JPH03257240A - Hollow slab - Google Patents

Hollow slab

Info

Publication number
JPH03257240A
JPH03257240A JP5593090A JP5593090A JPH03257240A JP H03257240 A JPH03257240 A JP H03257240A JP 5593090 A JP5593090 A JP 5593090A JP 5593090 A JP5593090 A JP 5593090A JP H03257240 A JPH03257240 A JP H03257240A
Authority
JP
Japan
Prior art keywords
beams
concrete
unit
cylindrical
pipes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5593090A
Other languages
Japanese (ja)
Other versions
JP2529612B2 (en
Inventor
Michio Hakiri
羽切 道雄
Kazuo Saida
斉田 和男
Toshiro Uno
壽郎 宇野
Masami Hashimoto
橋元 正美
Ichiro Kusama
草間 伊知郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2055930A priority Critical patent/JP2529612B2/en
Publication of JPH03257240A publication Critical patent/JPH03257240A/en
Application granted granted Critical
Publication of JP2529612B2 publication Critical patent/JP2529612B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Rod-Shaped Construction Members (AREA)

Abstract

PURPOSE:To strengthen rigidity by link-juxtaposing a unit, formed by transversely bind-arranging a plurality of concrete cylindrical beams introduced with prestress, between beams, and thereafter placing after-place concrete on an upper part of total unit. CONSTITUTION:A unit U is formed by transversely arranging a cylindrical beam 1, in which prestress is introduced, with a plurality of the beams 1 as a single set, and tightening them into an integral unit by a steel plate-made tightening belt 2. Both ends of the beam 1 are closed by preblinding concrete. Next, the unit U is link-juxtaposed between beams of a building to embed pipes 7, 8 for electrical wiring in an upper surface part, and a slab S is formed by placing after-place concrete 4. The pipes 7, 8 and the beam 1 are arranged so that they are prevented from grade separation by positioning the pipes 7, 8 in a hollow part between the adjacent beams 1. Accordingly, rigidity can be increased by avoiding thin covering of the concrete.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、コンクリート円筒梁を用いた中空スラブに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hollow slab using concrete cylindrical beams.

[従来の技術] 従来の中空スラブとしては、例えばスパンクリートと称
するものがあり、これはプレストレスを導入したプレキ
ャストコンクリート製品の一種で、第1θ図に示すよう
に板aの縦方向に複数個の中空孔すを貫通させて設けた
ものである。
[Prior Art] As a conventional hollow slab, there is, for example, something called spancrete, which is a type of precast concrete product that introduces prestress. It is provided with a hollow hole passing through it.

[発明が解決しようとする課題] 上記のスパンクリートを用いた場合に、建物が水平力を
受けた時にその水平力を柱や梁、耐力壁に有効に伝える
ため、第1O図に示すように後打ちコンクリートc(ト
ッピングコンクリート)を打設しておく必要がある。こ
の後打ちコンクリートCには電気配線用の配管dが埋設
されるが、その配管が交差する部分ではコンクリートの
かぶりが薄くなる欠点が指摘され、更に空調用の設備ダ
クトは別途に設けなければならない。また、スパンクリ
ートは剛性等の強度的な理由から、大きなスパンでは適
用出来ないとされていた。
[Problem to be solved by the invention] When using the above-mentioned spancrete, in order to effectively transmit the horizontal force to the columns, beams, and load-bearing walls when the building receives horizontal force, it is necessary to It is necessary to place poured concrete c (topping concrete). Piping d for electrical wiring is buried in this post-cast concrete C, but it has been pointed out that the concrete cover is thinner in the areas where the pipes intersect, and furthermore, air conditioning equipment ducts must be installed separately. . Furthermore, it was believed that span cleats could not be used with large spans due to rigidity and other strength reasons.

本発明は、このような従来の中空スラブの問題点を解決
するためになされ、電気配線用の配管の交差部で後打ち
コンクリートのかぶりが薄くならず、設備ダクトを別途
に設ける必要がなく、かっ剛性等の強度が強くて大スパ
ンにも充分適用出来るようにした中空スラブを提供する
ことを課題としたものである。
The present invention was made in order to solve the problems of the conventional hollow slab, and the cover of post-cast concrete does not become thin at the intersection of electrical wiring piping, and there is no need to separately provide equipment ducts. The object of the present invention is to provide a hollow slab that has strong strength such as rigidity and can be sufficiently applied to large spans.

[課題を解決するための手段] この課題を技術的に解決するための手段として、本発明
はプレストレスを導入したコンクリート円筒梁を、複数
本積に並べて絡げることによりユニットを形成し、この
ユニットを梁間に差し渡して並設すると共に、上部全体
に後打ちコンクリートを打設して一体化したことを要旨
とするものである。
[Means for Solving the Problem] As a means for technically solving this problem, the present invention forms a unit by arranging and intertwining a plurality of prestressed concrete cylindrical beams, The gist of this project is to install these units in parallel across the beams and to integrate them by pouring post-cast concrete over the entire upper part.

[作 用コ プレストレスを導入した円筒梁を素材とするものである
から、隣接する円筒梁の谷間を利用して電気配線用配管
の交差部が上にもち上がらないように埋設することが出
来、従来のスパンクリートに比して剛性が著しく高く、
大スパンの建物にも充分適用することが可能であり、ま
た円筒梁の中空部を設備ダクトのスペースとして利用出
来るので別途に設ける必要がなくなる。
[Function] Since the material is a cylindrical beam with co-prestress introduced, it is possible to bury electrical wiring piping using the valley between adjacent cylindrical beams to prevent the intersection from lifting up. , has significantly higher rigidity than conventional span cleats,
It can be fully applied to buildings with large spans, and the hollow part of the cylindrical beam can be used as space for equipment ducts, eliminating the need for separate installation.

[実施例コ 以下、本発明の実施例を添付図面により更に詳しく説明
する。
[Embodiments] Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

第1図において、1はプレストレスを導入した円筒梁で
あってその外周面1aは細かい凹凸状に形成され、第4
図に示すように複数本(開側では3本)を−組みとして
横に並べると共に、第5図に示すような鋼板製の締付ベ
ルト2で数か所を締め付は一体化することによりユニッ
トUが形成される。3は前記締付ベルト2用の締付具で
あり、第6図に示すように狭幅の鋼板3aの上下端部に
ポル)3bがそれぞれ固定され、このボルトのねじ部を
前記締付ベルト2の孔2a12bに挿通し、ナラ)3c
を螺合締着することにより締付ベルト2を締め付けられ
るようにしである。
In FIG. 1, numeral 1 is a cylindrical beam into which prestress is introduced, and its outer peripheral surface 1a is formed in a finely uneven shape.
As shown in the figure, a plurality of belts (three on the open side) are arranged side by side in a set, and several places are tightened together with a steel plate tightening belt 2 as shown in Figure 5. Unit U is formed. Reference numeral 3 designates a tightening tool for the tightening belt 2, and as shown in FIG. Insert into the hole 2a12b of 2, and insert it into the hole 2a12b) 3c
The tightening belt 2 can be tightened by screwing and tightening.

このように形成されたユニットUは、建物の梁間に差し
渡して隙間なく並置されると共に、上面部に後打ちコン
クリート4を打設して一体化することによりスラブSを
構成することが出来る。この時、第2図に示すように各
円筒梁1の両端部は先詰めコンクリート5で閉塞され、
円筒梁の内部に後打ちコンクリート4が流れ込まないよ
うにしてあり、但しとば口のみは後打ちコンクリート4
が入るように多少の隙間6をあけである。先詰めコンク
リート5はスラブの剪断力に抵抗することが出来、その
長さlは円筒梁1の外径りより大きくその約1.5倍以
下(D≦1≦1.5D)程度とする。前記のように各円
筒梁1の外周面1aを細かい凹凸状に形成したのは、後
打ちコンクリート4の付着強度を向上させるためである
The units U thus formed can be placed side by side across the beams of a building without gaps, and can be integrated into a slab S by pouring post-cast concrete 4 on the upper surface. At this time, as shown in FIG. 2, both ends of each cylindrical beam 1 are closed with packed concrete 5,
The post-cast concrete 4 is prevented from flowing into the inside of the cylindrical beam, except for the post-cast concrete 4 at the opening.
Leave a slight gap 6 so that it can fit in. The prepacked concrete 5 can resist the shearing force of the slab, and its length 1 is set to be larger than the outer diameter of the cylindrical beam 1 and about 1.5 times or less (D≦1≦1.5D). The reason why the outer circumferential surface 1a of each cylindrical beam 1 is formed into a finely uneven shape as described above is to improve the adhesion strength of the post-cast concrete 4.

また、後打ちコンクリート4の打設の際には電気配線用
の配管7.8が埋設されるが、この場合は円筒梁1と平
行方向の配管8は、隣接する円筒梁間の谷間部分に位置
させることが出来るので、配管7との交差部が立体交差
となって上方に持ち上がることはなく、これにより後打
ちコンクリートのかぶりが薄くなることはない。また、
後打ちコンクリート4の上面には、ソケット用の埋込ボ
ックス9を設けることが出来る。lOは天井材であり、
前記締付ベルト2に固定した天井下地材11を介して取
り付けることが出来る。12は照明器具具であり、前記
ユニットU間に取り付けた吊り材13を用い、かつユニ
ットU間の下側の谷間を利用して天井埋込型として容易
に取り付けることが出来る。更に、第3図に示すように
前記円筒梁1の下側要部に切欠孔1bを設ければ、円筒
梁1の中空部1cを空調用の設備ダクトして利用するこ
とが可能である。
In addition, when pouring concrete 4 is placed, electrical wiring pipes 7 and 8 are buried, but in this case, the pipes 8 parallel to the cylindrical beams 1 are located in the valley between adjacent cylindrical beams. Therefore, the intersection with the piping 7 does not become an overpass and lift upward, thereby preventing the cover of the post-cast concrete from becoming thin. Also,
An embedded box 9 for a socket can be provided on the upper surface of the post-cast concrete 4. lO is the ceiling material,
It can be attached via the ceiling base material 11 fixed to the tightening belt 2. Reference numeral 12 denotes a lighting fixture, which can be easily installed as a ceiling-embedded type using the hanging material 13 attached between the units U and by utilizing the lower valley between the units U. Furthermore, as shown in FIG. 3, if a cutout hole 1b is provided in the lower main part of the cylindrical beam 1, the hollow part 1c of the cylindrical beam 1 can be used as an air conditioning equipment duct.

次に、実際の施工例について説明すると、第7図は基準
階の平面図であり、梁間即ちスパンLは12mで、桁行
即ちスパンMが6.4vaである場合に、偏平大梁Pと
平行に前記ユニツ)Uを隙間なくユニットUを6個並設
し、後打ちコンクリート4を有効厚さ100 amで打
設することによりスラブを形成することが出来る。この
時、ユニットUを構成する各円筒梁1が、第9図に示す
ように外径D=300■■で肉厚t = 80i+mで
あれば、通常のプレキャストコンクリートパイル(30
0φ×60)の設計値である0種のひび割れ曲げモーメ
ントと同程度の強度を発揮することが出来、積載荷重は
300〜500Kg/m2に耐えることが出来る。従っ
て、事務所程度の建物ではスパンが10〜17m位の大
きさのスラブに充分適用すること可能である。また、後
打ちコンクリート4は、前記のように円筒梁の上端より
スラブラインまでの厚さT = 10hi+であるが、
隣接する円筒梁間の谷間に円筒梁の外径のほぼ半分だけ
コンクリートが入り込むので、地震時のスラブの剛性は
フラットのものより遥かに強くすることが出来る。
Next, to explain an actual construction example, Fig. 7 is a plan view of a standard floor, where the beam spacing, or span L, is 12 m, and the girder row, or span M, is 6.4 va. A slab can be formed by arranging six units U in parallel without gaps and pouring post-cast concrete 4 to an effective thickness of 100 am. At this time, if each cylindrical beam 1 constituting the unit U has an outer diameter D=300mm and a wall thickness t=80i+m as shown in FIG.
It can exhibit a strength comparable to the design value of type 0 crack bending moment (0φ×60), and can withstand a live load of 300 to 500 kg/m2. Therefore, it is fully applicable to slabs with spans of about 10 to 17 m in buildings such as offices. Further, as mentioned above, the thickness of the post-cast concrete 4 from the upper end of the cylindrical beam to the slab line is T = 10hi+,
Since concrete is inserted into the valley between adjacent cylindrical beams by approximately half of the outside diameter of the cylindrical beams, the rigidity of the slab during an earthquake can be made much stronger than that of a flat slab.

更に、円筒梁は工場生産出来るのでPCパイル程度のコ
ストで製作することが出来、型枠代や仮設サポート化を
考慮すると著しく経済的であり、重量も軽くなって建物
全体に躯体数量が減少し、しかも電気、設備を一体構造
としてまとめているので階高を低く出来る等のメリット
が生じる。
Furthermore, since cylindrical beams can be produced in a factory, they can be manufactured at a cost comparable to that of PC piles, making them extremely economical when considering the cost of formwork and temporary supports. Moreover, since electricity and equipment are integrated into a single structure, there are advantages such as lower floor heights.

[発明の効果コ 以上説明したように、本発明は円筒梁を複数本まとめて
ユニットとし、このユニットを桁に差し渡して複数並設
すると共に、これらの上に後打ちコンクリートを打設し
一体化してスラブを形成したので、隣接する円筒梁の谷
間を利用して電気配線用の配管をその交差部が上にもち
上がらないように埋設することが出来、後打ちコンクリ
ートのかぶりが薄くなることはない。また、従来のスパ
ンクリートに比して剛性が著しく高く、大スパンの建物
にも充分適用することが可能であり、更に円筒梁の中空
部を設備ダクトのスペースとして利用出来るので別途に
設ける必要がなくなる等の優れた効果が得られる。
[Effects of the Invention] As explained above, the present invention combines a plurality of cylindrical beams into a unit, and connects a plurality of these units in parallel across girders, and pours post-cast concrete on top of these units to integrate them. Since the slab was formed by using the grooves between adjacent cylindrical beams, it was possible to bury electrical wiring piping using the valleys between adjacent cylindrical beams so that their intersections would not rise upwards, and the post-cast concrete cover would not be thin. do not have. In addition, it has significantly higher rigidity than conventional spancrete, making it suitable for large-span buildings.Furthermore, the hollow part of the cylindrical beam can be used as space for equipment ducts, eliminating the need for separate installation. Excellent effects such as these can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す断面図、第2図はその端
部の側面図、第3図は設備ダクトの実施要領を示す断面
図、第4図はユニットの断面図、第5図は締付ベルトの
斜視図、第6図は締付具の分解斜視図、第7図は施工例
を示す基準階の平面図、第8図は第7図におけるX−X
線断面図、第9図は1本の円筒梁についての断面図、第
1θ図は従来例の要部の断面図である。 1・・・円筒梁      1a・・・外周面1b・・
・切欠孔     1c・・・中空部2・・・締付ベル
)     2a12b・・・孔3・・・締付具   
   3a・・・鋼販3b・・・ボルト     3c
・・・ナツト4・・・後打ちコンクリート 5・・・先詰めコンクリート 6・・・隙間       7.8・・・配管9・・・
埋込ボックス   10・・・天井材!l・・・天井下
地材    !2・・・照明器具I3・・・吊り材
Fig. 1 is a sectional view showing an embodiment of the present invention, Fig. 2 is a side view of the end thereof, Fig. 3 is a sectional view showing the procedure for implementing the equipment duct, Fig. 4 is a sectional view of the unit, and Fig. 5 is a sectional view showing the implementation procedure of the equipment duct. The figure is a perspective view of the tightening belt, Figure 6 is an exploded perspective view of the tightening tool, Figure 7 is a plan view of the standard floor showing a construction example, and Figure 8 is X-X in Figure 7.
A line sectional view, FIG. 9 is a sectional view of one cylindrical beam, and FIG. 1θ is a sectional view of a main part of a conventional example. 1... Cylindrical beam 1a... Outer peripheral surface 1b...
・Notch hole 1c...hollow part 2...tightening bell) 2a12b...hole 3...tightening tool
3a... Steel sales 3b... Bolt 3c
... Nut 4 ... Post-cast concrete 5 ... Pre-filled concrete 6 ... Gap 7.8 ... Piping 9 ...
Embedded box 10...Ceiling material! l...Ceiling base material! 2...Lighting equipment I3...Hanging material

Claims (2)

【特許請求の範囲】[Claims] (1)プレストレスを導入したコンクリート円筒梁を、
複数本横に並べて絡げることによりユニットを形成し、
このユニットを梁間に差し渡して並設すると共に、上部
全体に後打ちコンクリートを打設して一体化したことを
特徴とする中空スラブ。
(1) Concrete cylindrical beam with prestress introduced,
Form a unit by tying multiple pieces side by side,
This hollow slab is characterized by having these units installed side by side across the beams and integrated by pouring post-cast concrete over the entire upper part.
(2)前記円筒梁の中空部を、設備ダクトのためのスペ
ースとしたことを特徴とする請求項(1)記載の中空ス
ラブ。
(2) The hollow slab according to claim (1), wherein the hollow portion of the cylindrical beam is a space for an equipment duct.
JP2055930A 1990-03-07 1990-03-07 Hollow slab Expired - Lifetime JP2529612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2055930A JP2529612B2 (en) 1990-03-07 1990-03-07 Hollow slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2055930A JP2529612B2 (en) 1990-03-07 1990-03-07 Hollow slab

Publications (2)

Publication Number Publication Date
JPH03257240A true JPH03257240A (en) 1991-11-15
JP2529612B2 JP2529612B2 (en) 1996-08-28

Family

ID=13012803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2055930A Expired - Lifetime JP2529612B2 (en) 1990-03-07 1990-03-07 Hollow slab

Country Status (1)

Country Link
JP (1) JP2529612B2 (en)

Also Published As

Publication number Publication date
JP2529612B2 (en) 1996-08-28

Similar Documents

Publication Publication Date Title
EP0803618B1 (en) Modular element for the support and ventilation of floors
US7143555B2 (en) Hybrid precast concrete and metal deck floor panel
CA3109393C (en) Precast building construction system
US20040255547A1 (en) Method of forming a tiled floor
JPH03257240A (en) Hollow slab
EP0085081B1 (en) Building structure, especially air raid shelter
US6189274B1 (en) Building horizontal structure
US3570206A (en) Monolithic concrete slab construction
JP2719636B2 (en) Composite hollow slab
JP2003003603A (en) Precast concrete beam
US4660349A (en) Method of erecting a building using preconstructed modular units
KR19990042947A (en) Support structure of slab for high rise apartment
US2105106A (en) Precast reinforced tile beam and span tile floor structure
JPH11256765A (en) Structure and method for reinforcing concrete beam
AU663577B2 (en) A building element, unit and method for forming structures therefrom
JP3693610B2 (en) Floor slab using grooved floor board block
JPH03107047A (en) Constructing method for slab
JPH03129034A (en) Construction of floor and connecting device between striking-in mold frame for floor slab and self erection type truss-shaped steel reinforcement
US4283893A (en) Method and apparatus for forming a studless wall system
RU2112117C1 (en) Skeleton building
JP2751836B2 (en) PC version for floor slab formwork
JP2002097716A (en) Short support slab supporting structure
KR19990042948A (en) Support structure of slab for high rise apartment
JPH0464642A (en) Building with storage space for utility equipment
JPH05195583A (en) Floor construction of housing unit