JPH0325764B2 - - Google Patents

Info

Publication number
JPH0325764B2
JPH0325764B2 JP63183520A JP18352088A JPH0325764B2 JP H0325764 B2 JPH0325764 B2 JP H0325764B2 JP 63183520 A JP63183520 A JP 63183520A JP 18352088 A JP18352088 A JP 18352088A JP H0325764 B2 JPH0325764 B2 JP H0325764B2
Authority
JP
Japan
Prior art keywords
waveguide
bright spot
thin film
lens
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63183520A
Other languages
Japanese (ja)
Other versions
JPS6463935A (en
Inventor
Kazuya Matsumoto
Isao Yamaguchi
Takao Tsuji
Hideaki Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63183520A priority Critical patent/JPS6463935A/en
Publication of JPS6463935A publication Critical patent/JPS6463935A/en
Publication of JPH0325764B2 publication Critical patent/JPH0325764B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Facsimile Scanning Arrangements (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は輝点走査を行う為の装置に関するもの
である。そして本発明は、薄膜導波路を利用し
て、新規でコンパクトな輝点走査素子を提供する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an apparatus for performing bright spot scanning. The present invention utilizes a thin film waveguide to provide a novel and compact bright spot scanning device.

〔従来技術〕[Prior art]

従来、輝点走査装置としては、レーザービーム
を利用したものがあり、それらはレーザービーム
を偏向する為のポリゴン回転鏡や偏向光束を集光
し線形な輝点運動に変換する為のf−θレンズ等
から構成されている。しかしながらこれら従来の
装置は、各作用部が個々独立して、かつ相互に一
定光路間隔を必要とする為装置の組立及び精密な
調整が非常に複雑であり、また組み立てた装置は
大型になる等の欠点を有していた。
Conventional bright spot scanning devices have used laser beams, and these include polygon rotating mirrors for deflecting laser beams and f-θ mirrors for condensing the deflected beam and converting it into linear bright spot motion. It consists of lenses, etc. However, in these conventional devices, each operating part requires a certain distance between each optical path, making assembly and precise adjustment very complicated, and the assembled device becomes large. It had the following drawbacks.

一方、薄膜導波路の一部に超音波光偏向器と薄
膜レンズとを集積化することにより、上記欠点を
解決した輝点走査素子が特開昭52−68307号で提
案されている。
On the other hand, a bright spot scanning element has been proposed in Japanese Patent Application Laid-open No. 68307/1983, which solves the above drawbacks by integrating an ultrasonic optical deflector and a thin film lens in a part of a thin film waveguide.

しかしながら、このような素子において、偏向
光束を導波路端面から出射させて輝点を結像させ
る場合、収差の影響によつて良好な結像状態が得
られないといつた問題があつた。即ち、薄膜レン
ズから出射する偏向光束の内、軸上光束と軸外光
束とでは導波路端面によつて受ける屈折作用が異
なり、軸外でコマ収差が発生したり、画角によつ
て非点収差の量が変化したりした。
However, in such an element, when a bright spot is imaged by emitting a deflected light beam from the end face of the waveguide, a problem arises in that a good imaging state cannot be obtained due to the influence of aberrations. That is, among the deflected light beams emitted from the thin film lens, the refraction effect received by the waveguide end face is different for the axial and off-axis light beams, and coma aberration may occur off-axis, and astigmatism may occur depending on the angle of view. The amount of aberration changed.

〔発明の概要〕[Summary of the invention]

本発明の目的は、コンパクトで組立調整の不用
な輝点走査素子であつて、更に導波路外で輝点を
結像する際に、走査に伴う収差の影響が少ない輝
点走査素子を提供することにある。
An object of the present invention is to provide a bright spot scanning element which is compact and does not require assembly and adjustment, and which is also less affected by aberrations associated with scanning when imaging a bright spot outside a waveguide. There is a particular thing.

本発明の上記目的は、薄膜導波路の一部に、該
導波路中に導かれた光束を偏向する為の光偏向部
と、偏向されて導波路端面から出射する光束を導
波路の外側に集光する薄膜レンズとを設けて成
り、前記導波路の端面を前記薄膜レンズの中心を
同心とする円筒面形状とした輝点走査素子によつ
て達成される。
The above-mentioned object of the present invention is to provide a part of the thin film waveguide with an optical deflection section for deflecting the light beam guided into the waveguide, and to direct the deflected light beam out from the end face of the waveguide to the outside of the waveguide. This is achieved by a bright spot scanning element which is provided with a thin film lens for condensing light, and the end face of the waveguide has a cylindrical surface shape concentric with the center of the thin film lens.

〔実施例〕〔Example〕

以下図面を用いて本発明の実施例を説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明を適用する輝点走査素子の基本
的構成を示す斜視図である。この輝点走査素子で
は、基盤1上に形成された導波路2にプリズムカ
ツプラー3、櫛の歯状電極6及び薄膜レンズ9が
設けられている。今レーザー平行光束4がプリズ
ムカツプラー3を通じて導波路2中に光束5とし
て導かれる。そして導波路を伝わる光束5は、導
波路2の1部に設けられた櫛の歯状電極6によつ
て励起される所の超音波表面弾性波7により回折
作用をおこし偏向される。更にこの偏向光束8は
薄膜レンズ9により集光され、端面10より出射
する。このような構成において、本実施例の輝点
走査素子では前記櫛の歯状電極6に印加する高周
波電圧の周波数を変化させて、導波路上の超音波
表面弾性波の波長を変える事により偏向角を制御
し、輝点走査を行う。このように本実施例の輝点
走査素子は、光偏向器及び集光レンズを同一基盤
上に設け、その導波路の射出端面の近傍に輝点を
形成し走査する為、非常にコンパクトであるとと
もに精密な調整が不用である等の利点を有してい
る。
FIG. 1 is a perspective view showing the basic configuration of a bright spot scanning element to which the present invention is applied. In this bright spot scanning element, a waveguide 2 formed on a substrate 1 is provided with a prism coupler 3, a comb tooth-shaped electrode 6, and a thin film lens 9. Now, the laser parallel beam 4 is guided through the prism coupler 3 into the waveguide 2 as a beam 5. The light beam 5 propagating through the waveguide is deflected by the ultrasonic surface acoustic wave 7 excited by the comb-like electrode 6 provided in a portion of the waveguide 2. Furthermore, this deflected light beam 8 is condensed by a thin film lens 9 and exits from an end surface 10. In such a configuration, the bright spot scanning element of this embodiment changes the frequency of the high-frequency voltage applied to the comb tooth-shaped electrode 6 to change the wavelength of the ultrasonic surface acoustic wave on the waveguide, thereby deflecting the ultrasonic surface acoustic wave. Control the angle and perform bright spot scanning. As described above, the bright spot scanning element of this embodiment is extremely compact because the optical deflector and condensing lens are provided on the same substrate, and a bright spot is formed near the exit end face of the waveguide for scanning. It also has the advantage of not requiring precise adjustment.

次に上記実施例の輝点走査素子の各構成部分に
ついて更に詳しく説明する。
Next, each component of the bright spot scanning element of the above embodiment will be explained in more detail.

基盤1は圧電効果を有し、高周波の超音波が能
率良く伝播される材料が適しており、LiNbO3
LiTaO3、ZnO等が望ましい。また導波路2は、
LiNbO3基盤の場合はTiを高温(約1000℃)下で
in−diffuseして基盤上に数μmの厚さで形成す
る。また、LiTaO3基盤の場合は、Nb又はTiをin
−diffuseして得られる。更に他の例がT.Tamir
著「Integrated Optics」Spinger Verlag社
(1975)等に記述されているが、本実施例の導波
路は高屈折率でかつ基盤との屈折率差が大きく導
波路を薄くしても光が伝播される材料で形成され
る事が望ましい。
The substrate 1 is suitably made of a material that has a piezoelectric effect and allows high-frequency ultrasonic waves to propagate efficiently, such as LiNbO 3 ,
LiTaO 3 , ZnO, etc. are preferable. Moreover, the waveguide 2 is
In the case of LiNbO 3 substrate, Ti is heated at high temperature (approximately 1000℃).
It is formed in-diffuse on the substrate to a thickness of several micrometers. In addition, in the case of LiTaO 3 substrate, Nb or Ti is injected.
- Obtained by diffusing. Yet another example is T.Tamir
As described in "Integrated Optics" by Spinger Verlag (1975), the waveguide of this example has a high refractive index and has a large refractive index difference with the substrate, so that even if the waveguide is made thin, light will not propagate. It is desirable that it be made of a material that

偏向器は、超音波表面弾性波を利用するものが
望ましく、本実施例では第2図に示した如く、圧
電性の導波路面上に形成された櫛の歯状電極6に
より超音波を励起する。櫛の歯状電極のピツチa
は励起する超音波の中心波長の1/2に設定する。
例えばLiNbO3基盤で電極ピツチa=16.5μmに設
定すれば200MHzの高周波電圧を印加した時、波
長33μmの超音波が励起可能である。(超音波の
速度は約6.6×106mm/secである。)この一つの電
極で得られる偏向器の帯域は、励起された超音波
が作るブラツグ型回折格子の角度選択幅と、この
圧電材と電極からなるトランデユーサー自身がも
つ帯域により制御される。前者のブラツグ回折に
より制限される帯域はProc IEEE 64、779
(1976) E.G.Lean et al「ThinFilmAcoustooptic
Devices」 より次式で与えられる。
The deflector is preferably one that utilizes ultrasonic surface acoustic waves, and in this embodiment, as shown in FIG. do. Pitch a of comb tooth electrode
is set to 1/2 of the center wavelength of the ultrasonic wave to be excited.
For example, if the electrode pitch a is set to 16.5 μm on a LiNbO 3 substrate, ultrasonic waves with a wavelength of 33 μm can be excited when a high frequency voltage of 200 MHz is applied. (The speed of ultrasonic waves is approximately 6.6 x 10 6 mm/sec.) The band of the deflector obtained with this one electrode is determined by the angular selection width of the Bragg-type diffraction grating created by the excited ultrasonic waves and the piezoelectric It is controlled by the band of the transducer itself, which consists of material and electrodes. The band limited by the former Bragg diffraction is Proc IEEE 64 , 779
(1976) EGLean et al “Thin Film Acoustooptic
Devices” is given by the following formula.

Δν1=2nv/λ0Λ/L (1) ここで n:導波路の屈折率 λ0:入射光束の波長 v:超音波表面弾性波の速度 Λ:同じく弾性波の波長 L:同じく弾性波の幅である。 Δν 1 = 2nv/λ 0 Λ/L (1) where n: refractive index of the waveguide λ 0 : wavelength of the incident light flux v: velocity of the ultrasonic surface acoustic wave Λ: wavelength of the same elastic wave L: also the elastic wave It is the width of

また、印加周波数をΔνだけ偏奇させたときの
偏向角Δφは次式で与えられる。
Further, the deflection angle Δφ when the applied frequency is biased by Δν is given by the following equation.

Δφλ0/nvΔν (2) この偏向角内で互いに分離可能な走査点数Nは
次式で与えられる。但しWは入射光束幅である。
Δφλ 0 /nvΔν (2) The number N of scanning points that can be separated from each other within this deflection angle is given by the following equation. However, W is the width of the incident light beam.

N=Δν・W/v (3) 例えば、Δν=50MHz、W=10mm、v=6.6×106
mm/secのとき、N=75点となる。
N=Δν・W/v (3) For example, Δν=50MHz, W=10mm, v=6.6×10 6
When mm/sec, N=75 points.

更に走査点数を拡張する時は、C.S.Tasiらによ
つて示された広帯域偏向器等を利用する事ができ
る。(SPIE vo1 139、P139、1978)これは第3
図に示す如く、互いにピツチの異なる複数個の電
極を各波長帯域に応じて入射光に対してブラツグ
回折条件を満たす角度で配置し、各々のトランデ
ユーサー12に広帯域の1部を分担させ、そして
電極に周波数が連続的に変わる、いわゆるチヤー
プト信号を入力して500MHzの広帯域を変化させ
るものである。これにより1250点の走査点を得る
事が可能である。
When further expanding the number of scanning points, it is possible to use a broadband deflector etc. shown by CSTasi et al. (SPIE vo1 139, P139, 1978) This is the third
As shown in the figure, a plurality of electrodes with different pitches are arranged at an angle that satisfies the Bragg diffraction condition with respect to the incident light according to each wavelength band, and each transducer 12 is assigned a part of the wide band. Then, a so-called chirp signal, whose frequency changes continuously, is input to the electrodes to change a wide band of 500MHz. This makes it possible to obtain 1250 scanning points.

次に薄膜レンズ9としては、IEEE Qun Elect
vol QE−13、P129、1977(by D.W.Vakey &
Van E.Wood)にも示されているモードイン
デツクスレンズ(mode index lens)、ルネブル
クレンズ(Luneburg lens)、ジオデイツクレン
ズ(geodesic lens)等が適している。この後者
の二種のレンズにより理論解像限界に近い性能が
得られている。
Next, as the thin film lens 9, IEEE Qun Elect
vol QE−13, P129, 1977 (by DWVakey &
A mode index lens, a Luneburg lens, a geodesic lens, etc., as shown in Van E. Wood, are suitable. These latter two types of lenses provide performance close to the theoretical resolution limit.

薄膜レンズにより集光されるx方向における輝
点の大きさ(直径)δは次式で与えられる。
The size (diameter) δ of the bright spot in the x direction focused by the thin film lens is given by the following equation.

δ=2.44λ0f/nW (4) =2.44(λ0/n)F (5) ここで、Fはf/Wで与えられるFナンバーであ る。 δ=2.44λ 0 f/nW (4) =2.44(λ 0 /n)F (5) Here, F is the F number given by f/W.

このように本発明の輝点走査素子においては偏
向器と、集光レンズが同一基盤上に形成されてい
るため、コンパクトで配置ずれのない安定な素子
となる。
In this manner, in the bright spot scanning element of the present invention, since the deflector and the condenser lens are formed on the same substrate, the element is compact and stable without any displacement.

更に、本発明においては、光束の射出端面15
を第4図に示すようにレンズ9の中心を同心とす
る円筒面形状としている。このような構成によつ
て、光束がどの方向に偏向されても、この光束が
端面15によつて受ける屈折作用は一様であり、
走査に伴なう収差の発生を防ぐことが出来る。本
発明のように、光束を射出端面15の外側で集光
させる場合には、x方向には集光するが膜の垂直
方向であるy方向にはデフオーカス状態となる。
従つて、x及びy方向の両方向に集光させるため
には、y方向にだけ集光作用をもつシリンドリカ
ルレンズを外部に設け、x方向の集光点にy方向
の集光を合致させると良い。
Furthermore, in the present invention, the exit end surface 15 of the luminous flux
As shown in FIG. 4, the lens 9 has a cylindrical surface shape with the center of the lens 9 being concentric. With such a configuration, no matter which direction the light beam is deflected, the refraction effect on the light beam by the end surface 15 is uniform;
It is possible to prevent the occurrence of aberrations associated with scanning. When the light beam is focused on the outside of the exit end face 15 as in the present invention, the light is focused in the x direction, but is in a defocus state in the y direction, which is the direction perpendicular to the film.
Therefore, in order to focus light in both the x and y directions, it is better to provide an external cylindrical lens that focuses light only in the y direction, and to match the focus point in the y direction with the focus point in the x direction. .

また、第1図の側では光束はカツプリング用の
プリズム3を介して導波路に導かれたが、導波路
端面に近接させて半導体レーザーを設置し直接導
波路に光束を入射させても良い。ただし、この場
合には導波路2内で光束は発散光となるため、平
行光束にする薄膜レンズが必要になる。
Further, in the case shown in FIG. 1, the light beam is guided to the waveguide via the coupling prism 3, but a semiconductor laser may be installed close to the end face of the waveguide and the light beam may be directly incident on the waveguide. However, in this case, since the light beam becomes diverging light within the waveguide 2, a thin film lens is required to convert the light beam into a parallel light beam.

次に本発明の輝点走査素子を応用するいくつか
の実施例を説明する。
Next, some embodiments to which the bright spot scanning element of the present invention is applied will be described.

第5図は本発明の輝点走査素子をTV画像のフ
イルム記録に適用する実施例である。本発明の輝
点走査素子16から射出される輝点17を拡大投
影レンズ18によりフイルム面に導く。輝点走査
素子16は第1図に示した各光IC部から構成さ
れている。この場合の基盤1はLiNbO3基盤であ
り、導波路はTiをin−diffuseして得られる。い
ま、N=500、λ0=0.82μ、f=15mm、n=2.2、
F=f/W=2、vA=3.5×106mm/secとすると、こ のときの帯域幅Δν、振り角Δφ、輝点直径δ、走
査幅l、レスポンスτはそれぞれ次のとおりとな
る。
FIG. 5 shows an embodiment in which the bright spot scanning element of the present invention is applied to film recording of TV images. A bright spot 17 emitted from the bright spot scanning element 16 of the present invention is guided onto the film surface by an enlarged projection lens 18. The bright spot scanning element 16 is composed of each optical IC section shown in FIG. The substrate 1 in this case is a LiNbO 3 substrate, and the waveguide is obtained by in-diffusing Ti. Now, N=500, λ 0 =0.82μ, f=15mm, n=2.2,
When F=f/W=2 and v A =3.5×10 6 mm/sec, the bandwidth Δν, swing angle Δφ, bright spot diameter δ, scanning width l, and response τ are as follows. .

δ=2.44λ0/nF=1.8μ l=1.8×10-3×500=0.9mm W=7.5mm Δφ=2tan-10.9/2/15=3.8゜ Δν=nvA/λ0Δφ=625MHz τ=W/vA=2.1μsec この走査輝点を拡大投影レンズ18により輝点
走査方向と垂直方向に移動するフイルムに投影す
ることによりTV画像のフイルム記録ができる。
ただし、この場合走査線の繰返し周波数は15.7K
Hzとし、TV画面の一走査線ごとに高速走査する
必要がある。
δ=2.44λ 0 /nF=1.8μ l=1.8×10 -3 ×500=0.9mm W=7.5mm Δφ=2tan -1 0.9/2/15=3.8゜ Δν=nv A0 Δφ=625MHz τ =W/v A =2.1 .mu.sec By projecting this scanning bright spot onto a film moving in a direction perpendicular to the bright spot scanning direction using an enlarged projection lens 18, a TV image can be recorded on film.
However, in this case the scanning line repetition frequency is 15.7K
Hz, and it is necessary to scan each scan line of the TV screen at high speed.

本発明の薄膜導波路型走査素子の特徴はこのよ
うな高速走査に適することと、それを駆動するド
ライバーの出力が低パワーで良いことが利点であ
る。
The characteristics of the thin film waveguide type scanning element of the present invention are that it is suitable for such high-speed scanning, and that the output of the driver for driving it can be low power.

本発明の第2の応用実施例を第6図に示す。こ
の例は本発明の第2実施例を示した輝点走査素子
の射出端面20に沿つてTiまたはTe等の金属薄
膜記録材21を微小間〓をあけて設置し、この輝
点走査素子により高速走査をするとともに記録体
をこの高速走査方向と直交方向に相対運動(副走
査)させて、TVの画像信号を記録する記録ヘツ
ドに応用するものである。画像信号は半導体レー
ザー13を電流変調することにより与えられる。
記録体としては、TeAsGe、GeAs等のアモルフ
アス半導体、MnBi、GdCo、GdFe、TbFe等の
アモルフアス磁性薄膜でも良い。但し、後者の磁
性薄膜記録体の場合にはフイルムと垂直方向の外
部磁場をかけておく必要がある。また、後者の場
合には半導体レーザーには変調を与えずに連続さ
せ、上記外部磁場に画像信号を与えても良い。
A second applied embodiment of the present invention is shown in FIG. In this example, a metal thin film recording material 21 such as Ti or Te is placed with a small gap along the emission end surface 20 of the bright spot scanning element according to the second embodiment of the present invention. It is applied to a recording head that records TV image signals by performing high-speed scanning and moving the recording medium relative to the direction perpendicular to the high-speed scanning direction (sub-scanning). The image signal is given by current modulating the semiconductor laser 13.
The recording body may be an amorphous semiconductor such as TeAsGe or GeAs, or an amorphous magnetic thin film such as MnBi, GdCo, GdFe, or TbFe. However, in the case of the latter magnetic thin film recording medium, it is necessary to apply an external magnetic field in a direction perpendicular to the film. In the latter case, the semiconductor laser may be made continuous without being modulated, and an image signal may be provided to the external magnetic field.

この第2の応用実施例において、TV信号の再
生は記録時に用いたと同じヘツドを用い半導体レ
ーザーのセルフカツプリング作用を利用し、記録
体21から反射される光束が再び導波路2中には
いり、半導体レーザー13中に入射したために生
じる半導体レーザーの電流変化を検出して再生が
可能である。但し、再生の際には記録信号を損傷
しないように半導体レーザーの出力を低くする必
要がある。
In this second application example, the TV signal is reproduced by using the same head used during recording and by utilizing the self-coupling effect of the semiconductor laser, so that the light beam reflected from the recording medium 21 enters the waveguide 2 again. Reproduction is possible by detecting a change in the current of the semiconductor laser that occurs when the laser beam enters the semiconductor laser 13. However, during reproduction, it is necessary to lower the output of the semiconductor laser so as not to damage the recorded signal.

記録体が前記光磁気記録体の場合には記録体か
らの反射光は垂直磁化のカー効果によりダ円偏向
となり、それが導波路がもつモード選択性により
導波路中で強度変化に変換され半導体レーザー1
3により信号が検知される。
When the recording medium is the above-mentioned magneto-optical recording medium, the reflected light from the recording medium becomes Da circular polarization due to the Kerr effect of perpendicular magnetization, which is converted into an intensity change in the waveguide due to the mode selectivity of the waveguide, and is converted into a semiconductor. laser 1
3, the signal is detected.

第6図の実施例において、薄膜記録材21の幅
に対して走査幅をその1/2としTV信号を記録す
れば、往復で2倍の信号記録ができ、更にTV信
号の1ラスター分を1走査線で記録すればTV画
像と相似の信号記録が可能となる。
In the embodiment shown in FIG. 6, if the TV signal is recorded by setting the scanning width to 1/2 of the width of the thin film recording material 21, twice as many signals can be recorded in a round trip, and one raster of the TV signal can be recorded. By recording with one scanning line, it is possible to record a signal similar to that of a TV image.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明はコンパクトで、信頼
性が高く、高速走査ができる輝点走査素子が得ら
れ、この輝点走査素子は種々の形態で応用でき、
利用性の非常に高いものである。
As described above, the present invention provides a bright spot scanning element that is compact, highly reliable, and capable of high-speed scanning, and this bright spot scanning element can be applied in various forms.
It is highly usable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用する輝点走査素子の基本
構成を示す図、第2図は本発明に用いる偏向器を
示す図、第3図は本発明に用いる広帯域の偏向器
を示す図、第4図は本発明の特徴部を説明する部
分図、第5図は本発明をレンズを介した画像信号
記録に適用した実施例を示す図、第6図は本発明
を密着型の画像信号記録に適用した実施例を示す
図である。 1……基盤、2……導波路、3……プリズムカ
ツプラー、6……櫛の歯状電極、9……薄膜レン
ズ、10……射出端面、11……輝点、21……
薄膜磁性記録体。
FIG. 1 is a diagram showing the basic configuration of a bright spot scanning element to which the present invention is applied, FIG. 2 is a diagram showing a deflector used in the present invention, and FIG. 3 is a diagram showing a broadband deflector used in the present invention. FIG. 4 is a partial diagram illustrating the characteristic parts of the present invention, FIG. 5 is a diagram showing an embodiment in which the present invention is applied to image signal recording through a lens, and FIG. It is a figure showing an example applied to recording. DESCRIPTION OF SYMBOLS 1... Base, 2... Waveguide, 3... Prism coupler, 6... Comb tooth-shaped electrode, 9... Thin film lens, 10... Output end surface, 11... Bright spot, 21...
Thin film magnetic recording material.

Claims (1)

【特許請求の範囲】[Claims] 1 薄膜導波路の一部に、該導波路中に導かれた
光束を偏向する為の光偏向部と、偏向されて導波
路端面から出射する光束を導波路の外側に集光す
る薄膜レンズとを設けて成り、前記導波路の端面
を前記薄膜レンズの中心を同心とする円筒面形状
とした輝点走査素子。
1. A part of the thin film waveguide includes an optical deflection section for deflecting the light beam guided into the waveguide, and a thin film lens for condensing the deflected light beam emitted from the end face of the waveguide to the outside of the waveguide. A bright spot scanning element comprising: an end surface of the waveguide having a cylindrical surface shape concentric with the center of the thin film lens.
JP63183520A 1988-07-25 1988-07-25 Luminescent point scanning element Granted JPS6463935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63183520A JPS6463935A (en) 1988-07-25 1988-07-25 Luminescent point scanning element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63183520A JPS6463935A (en) 1988-07-25 1988-07-25 Luminescent point scanning element

Publications (2)

Publication Number Publication Date
JPS6463935A JPS6463935A (en) 1989-03-09
JPH0325764B2 true JPH0325764B2 (en) 1991-04-08

Family

ID=16137285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63183520A Granted JPS6463935A (en) 1988-07-25 1988-07-25 Luminescent point scanning element

Country Status (1)

Country Link
JP (1) JPS6463935A (en)

Also Published As

Publication number Publication date
JPS6463935A (en) 1989-03-09

Similar Documents

Publication Publication Date Title
US4425023A (en) Beam spot scanning device
US4470661A (en) Beam deflecting device
US4180307A (en) Two-dimensional scanning apparatus with constant speed scan
US4443055A (en) Scanning optical system having a tilting correcting function
US4274101A (en) Laser recorder with piezoelectric bimorph focal length vibrator
US5457567A (en) Laser scanner having improved frequency characteristics
US4693548A (en) Device for recording information on a photosensitive medium for electrophotography
EP0360122B1 (en) Second harmonic generator and information processing system using the same
US4343531A (en) Light beam scanning device with constant spot intensity and scan speed related modulating means
US4816912A (en) Laser-beam printer with improved optical deflector
JP3359679B2 (en) Method and apparatus for correcting acousto-optical deflection error of a light beam
US5175642A (en) Light source unit capable of changing size of light beam spot and optical scanning image recording apparatus using the same
JPH0451006B2 (en)
EP1046939A1 (en) Method and apparatus for recording a flat field image
JPS6364765B2 (en)
US5268912A (en) Harmonic light source capable of being optically modulated and optical information processing apparatus employing the same
JPH0325764B2 (en)
GB2135472A (en) Beam spot scanning device
GB2070314A (en) Device for reproducing the information on a recorded medium
JPS61216128A (en) Optical disk device
JPS6069624A (en) Small deflector having vibration damping function
JPH0451892B2 (en)
JP3585540B2 (en) Focus shifting device
JPH0234011B2 (en)
KR100230226B1 (en) Light beam modulation method and recording and reproducing optical pickup thereof