェル5
7を設け、沈殿部55内底部には、駆動装置58により
回転する回転軸59の下方部に連結された沈殿汚泥60
の濃縮促進用のレーキ61と掻寄機62とが設けられて
いる。
The portion below the filter medium layer 52 in the tank is a sedimentation section 55, and within this sedimentation section 55 is a feedwell 5 connected to a raw water inflow pipe 56.
7 is provided at the inner bottom of the settling section 55, and a settled sludge 60 connected to the lower part of a rotating shaft 59 rotated by a drive device 58.
A rake 61 and a scraper 62 for promoting concentration are provided.

なお、散気管54をレーキ61等の回転軸59と共に水
平回転可能にすれば、気泡を好気性生物膜処理部52−
1に均等に分配できるので好適な実施態様である。その
場合、回転軸59を中空にし、散気管54への空気導入
管として兼用するようにするのが良い。
Note that if the air diffuser 54 is made horizontally rotatable together with the rotating shaft 59 such as the rake 61, air bubbles can be removed from the aerobic biofilm processing section 52-
This is a preferred embodiment because it can be distributed evenly. In that case, it is preferable to make the rotating shaft 59 hollow so that it also serves as an air introduction pipe to the air diffuser pipe 54.

さらに、槽体51の上部には、越流ロング−64が設け
られて処理水流出管65が連結され、処理水流出管65
には洗浄排水管66を分岐し、洗浄排水管66は開閉弁
67を介して洗浄排水槽68に連なり、洗浄排水槽68
内の洗浄排水がポンプ63によって沈殿部55のフィー
ドウェル57にリサイクルされるようになっている。
Furthermore, an overflow long 64 is provided at the top of the tank body 51 to which a treated water outflow pipe 65 is connected.
The cleaning drain pipe 66 is connected to the cleaning drainage tank 68 via the on-off valve 67, and the cleaning drainage pipe 66 is connected to the cleaning drainage tank 68 through the on-off valve 67.
The cleaning waste water inside is recycled to the feedwell 57 of the sedimentation section 55 by a pump 63.

図中、50は洗浄排水リサイクル途中に注入される高分
子凝集剤注入管、69は槽内庭部に連結された濃縮汚泥
の排泥管である。
In the figure, 50 is a polymer flocculant injection pipe that is injected during the recycling of washing wastewater, and 69 is a thickened sludge drainage pipe connected to the inner garden of the tank.

請求項5の一実施例を、第4図に基づいて説明すれば、
大部分の構造は、前述の第3図示例と同しであり、同一
部分は同一符号で示している。
An embodiment of claim 5 will be described based on FIG.
Most of the structure is the same as the third illustrated example described above, and the same parts are indicated by the same reference numerals.

さらに、処理水流出管65は貯留槽70を経て系外に導
かれる一方、貯留槽70は循環配管71によってポンプ
72及び開閉弁73を介して濾材層52の下部に設けら
れた分配管74に連なっている。また、ポンプ72の吐
出側を洗浄排水管75によって開閉弁76を介して沈殿
部55内のフィードウェル57と連結し、濾材層52の
洗浄排水を越流ワンダー64.処理水流出管65.貯留
槽70を経て、ポンプ72によって洗浄排水管75から
フィードウェル57へ導くようにすることが好ましく、
洗浄排水管75に高分子凝集割注入管77を連結する。
Furthermore, the treated water outflow pipe 65 is led out of the system via a storage tank 70, while the storage tank 70 is connected to a distribution pipe 74 provided at the bottom of the filter layer 52 via a pump 72 and an on-off valve 73 via a circulation pipe 71. They are connected. Further, the discharge side of the pump 72 is connected to the feedwell 57 in the sedimentation section 55 by a cleaning drain pipe 75 via an on-off valve 76, and the cleaning drainage of the filter medium layer 52 is transferred to the overflow wonder 64. Treated water outflow pipe 65. Preferably, the water is guided from the cleaning drain pipe 75 to the feedwell 57 via the storage tank 70 by the pump 72.
A polymer agglomeration injection pipe 77 is connected to the cleaning drain pipe 75 .

78は原水流入管56に連結された凝集割注入管、79
は循環配管71に連結された有機炭素源注入管である。
78 is a coagulation injection pipe connected to the raw water inflow pipe 56; 79
is an organic carbon source injection pipe connected to the circulation pipe 71.

また、濾材層52の洗浄を促進させるために、濾材層5
2の嫌気性生物処理部52−2の下部に、洗浄時のみに
空気を散気する散気管54′ (第3図参照)を設ける
ことも好ましい態様である。
Further, in order to promote cleaning of the filter medium layer 52, the filter medium layer 52 is
It is also a preferred embodiment to provide an aeration pipe 54' (see Fig. 3) below the anaerobic biological treatment section 52-2, which diffuses air only during cleaning.

さらに請求項6の本発明の実施例を第5図に基づいて説
明すれば、処理槽81内の上方部には、前述した第1図
示例のような比重1.0以上の粒状濾材を充填した濾材
層82が多孔性の支持部材83で浸漬、保持され、その
上部を必要によりネットなどの多孔性の支持部材83′
で覆い、濾材層82の流出を防いでいる。
Furthermore, if the embodiment of the present invention of claim 6 is explained based on FIG. The filter medium layer 82 is immersed and held in a porous support member 83, and the upper part thereof is covered with a porous support member 83' such as a net if necessary.
to prevent the filter medium layer 82 from flowing out.

また、濾材層82の下部又は内部には、空気などの酸素
含有ガスを散気し、濾材表面に発達している好気性生物
膜に酸素を供給し、かつ濾材層82の洗浄時に散気量を
増加させて洗浄効果を促進するために、例えば空気ブロ
ワ−87よりの空気を散気する散気管84が配備されて
いる。
In addition, an oxygen-containing gas such as air is diffused into the lower part or inside of the filter layer 82 to supply oxygen to the aerobic biofilm developed on the surface of the filter medium, and the amount of air diffused when the filter layer 82 is cleaned. In order to increase the cleaning effect and promote the cleaning effect, a diffuser pipe 84 is provided to diffuse air from, for example, an air blower 87.

処理槽81の内部下方部は沈殿部85たらしめてあり、
この沈殿部85内に、原水槽88に連なりポンプ89を
備えた原水流入管86が開口されている。原水流入管8
6には、必要に応じてポンプ89の乗込側又は吐出側に
凝集剤注入管90が連結される。
The lower part of the inside of the treatment tank 81 is configured as a sedimentation part 85.
A raw water inflow pipe 86 connected to a raw water tank 88 and equipped with a pump 89 is opened in the settling section 85 . Raw water inflow pipe 8
6, a flocculant injection pipe 90 is connected to the entry side or the discharge side of the pump 89 as necessary.

処理槽81の上部には、越流ロンダー94が設けられて
1次処理水流出管95が連結される一方、開閉弁97を
備えた洗浄排水管96が連結され、この洗浄排水管96
は原水槽88に開口される。
An overflow launder 94 is provided at the upper part of the treatment tank 81 to which a primary treated water outflow pipe 95 is connected, and a washing drain pipe 96 equipped with an on-off valve 97 is connected to the washing drain pipe 96.
is opened to the raw water tank 88.

99は処理槽1の底部に連結された排泥管、100は沈
殿部85の沈殿汚泥を示す。
Reference numeral 99 indicates a sludge drain pipe connected to the bottom of the treatment tank 1, and reference numeral 100 indicates the settled sludge in the settling section 85.

101は好気性生物濾床装置で、内部にはアンスラサイ
ト砂1粒状活性炭などの比重1.0以上の粒状濾材を充
填した炉床102が設けられ、その下部には空気ブロワ
−107に連なるエアレーション用の散気管104が配
備されている。
Reference numeral 101 denotes an aerobic biological filter bed device, in which a hearth 102 filled with granular filter media such as anthracite sand and granular activated carbon having a specific gravity of 1.0 or more is provided, and an aeration chamber connected to an air blower 107 is provided at the bottom of the hearth 102. A diffuser pipe 104 for use is provided.

さらに、処理槽81上部の1次処理水流出管95は、好
気性生物濾床装置101内上部に連通開口され、炉床1
02内を下向流で流過した1次処理水は、最終処理水と
なって炉床102の下部に連結された最終処理水流出管
117から流出するようになっている。なお、好気性生
物濾床装置101内の1次処理水流出管95の開口部及
び最終処理水流出管117の開口位置は、図示例と上下
を逆’h’、、i、1次処理水が炉床102を上向流で
流過したのち上部から流出するようにすることもできる
Furthermore, the primary treated water outflow pipe 95 at the upper part of the treatment tank 81 is opened in communication with the upper part of the aerobic biological filter bed device 101, and the hearth 1
The primary treated water that has passed through the chamber 02 in a downward flow becomes final treated water and flows out from a final treated water outflow pipe 117 connected to the lower part of the hearth 102. Note that the opening positions of the primary treated water outflow pipe 95 and the final treated water outflow pipe 117 in the aerobic biological filter bed device 101 are upside down from the illustrated example 'h', i, primary treated water It is also possible to make it flow through the hearth 102 in an upward flow and then flow out from the upper part.

また、1次処理水流出管95の途中に好気性生物濾床装
置101へ流入する1次処理水を一旦貯留する貯留槽1
10を介在させ、貯留槽110と好気性生物濾床装置1
01内の炉床102の下部とを開閉弁111.ポンプ1
12を備えた洗浄用水管113で連通し、炉床102の
洗浄に便利なようにするのが望ましく、また好気性生物
濾床袋2)01の上部に洗浄排水管96′を連結し、原
水槽88に開口するのも好ましい。
Further, a storage tank 1 for temporarily storing the primary treated water flowing into the aerobic biological filter bed device 101 is provided in the middle of the primary treated water outflow pipe 95.
10, a storage tank 110 and an aerobic biological filter bed device 1
01 and the lower part of the hearth 102 and the opening/closing valve 111. pump 1
It is preferable to communicate with a washing water pipe 113 equipped with a water pipe 12 for convenient washing of the hearth 102. Also, a washing drain pipe 96' is connected to the upper part of the aerobic biological filter bed bag 2) 01 to It is also preferable to open into the water tank 88 .

なお、貯留槽110を高所に設置し、水位差によって貯
留槽110内の1次処理水を好気性生物濾床装置t10
1内の炉床102下部に圧入するようにすれば、ポンプ
112を省略することができる。
Note that the storage tank 110 is installed at a high place, and the primary treated water in the storage tank 110 is transferred to the aerobic biological filter device t10 by the water level difference.
If the pump 112 is press-fitted into the lower part of the hearth 102 in the hearth 102, the pump 112 can be omitted.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、次のような特別顕
著な効果が得られ、従来技術の諸欠点を完全に解決でき
るほか、従来装置では得られるべくもなかった独自の効
果が発揮される。
As described above, according to the present invention, the following particularly remarkable effects can be obtained, and the various drawbacks of the conventional technology can be completely solved, and in addition, the present invention can exhibit unique effects that could not be obtained with conventional devices. be done.

■ 単一槽で沈降分離1炉遇及び生物処理を効果的に遂
行することができ、省スペースと建設コストの大きな低
減ができる。
■ Sedimentation, separation, and biological treatment can be performed effectively in a single tank, saving space and greatly reducing construction costs.

■ 熔解性BOI)が高濃度の原水に対しても、直接適
用することが可能で、適用範囲が非常に広い。
■ It can be directly applied to raw water with a high concentration of soluble BOI, and has a very wide range of applications.

■ 原水中のSSの分離効率が極めて優れており、安定
してSS数■/I!の清澄処理水を得ることができる。
■ The separation efficiency of SS in raw water is extremely excellent, and the number of SS is stable ■/I! of purified water can be obtained.

■ 処理流量の変動時にも、SSの分離効率がほとんど
悪化しない。
■ SS separation efficiency hardly deteriorates even when the processing flow rate fluctuates.

■ 濾材層の洗浄時に原水の流入を停止させる必要もな
く、さらに原水自体および洗浄排水それ自身をI材洗浄
用水として有効利用できるので、極めて合理的である。
(2) There is no need to stop the flow of raw water when cleaning the filter media layer, and the raw water itself and the cleaning waste water itself can be effectively used as water for cleaning the I material, which is extremely rational.

■ 濾材洗浄排水の処理に、別個の沈殿槽を設ける必要
がない。
■ There is no need to provide a separate sedimentation tank to treat filter media cleaning wastewater.

■ 濾材層の洗浄に洗浄排水を利用することができ、処
理水を消費する必要がなく、処理水の生産効率を高める
ことができる。
■ Washing wastewater can be used to wash the filter media layer, eliminating the need to consume treated water and increasing the production efficiency of treated water.

■ 後段に好気性生物が床装置を設けたときは、咳が床
の目詰まり進行が極めて緩慢であるので、洗浄顧度が少
なくてすむ。その結果、濾材表面に発達した生物膜を必
要以上に系外に洗い出さなくてすむので、好気性生物膜
処理効果が優れ、55、 BODの高い原水に対しても
高い浄化を安定して得ることができる。
■ When a floor device is provided for aerobic organisms in the latter stage, coughing clogs the floor very slowly, so there is less need for cleaning. As a result, the biofilm that has developed on the surface of the filter media does not need to be flushed out of the system any more than necessary, resulting in excellent aerobic biofilm treatment effects, resulting in stable high purification even for raw water with a high BOD. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図はいずれも本発明の実施例を示す縦断面
図である。 1.51・・・槽、2.22.42.52.82・・・
濾材層、3、 3 ’、 23.23’、 43.43
’、 53.53’、 83゜83′・・・支持部材、
4.24.44.54.54’、 84゜104・・・
散気管、5.25.45.55.85・・・沈殿部、6
、26.56.86・・・原水流入管、7,57・・・
フィードウェル、8.58・・・駆動装置、9.59・
・・回転軸、10、60.100・・・沈殿汚泥、11
.61・・・レーキ、12、62・・・掻寄機、13.
27.27 ’ 、 87.107・・・空気ブロワ−
114,46,64,94・・・越流ロンダー15、6
5・・・処理水流出管、16.38・・・洗浄排水返送
管、17、30.30 ’ 、 30“178.90・
・・凝集剤注入管、18・・・中間水抜き、19.39
.49.69.99・・・排泥管、2)・・・第1楢、
22”、42’・・・沈殿濃縮部、28.88・・・原
水槽、29.32.37.37’、 63.72 89
 112・・・ポンプ、31・・・1次処理水流出口、
33.48.71・・・循環配管、34.6,6.75
.96.96’・・・洗浄排水管、35、67、73.
76、97.111・・・開閉弁、36.68・・・洗
浄排水槽、40・・・流路、41・・・第2槽、47.
117・・・最終処理水流出管、50.77・・・高分
子凝集剤注入管、52−1・・・好気性生物膜処理部、
52−2・・・嫌気性生物膜処理部、70.110・・
・貯留槽、74・・・分配管、79・・・有機炭素源注
入管、81・・・処理槽、95・・・1次処理水流出管
、101・・・好気性生物濾床装置、102・・・炉床
、113・・・洗浄用水管。
1 to 5 are longitudinal sectional views showing embodiments of the present invention. 1.51...tank, 2.22.42.52.82...
Filter media layer, 3, 3', 23.23', 43.43
', 53.53', 83°83'...Supporting member,
4.24.44.54.54', 84°104...
Diffusion pipe, 5.25.45.55.85...Settling part, 6
, 26.56.86...Raw water inflow pipe, 7,57...
Feedwell, 8.58... Drive device, 9.59.
...Rotating shaft, 10, 60.100...Settled sludge, 11
.. 61... Rake, 12, 62... Raking machine, 13.
27.27', 87.107...Air blower
114, 46, 64, 94... Overflow launder 15, 6
5... Treated water outflow pipe, 16.38... Washing wastewater return pipe, 17, 30.30', 30"178.90.
...Flocculant injection pipe, 18...Intermediate water drain, 19.39
.. 49.69.99...Sludge drainage pipe, 2)...First oak,
22", 42'... Precipitation concentration section, 28.88... Raw water tank, 29.32.37.37', 63.72 89
112... Pump, 31... Primary treated water outlet,
33.48.71...Circulation piping, 34.6,6.75
.. 96.96'...Cleaning drain pipe, 35, 67, 73.
76, 97.111... Opening/closing valve, 36.68... Washing drainage tank, 40... Channel, 41... Second tank, 47.
117...Final treated water outflow pipe, 50.77...Polymer flocculant injection pipe, 52-1...Aerobic biofilm treatment section,
52-2...Anaerobic biofilm treatment section, 70.110...
- Storage tank, 74... Distribution pipe, 79... Organic carbon source injection pipe, 81... Treatment tank, 95... Primary treated water outflow pipe, 101... Aerobic biological filter bed device, 102...Heart, 113...Washing water pipe.

Claims (1)

【特許請求の範囲】 (1)槽内の上方部に比重1.0以上の粒状濾材を充填
した濾材層を浸漬保持し、該濾材層の下部又は内部に散
気装置を配備し、その下方部を沈殿部として該沈殿部に
原水流入部を設け、さらに槽上部に処理水流出部を設け
たことを特徴とする汚水処理装置。 (2)前記濾材層の洗浄時の洗浄排水を前記沈殿部へ返
送する洗浄排水返送路を設けた請求項1記載の汚水処理
装置。 (3)槽内の上方部に濾材層を浸漬保持し、槽内下方部
を沈殿部として該沈殿部に原水流入部を設けると共に槽
上部に1次処理水流出部を設けた第1の槽と、槽内の上
方部に比重1.0以上の粒状濾材を充填した濾材層を浸
漬保持すると共に該濾材層の下部又は内部に散気装置を
配備し、その下方を沈殿部とし、槽上部に最終処理水流
出部を設けた第2の槽とを並設し、前記第1の槽の1次
処理水流出部と前記第2の槽内の沈殿部とを連通せしめ
たことを特徴とする汚水処理装置。 (4)槽内の上方部に比重1.0以上の粒状濾材を充填
した濾材層を浸漬保持し、該濾材層内に散気装置を埋設
して濾材層の散気装置より上部の部分を好気性生物膜処
理部とすると共に散気装置より下部の部分を嫌気性生物
膜処理部とし、さらに槽内下方部を沈殿部として該沈殿
部に原水流入部を設け、槽上部に処理水流出部を設けた
ことを特徴とする汚水処理装置。 (5)前記処理水流出部から流出する処理水の一部を前
記濾材層下部へ循環する循環路を設けた請求項4記載の
汚水処理装置。 (2)槽内の上方部に比重1.0以上の粒状濾材を充填
した濾材層を浸漬保持し、該濾材層の下部又は内部に散
気装置を配備し、槽内下方部を沈殿部として該沈殿部に
原水流入部を設けると共に槽上部に1次処理水流出部を
設けた処理槽と、比重1.0以上の粒状濾材の炉床を設
けた好気性生物濾床装置とを並設し、前記処理槽の1次
処理水流出部と前記好気性生物炉床装置とを連通せしめ
たことを特徴とする汚水処理装置。
[Scope of Claims] (1) A filter layer filled with granular filter media with a specific gravity of 1.0 or more is immersed and held in the upper part of the tank, and an air diffuser is provided below or inside the filter layer. A sewage treatment device characterized in that a part is a settling part, a raw water inflow part is provided in the settling part, and a treated water outflow part is further provided in the upper part of the tank. (2) The sewage treatment apparatus according to claim 1, further comprising a washing waste water return path for returning washing waste water during washing of the filter medium layer to the settling section. (3) A first tank in which a filter layer is immersed and held in the upper part of the tank, the lower part of the tank is a sedimentation part, a raw water inlet is provided in the sedimentation part, and a primary treated water outflow part is provided in the upper part of the tank. Then, a filter layer filled with granular filter media with a specific gravity of 1.0 or more is immersed and held in the upper part of the tank, and an aeration device is installed below or inside the filter layer, the lower part is the settling part, and the upper part of the tank is and a second tank provided with a final treated water outflow part are installed in parallel, and the primary treated water outflow part of the first tank is communicated with the settling part in the second tank. sewage treatment equipment. (4) A filter layer filled with granular filter media with a specific gravity of 1.0 or more is immersed and held in the upper part of the tank, and an aeration device is buried in the filter layer to remove the upper part of the filter layer from the aeration device. The area below the air diffuser is used as an aerobic biofilm treatment section, and the lower part of the tank is used as a settling section, with a raw water inflow section provided in the settling section, and a treated water outflow section at the top of the tank. A sewage treatment device characterized by having a section. (5) The sewage treatment apparatus according to claim 4, further comprising a circulation path for circulating a portion of the treated water flowing out from the treated water outflow portion to the lower part of the filter medium layer. (2) A filter layer filled with granular filter media with a specific gravity of 1.0 or more is immersed and held in the upper part of the tank, and an aeration device is installed below or inside the filter layer, and the lower part of the tank is used as a settling part. A treatment tank with a raw water inlet in the sedimentation part and a primary treated water outlet in the upper part of the tank, and an aerobic biological filter bed device equipped with a hearth of granular filter media with a specific gravity of 1.0 or more are installed side by side. A sewage treatment device characterized in that the primary treated water outflow portion of the treatment tank and the aerobic biological hearth device are communicated with each other.
JP2054989A 1990-03-08 1990-03-08 Sewage treating device Pending JPH03258396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2054989A JPH03258396A (en) 1990-03-08 1990-03-08 Sewage treating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2054989A JPH03258396A (en) 1990-03-08 1990-03-08 Sewage treating device

Publications (1)

Publication Number Publication Date
JPH03258396A true JPH03258396A (en) 1991-11-18

Family

ID=12986060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2054989A Pending JPH03258396A (en) 1990-03-08 1990-03-08 Sewage treating device

Country Status (1)

Country Link
JP (1) JPH03258396A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142668A (en) * 1992-11-02 1994-05-24 Ebara Infilco Co Ltd Purifying treatment device for organic sewage
JP4581211B2 (en) * 2000-10-05 2010-11-17 栗田工業株式会社 Biological denitrification equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243360B2 (en) * 1972-04-21 1977-10-29
JPS5938833A (en) * 1982-08-27 1984-03-02 Alps Electric Co Ltd System for direct retrieval of character correction position in character proofreading machine
JPS60187396A (en) * 1984-03-06 1985-09-24 Hitachi Plant Eng & Constr Co Ltd Apparatus for biologically removing nitrogen in waste water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243360B2 (en) * 1972-04-21 1977-10-29
JPS5938833A (en) * 1982-08-27 1984-03-02 Alps Electric Co Ltd System for direct retrieval of character correction position in character proofreading machine
JPS60187396A (en) * 1984-03-06 1985-09-24 Hitachi Plant Eng & Constr Co Ltd Apparatus for biologically removing nitrogen in waste water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142668A (en) * 1992-11-02 1994-05-24 Ebara Infilco Co Ltd Purifying treatment device for organic sewage
JP4581211B2 (en) * 2000-10-05 2010-11-17 栗田工業株式会社 Biological denitrification equipment

Similar Documents

Publication Publication Date Title
KR101037888B1 (en) Hybrid wastewater treatment equipment with sedimentation, biological degradation, filtration, phosphorus removal and uv disinfection system in a reactor
JPH0461993A (en) Method and apparatus for biological nitration and denitrification of organic polluted water
JP2684495B2 (en) Advanced purification equipment for organic wastewater
JP2585187B2 (en) Organic wastewater biological treatment method
JPH03258396A (en) Sewage treating device
JPH03188993A (en) Sewage treating device
JPH06142668A (en) Purifying treatment device for organic sewage
JP4261700B2 (en) Wastewater treatment equipment
JPH03188994A (en) Biotreating device for organic sewage
JPH0717438Y2 (en) Organic wastewater treatment equipment
JPH03296494A (en) Treatment apparatus for organic polluted water
JPH0418988A (en) Biomembrane filter device for organic sewage
JPH0717439Y2 (en) Organic wastewater treatment equipment
JPS62176597A (en) Apparatus for biological treatment of waste water
JPH03217296A (en) Biological denitrifying device
JPH03254894A (en) Treating apparatus for organic polluted water
JPH0639391A (en) Method for treating waste water
JPH0642793Y2 (en) Aerobic immersion ▲ Floor ▼ Floor equipment
JPH03249993A (en) Biological treating device for organic sewage
JPH0710391B2 (en) Organic wastewater treatment equipment
JPH0466194A (en) Organic sewage treatment method and apparatus
JPH03196896A (en) Device for biologically treating organic sewage
JPH0642794Y2 (en) Organic wastewater biological treatment equipment
JPH0646559Y2 (en) Organic wastewater biological treatment equipment
KR20000018687A (en) Method for managing wastewater using continuous filtration process