JPH0325718B2 - - Google Patents

Info

Publication number
JPH0325718B2
JPH0325718B2 JP62185276A JP18527687A JPH0325718B2 JP H0325718 B2 JPH0325718 B2 JP H0325718B2 JP 62185276 A JP62185276 A JP 62185276A JP 18527687 A JP18527687 A JP 18527687A JP H0325718 B2 JPH0325718 B2 JP H0325718B2
Authority
JP
Japan
Prior art keywords
switching
passage
core
passages
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62185276A
Other languages
Japanese (ja)
Other versions
JPS6428478A (en
Inventor
Tsukasa Kimura
Tadaki Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62185276A priority Critical patent/JPS6428478A/en
Publication of JPS6428478A publication Critical patent/JPS6428478A/en
Publication of JPH0325718B2 publication Critical patent/JPH0325718B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04309Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04787Heat exchange, e.g. main heat exchange line; Subcooler, external reboiler-condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、空気分離装置に設けられ、複数のコ
アからなる切換式主熱交換器の通路切換方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a path switching method for a switching main heat exchanger that is provided in an air separation device and is composed of a plurality of cores.

(従来技術) 従来、切換式主熱交換器を備えた空気分離装置
としては、第1図に示されるようなものがある。
同図において1は原料空気圧縮機であり、この原
料空気圧縮機1により所要圧まで圧縮された圧縮
原料空気は、アフタクーラ等により予備冷却さ
れ、切換式主熱交換器2に送られる。この切換式
主熱交換器2により、空気は液化点近くまで冷却
され、複式精留塔3の下塔3aに供給される。こ
の下塔3aで、最も低い沸点を有する窒素が下塔
3aの頂部方向へ上昇し、粗分離される。
(Prior Art) Conventionally, as an air separation device equipped with a switching type main heat exchanger, there is one shown in FIG.
In the figure, reference numeral 1 denotes a raw material air compressor, and compressed raw material air compressed to a required pressure by this raw material air compressor 1 is precooled by an aftercooler or the like and sent to a switching type main heat exchanger 2. The switching main heat exchanger 2 cools the air to near the liquefaction point and supplies it to the lower column 3a of the double rectification column 3. In this lower column 3a, nitrogen having the lowest boiling point rises toward the top of the lower column 3a and is roughly separated.

この下塔3aの底部に分離貯留された富酸素液
体空気は複式精留塔3の上塔3bへ送られ、沸点
差を利用して、上塔3bの頂部には高純度の窒素
ガスが分離され、同様に中腹部にはアルゴン含有
ガスが、底部には高純度液体酸素がそれぞれ分離
される。この上塔3bの中腹部に溜つたアルゴン
含有ガスは粗アルゴン塔4へ供給され、アルゴン
の粗分離が行われる。
The oxygen-enriched liquid air separated and stored at the bottom of the lower column 3a is sent to the upper column 3b of the double rectification column 3, and high-purity nitrogen gas is separated at the top of the upper column 3b using the boiling point difference. Similarly, argon-containing gas is separated in the midsection, and high-purity liquid oxygen is separated in the bottom. The argon-containing gas accumulated in the middle of the upper column 3b is supplied to the crude argon column 4, where argon is roughly separated.

一方、上記上塔3bの頂部および底部からはそ
れぞれ製品窒素および製品酸素が抜出され、上記
切換式主熱交換器2に送られて原料空気との熱交
換が行われる。また、上塔3bの中部からは余剰
の不純窒素が抽出されるとともに、下塔3aの中
部からも不純窒素が抽出される。この下塔3aか
らの不純窒素の一部は再熱窒素として直接切換式
主熱交換器2に送られ、残りは膨脹タービン5に
より断熱膨脹して低温状態となり、上記上塔3b
からの不純窒素とともに約0.03Kg/cm2まで減圧さ
れた状態で切換式主熱交換器2に送られる。
On the other hand, product nitrogen and product oxygen are extracted from the top and bottom of the upper column 3b, respectively, and sent to the switching type main heat exchanger 2 where heat exchange is performed with the feed air. Further, surplus impure nitrogen is extracted from the middle part of the upper column 3b, and impure nitrogen is also extracted from the middle part of the lower column 3a. A part of the impure nitrogen from the lower column 3a is sent to the direct switching main heat exchanger 2 as reheated nitrogen, and the rest is adiabatically expanded by the expansion turbine 5 to a low temperature state, and is transferred to the upper column 3b.
It is sent to the switching main heat exchanger 2 in a reduced pressure state to about 0.03 Kg/cm 2 together with impure nitrogen from the air.

この切換式主熱交換器2は、第2図に示される
ようなコア6を備えている。なお、図では1つの
コア6しか示されていないが、実際にはこのよう
なあが多数、並列に接続されている。
This switching type main heat exchanger 2 includes a core 6 as shown in FIG. Although only one core 6 is shown in the figure, in reality many such cores are connected in parallel.

同図において、通路Aおよび通路Bには、5
Kg/cm2まで昇圧された原料空気、および上記不純
窒素が切換により交互に流れるようになつてお
り、原料空気の冷却により通路内で固化したCO2
およびH2Oを低圧窒素により昇華または溶融し、
同CO2およびH2Oによる通路の閉塞を防止するよ
うになつている。通路Cには上記製品酸素が、通
路Dには製品窒素が、通路Eには再熱窒素がそれ
ぞれ送られる。
In the same figure, passage A and passage B have five
The feed air pressurized to Kg/cm 2 and the impure nitrogen mentioned above are made to flow alternately by switching, and CO 2 solidified in the passage is removed by cooling the feed air.
and H 2 O by sublimation or melting with low pressure nitrogen,
It is designed to prevent the passageway from being blocked by CO 2 and H 2 O. The product oxygen is sent to the passage C, the product nitrogen is sent to the passage D, and the reheated nitrogen is sent to the passage E.

次に、上記通路Aおよび通路Bの切換要領を説
明する。各コア6において、原料空気の流れ方向
の上流側には切換弁7が設けられ、この切換弁7
の上流側にはダンパ8が、コア6の下流側には流
れる気体の圧力に従動する従動弁9が設けられて
いる。第3図に示されるように、切換弁7には電
磁弁10が、ダンパ8には電磁弁11が設けられ
ており、これらは切換制御盤12に接続されてい
る。この切換制御盤12により電磁弁10,11
のオンオフが行われ、これによつてダンパ8の開
閉、および切換弁7と従動弁9とによる通路A,
Bの切換が行われる。
Next, the procedure for switching between the passage A and the passage B will be explained. In each core 6, a switching valve 7 is provided on the upstream side in the flow direction of the raw material air, and this switching valve 7
A damper 8 is provided on the upstream side of the core 6, and a driven valve 9 that is driven by the pressure of the flowing gas is provided on the downstream side of the core 6. As shown in FIG. 3, the switching valve 7 is provided with a solenoid valve 10, and the damper 8 is provided with a solenoid valve 11, which are connected to a switching control panel 12. This switching control panel 12 controls the solenoid valves 10 and 11.
is turned on and off, thereby opening and closing the damper 8 and opening and closing the passage A, which is caused by the switching valve 7 and the driven valve 9.
B switching is performed.

これらの切換弁7およびダンパ8の切換は次の
ように行う。まず、第3図の実線に示されるよう
に、通路Aに原料空気が流れ、通路Bに不純窒素
が流れるように、切換弁7の切換スピンドル13
が位置する状態において、電磁弁11を作動させ
ることによりダンパ8を閉じるとともに、電磁弁
10を作動させることにより切換スピンドル13
を移動させる。この切換スピンドル13の移動中
に通路Aと通路Bとが連通し、これによつて通路
A内の圧力と通路B内の圧力が平均化される。こ
の状態でダンパ8を開くと、通路Aには0.03Kg/
cm2の不純窒素が、通路Bには5Kg/cm2の原料空気
が流れることとなり、通路A,Bの切換が完了す
る。
These switching valves 7 and dampers 8 are switched as follows. First, as shown by the solid line in FIG.
is located, the damper 8 is closed by operating the solenoid valve 11, and the switching spindle 13 is closed by operating the solenoid valve 10.
move. During this movement of the switching spindle 13, passage A and passage B communicate with each other, so that the pressure in passage A and the pressure in passage B are equalized. When damper 8 is opened in this state, 0.03Kg/
cm 2 of impure nitrogen flows through passage B, and 5 kg/cm 2 of raw material air flows through passage B, completing the switching between passages A and B.

ところで従来は、各コア6において通路A,B
を切換える場合、主熱交換器2が例えば45個のコ
ア6を備えているとすると、複数個(例えば5
個)のコア6を1ブロツクとして各ブロツク毎に
切換を行うような方法がとられている。しかし、
このようなブロツク切換は、複数個のコア6の通
路を同時に切換えるものであるため、1個のコア
6毎に通路を切換える場合と比べると1回の切換
において切換えられる通路の容積が大きく、必然
的に原料空気の圧力および流量の変動が大きくな
つて次のような不都合を有していた。
By the way, conventionally, in each core 6, passages A and B
If the main heat exchanger 2 is equipped with, for example, 45 cores 6, a plurality of cores (for example, 5
A method is used in which the cores 6 (individuals) are considered as one block and switching is performed for each block. but,
In such block switching, the passages of a plurality of cores 6 are switched at the same time, so compared to the case where the passages are switched for each core 6, the volume of the passages that are switched in one switching is larger, and this is unavoidable. However, fluctuations in the pressure and flow rate of the raw air become large, resulting in the following disadvantages.

第4図は上記精留塔3の上塔3b内における気
体の組成分布を示したものである。同図に示され
るように、上塔3bの上部および底部ではそれぞ
れ高純度の窒素および酸素が得られ、中間部で最
もアルゴン含有量の大きい気体が得られることと
なるが、上記のような大きな圧力変動を生じる
と、各気体の組成分布も変動し、製品窒素、酸素
の純度が不安定となり、安定した品質を得ること
が困難となる。
FIG. 4 shows the gas composition distribution in the upper column 3b of the rectification column 3. As shown in the figure, highly pure nitrogen and oxygen are obtained at the top and bottom of the upper column 3b, respectively, and gas with the highest argon content is obtained at the middle section. When pressure fluctuations occur, the composition distribution of each gas also fluctuates, making the purity of the nitrogen and oxygen products unstable, making it difficult to obtain stable quality.

特に、上記装置のようにアルゴンを分離する粗
アルゴン塔4を備えている場合、この粗アルゴン
塔4は上塔3bよりも上部と下部との圧力差(塔
差圧)が小さいので、上記圧力変動による塔差圧
への影響が大きく、抽出されるアルゴン含有ガス
の組成分布は大きく変動する。このため、アルゴ
ン含有ガスを脱酸する際に必要な水素量の設定が
容易でなくなり、抽出されるアルゴン含有ガスに
対して実際に必要な量以上の水素を付加しなけれ
ばならないが、水素の量が過剰に大きいと爆発等
の危険性が大きくなるので、必然的にアルゴン含
有ガスの抽出量を削減しなければならず、十分な
アルゴン量が得られないといつた問題点を生ず
る。
In particular, when the above-mentioned apparatus is equipped with a crude argon column 4 for separating argon, the pressure difference between the upper and lower parts of the crude argon column 4 (tower differential pressure) is smaller than that of the upper column 3b, so the above pressure The fluctuations have a large effect on the tower differential pressure, and the composition distribution of the extracted argon-containing gas fluctuates greatly. For this reason, it is not easy to set the amount of hydrogen required when deoxidizing argon-containing gas, and it is necessary to add more hydrogen than is actually required to the extracted argon-containing gas. If the amount is excessively large, the risk of explosion, etc. increases, so the amount of argon-containing gas extracted must be reduced, resulting in the problem that a sufficient amount of argon cannot be obtained.

このような不都合の起因となる原料空気の圧力
変動を小さくするには、各コア毎に通路を切換え
るコア切換を行えば良いのであるが、各コア6に
おいて通路を切換えるのに最小限必要な時間は決
つているので、このようにコア6を1つずつ切換
える場合には、上記のようにブロツク毎に切換え
る場合に比べ全コア6を切換えるのに必要な時間
が長くなり、これによつて次のような不都合を生
じる。
In order to reduce pressure fluctuations in the feed air that cause such inconveniences, it is possible to perform core switching in which the passages are switched for each core, but the minimum time required to switch the passages in each core 6 is sufficient. is determined, so when switching the cores 6 one by one in this way, the time required to switch all the cores 6 is longer than when switching each block as described above, and as a result, the next This causes inconveniences such as.

一般に、装置の定常運転時には、上記膨脹ター
ビン5から送られる不純窒素は十分に冷却されて
いるため、主熱交換器2に送られてきた空気内の
H2OあるいはCO2は入口付近(第2図では下方の
位置)ですでに凝固する。しかし、例えばメンテ
ナンス時や事故等により装置が停止し、再始動す
る場合、膨脹タービン5から送られる不純窒素は
十分に冷却されていないので、主熱交換器2内に
おいて原料空気のH2OあるいはCO2は入口付近で
は凝固せず、さらに奥の中間部で凝固することと
なる。
Generally, during steady operation of the device, the impure nitrogen sent from the expansion turbine 5 is sufficiently cooled, so that the impure nitrogen in the air sent to the main heat exchanger 2 is
H 2 O or CO 2 is already solidified near the inlet (lower position in Figure 2). However, when the equipment is stopped and restarted due to maintenance or an accident, for example, the impure nitrogen sent from the expansion turbine 5 is not sufficiently cooled, so the H 2 O or CO 2 will not solidify near the entrance, but will solidify further in the middle.

すなわち、定常運転時には入口付近ですでに
H2OあるいはCO2が凝固するため、このような固
化したH2OあるいはCO2は熱交換器2の奥側へ蓄
積し難いが、再始動時のように不純窒素の温度が
十分に下がつていない場合には、H2Oあるいは
CO2が通路の奥から凝固するため、通路内で次々
と凝固して蓄積し易く、上記通路Aあるいは通路
Bが閉塞したり、同通路内で原料空気の圧力損失
が生じたりする。また、再始動時には原料空気に
含まれる水分が多いため、H2Oの凝固はより促
進する。
In other words, during steady operation, there is already a
Since H 2 O or CO 2 solidifies, it is difficult for such solidified H 2 O or CO 2 to accumulate in the back of heat exchanger 2, but if the temperature of impure nitrogen is sufficiently lowered, such as at the time of restart, If not, add H 2 O or
Since CO 2 solidifies from the depths of the passage, it tends to solidify and accumulate one after another within the passage, causing the passage A or passage B to become clogged or a pressure loss of the raw air to occur within the passage. Furthermore, since the feed air contains a large amount of moisture upon restart, the coagulation of H 2 O is further accelerated.

従つて、このような場合には通路Aと通路Bの
切換周期を短くし、頻繁に不純窒素を通して通路
内の洗浄を行う必要があるが、上記のようなコア
切換では切換周期の短縮に限界があり、十分な
H2OあるいはCO2の除去を行うことは困難であ
る。
Therefore, in such cases, it is necessary to shorten the switching cycle between passages A and B and to frequently flush the passages with impure nitrogen, but there is a limit to the shortening of the switching cycle with core switching as described above. There is enough
Removal of H 2 O or CO 2 is difficult to perform.

(発明の目的) 本発明は上記事情に鑑み、空気分離装置におけ
る切換式主熱交換器において、通路切換時の圧力
変動が少なく、しかも送られてくる不純窒素が十
分に冷却されていない場合にも固化したCO2
H2Oによる通路の閉塞を防止することができる
通路切換方法を提供することを目的とする。
(Object of the Invention) In view of the above circumstances, the present invention has been developed in a switching type main heat exchanger in an air separation device, in which there is little pressure fluctuation when switching passages, and in addition, when the impure nitrogen being sent is not sufficiently cooled. Also solidified CO 2 and
It is an object of the present invention to provide a passage switching method that can prevent the passage from being blocked by H 2 O.

(発明の構成) 本発明は、空気分離装置に設けられ、複数のコ
アからなり、各コアにおいて原料空気の流れる通
路と精留塔から送られる不純窒素の流れる通路が
切換可能な切換式主熱交換器において、上記コア
に送られる不純窒素の温度を検出し、この温度が
所定値以上の場合には全コアを複数のブロツクに
分けてその1ブロツク毎に通路を順次切換え、同
温度が所定値以下の場合には各コア毎に通路を順
次切換えるものである。
(Structure of the Invention) The present invention provides a switching main heat exchanger installed in an air separation device, which is composed of a plurality of cores, and in each core, a passage through which raw material air flows and a passage through which impure nitrogen sent from a rectification column flows can be switched. In the exchanger, the temperature of the impure nitrogen sent to the core is detected, and if this temperature is above a predetermined value, all the cores are divided into multiple blocks and the passages are sequentially switched for each block until the temperature reaches the predetermined value. If it is less than the value, the passages are sequentially switched for each core.

(実施例) 第5図は、本発明方法を実施する空気分離装置
を示しており、上記第1〜4図と同等のものには
同一の参照符を付している。当実施例では、この
第5図に示されるように、膨脹タービン5の出口
側における不純窒素の温度を温度センサ14によ
り検出し、この検出値を切換制御装置15に入力
するようにしている。なお、この装置では、膨脹
タービン5の出口側温度は定常運転時で約−170
℃以下まで降下するようになつている。
(Example) FIG. 5 shows an air separation apparatus for carrying out the method of the present invention, and parts equivalent to those in FIGS. 1 to 4 above are given the same reference numerals. In this embodiment, as shown in FIG. 5, the temperature of impure nitrogen at the outlet side of the expansion turbine 5 is detected by a temperature sensor 14, and this detected value is input to the switching control device 15. In addition, in this device, the temperature on the outlet side of the expansion turbine 5 is approximately −170°C during steady operation.
Temperatures are starting to drop below ℃.

この装置において、切換式主熱交換器2の基本
的な切換構造は上記第2図および第3図に示され
るものと同じである。さらに当実施例では、第6
図に示されるように、各コア6の電磁弁10が接
続されている切換制御盤12に、コア切換および
ブロツク切換を選択する切換スイツチ16、ブロ
ツク切換用タイマー17、およびコア切換用タイ
マー18の信号が入力され、切換スイツチ16に
は上記切換制御装置15からの信号が入力される
ようになつている。なお、図示はしないが各電磁
弁11も同様に切換制御盤12に接続されてい
る。
In this device, the basic switching structure of the switching main heat exchanger 2 is the same as that shown in FIGS. 2 and 3 above. Furthermore, in this embodiment, the sixth
As shown in the figure, a switching control panel 12 to which the solenoid valve 10 of each core 6 is connected includes a switching switch 16 for selecting core switching and block switching, a block switching timer 17, and a core switching timer 18. A signal is inputted to the changeover switch 16, and a signal from the changeover control device 15 is inputted to the changeover switch 16. Although not shown, each electromagnetic valve 11 is similarly connected to the switching control panel 12.

この主熱交換器2は第7図に示されるように45
のコア6を有しており、上記ブロツク切換用タイ
マー17は、これらのコア6のうち5つのコア6
を1つのブロツクとして各ブロツク毎に通路A,
Bの切換を行うように切換弁7、ダンパ8、およ
び従動弁9の作動間隔を決定し、その信号を切換
制御盤12に出力するようになつている。例え
ば、第7図においては、まず1〜5番までの第1
ブロツクのコア6の通路が一齊に切換えられ、次
に6〜10番までの第2ブロツクのコア6の通路が
一齊に切換えられ、同様にして45番目のコア6ま
で切換えられた後、再び1ブロツク目のコア6が
切換えられる。一方、コア切換用タイマー18
は、同図において1番から45番まで1コアずつ順
次切換えるように切換弁7、ダンパ8、および従
動弁9の作動間隔を決定し、信号を出力する。
This main heat exchanger 2 has 45
The block switching timer 17 has five cores 6 among these cores 6.
is one block, and each block has a path A,
The operating intervals of the switching valve 7, the damper 8, and the driven valve 9 are determined so as to perform switching B, and the signals thereof are output to the switching control panel 12. For example, in Figure 7, first, the first
The passages of the cores 6 of the blocks are switched at once, then the passages of the cores 6 of the second blocks 6 to 10 are switched at once, and the passages of the cores 6 of the 45th block are switched in the same way, and then the passages of the cores 6 of the 45th blocks are switched again. The core 6 of the block is switched. On the other hand, the core switching timer 18
determines the operating intervals of the switching valve 7, damper 8, and driven valve 9 so as to sequentially switch the cores from No. 1 to No. 45 one by one in the figure, and outputs a signal.

切換制御装置15は、上記温度センサ14によ
る検出値が所定値(ここでは−130℃)以上の場
合には、切換スイツチ16でブロツク切換を選択
する旨の信号を送り、所定値以下の場合にはコア
切換を選択する旨の信号を送るように構成されて
いる。
The switching control device 15 sends a signal to select block switching with the changeover switch 16 when the detected value by the temperature sensor 14 is above a predetermined value (here -130°C), and when it is below the predetermined value is configured to send a signal indicating selection of core switching.

一般にこの所定値は、原料空気内に含まれる
CO2およびH2Oが通路Aまたは通路B内において
凝固する位置に基づき、装置に応じて適宜設定す
ればよい。例えば、定常運転時のように、上記原
料空気中のCO2およびH2Oが入口部分で凝固する
ほど十分に冷却されている場合にはコア切換、そ
れまでの立上がり時のように、CO2およびH2Oが
通路A,Bの奥(ほぼ中間部)へ侵入するような
温度までしか冷却されていない場合にはブロツク
切換となるように設定すればよい。
Generally, this predetermined value is
Based on the position where CO 2 and H 2 O solidify in passage A or passage B, it may be set as appropriate depending on the device. For example, during steady operation, when CO 2 and H 2 O in the feed air are sufficiently cooled to solidify at the inlet, the core is switched ; Also, if the H 2 O is cooled only to a temperature at which it enters the depths (approximately the middle part) of the passages A and B, then block switching may be performed.

このような装置において、まず定常運転時に
は、膨脹タービン5の出力側温度は十分に降下し
ているので、切換制御装置15および切換スイツ
チ16の作用によりコア切換モードが選択され、
通路A,Bの切換は1コアずつ順次行われる。こ
のとき、例えば各コア6において通路を切換える
のに必要な最小時間を2秒とすると、1つのコア
の通路が切換えられる周期(全コアの切換が完了
する時間)としては、少なくとも2(秒)×45(コ
ア)=90(秒)が必要となる。
In such a device, first, during steady operation, the temperature on the output side of the expansion turbine 5 has fallen sufficiently, so the core switching mode is selected by the action of the switching control device 15 and the switching switch 16.
Switching between paths A and B is performed one core at a time. At this time, for example, assuming that the minimum time required to switch the passage in each core 6 is 2 seconds, the cycle in which the passage of one core is switched (time to complete switching of all cores) is at least 2 (seconds). ×45 (core) = 90 (seconds) is required.

一方、通路A,B内では原料空気中のCO2
H2Oが固化するが、膨脹タービン5から送られ
る不純窒素により主熱交換器2は十分に冷却され
ているので、CO2およびH2Oは入口部分で凝固
し、通路の奥側にはほとんど蓄積しない。従つ
て、固化したCO2およびH2Oは、90秒周期で導入
される低圧の不純窒素によつて十分に、溶融ある
いは昇華させることができる。
On the other hand, in passages A and B, CO2 in the raw air and
H 2 O solidifies, but since the main heat exchanger 2 is sufficiently cooled by impure nitrogen sent from the expansion turbine 5, CO 2 and H 2 O solidify at the inlet, and the CO 2 and H 2 O solidify at the back of the passage. Almost no accumulation. Therefore, the solidified CO 2 and H 2 O can be sufficiently melted or sublimed by the low pressure impure nitrogen introduced in a 90 second cycle.

これに対し、使用開始時、あるいはメンテナン
スや故障による停止後の再始動時には、膨脹ター
ビン5の出力側温度は十分に降下していないの
で、切換制御装置15および切換スイツチ16に
よりブロツク切換モードが選択され、通路A,B
の切換は5コアずつ行われる。例えば各コア6に
おいて通路を切換えるのに必要な最小時間を2秒
とすると、1つのコアの通路が切換えられる最小
限の周期は、2(秒)×9(ブロツク)=18(秒)と
なる。
On the other hand, at the time of starting use or restarting after a stop due to maintenance or failure, the output side temperature of the expansion turbine 5 has not fallen sufficiently, so the block switching mode is selected by the switching control device 15 and the switching switch 16. and aisles A and B
The switching is performed for every 5 cores. For example, if the minimum time required to switch the passage in each core 6 is 2 seconds, the minimum cycle for switching the passage in one core is 2 (seconds) x 9 (blocks) = 18 (seconds). .

一方、通路A,B内では原料空気中のCO2
H2Oが固化するが、膨脹タービン5から送られ
る不純窒素の温度は十分に下がつておらず、主熱
交換器2は十分に冷却されていないので、CO2
よびH2Oは入口から奥に侵入した部分で凝固し、
通路内で蓄積しようとする。しかし、このとき通
路の切換をブロツク切換としており、低圧の不純
窒素を最短で18秒の周期で導入することができる
ので、次々に固化するCO2およびH2Oを敏速に除
去することができ、通路の閉塞を防止することが
できる。
On the other hand, in passages A and B, CO2 in the raw air and
H 2 O solidifies, but the temperature of the impure nitrogen sent from the expansion turbine 5 has not fallen sufficiently and the main heat exchanger 2 has not been sufficiently cooled, so CO 2 and H 2 O are removed from the inlet. It solidifies at the part where it has penetrated deep,
Try to accumulate in the aisle. However, at this time, the passages are switched by block switching, and low-pressure impure nitrogen can be introduced in a cycle of 18 seconds at the shortest, so CO 2 and H 2 O that solidify one after another can be quickly removed. , can prevent blockage of the passage.

以上のように本発明の切換方法では、例えば装
置の立上がり時など不純窒素の温度が十分に下が
つていない状態では、ブロツク単位で通路を切換
えることにより敏速にCO2およびH2Oを除去し、
しかもCO2やH2Oの蓄積の起こり難い定常運転時
にはコア単位で切換えるようにしている。従つ
て、定常運転時では、1回で切換えられる通路の
容積はほぼ1/5に削減されるため、通路切換によ
る原料空気の圧力および流量の変動は従来に比べ
大幅に減少することとなる。
As described above, in the switching method of the present invention, CO 2 and H 2 O can be quickly removed by switching the passages in blocks when the temperature of impure nitrogen has not fallen sufficiently, such as when the equipment is started up. death,
Moreover, during steady operation when CO 2 and H 2 O accumulation is unlikely to occur, switching is performed on a core-by-core basis. Therefore, during steady operation, the volume of the passages that can be switched at one time is reduced to approximately 1/5, so that fluctuations in the pressure and flow rate of raw air due to passage switching are significantly reduced compared to the conventional method.

第8〜10図は、時間と原料空気流量、時間と
上塔3bの塔差圧、および時間と粗アルゴン塔4
の塔差圧の関係をそれぞれ示したものであるが、
これらの図に示されるように、定常運転時ではコ
ア切換モードとすることにより、原料空気流量の
変動、および各塔における差圧の変動を大幅に抑
制することが可能となる。これに附随して、精留
塔3の下塔3aおよび上塔3bにおける組成分布
が安定し、品質の安定した窒素および酸素を得る
ことができるとともに、粗アルゴン塔4から抽出
されるガスにおけるアルゴン含有率も安定するた
め、アルゴン製造量の増大も図ることができる。
Figures 8 to 10 show time and feed air flow rate, time and differential pressure in the upper column 3b, and time and crude argon column 4.
The relationship between the tower differential pressure is shown, respectively.
As shown in these figures, by setting the core switching mode during steady operation, it is possible to significantly suppress fluctuations in the flow rate of feed air and fluctuations in the differential pressure in each tower. Along with this, the composition distribution in the lower column 3a and upper column 3b of the rectification column 3 is stabilized, nitrogen and oxygen of stable quality can be obtained, and argon in the gas extracted from the crude argon column 4 is stabilized. Since the content rate is also stable, it is possible to increase the amount of argon produced.

またこれに伴つて、原料空気圧縮機1の運転範
囲も拡大される。第11図は同圧縮機1の性能曲
線を示しており、直線Lはサージ線、曲線C1
C2,C3は、ガイド弁の開度がそれぞれ33.5%、
69.4%、94%のときの流量と圧力の関係を示した
ものである。例えば原料空気の圧力を5Kg/cm2
とし、ガイド弁開度の最大値を69.4%とすると、
圧縮機1の本来の運転範囲はJとなるが、通路切
換による圧力変動がある場合には、その変動幅の
1/2だけ最小流量の値に余裕を持たせなければな
らない。同図に示されるように、コア切換の場合
の流量変動幅Hは、ブロツク切換の場合の流量変
動幅Gに比べ大幅に小さく、従つて圧縮機1の最
小流量をより小さな値まで取ることができるの
で、コア切換時の圧縮機1の運転範囲Fは、ブロ
ツク切換時の圧縮機1に比べより広いものとな
る。
Along with this, the operating range of the raw material air compressor 1 is also expanded. FIG. 11 shows the performance curve of the compressor 1, where the straight line L is the surge line, the curves C 1 ,
For C 2 and C 3 , the guide valve opening degree is 33.5%, respectively.
This shows the relationship between flow rate and pressure at 69.4% and 94%. For example, if the pressure of raw air is 5Kg/cm 2 G
Assuming that the maximum value of the guide valve opening is 69.4%,
The original operating range of the compressor 1 is J, but if there is a pressure fluctuation due to passage switching, the minimum flow rate must have an allowance of 1/2 of the fluctuation range. As shown in the figure, the flow rate fluctuation width H in the case of core switching is much smaller than the flow rate fluctuation width G in the case of block switching, and therefore the minimum flow rate of the compressor 1 can be set to a smaller value. Therefore, the operating range F of the compressor 1 when the core is switched is wider than that of the compressor 1 when the block is switched.

なお、この実施例では温度センサ14の信号を
切換制御装置15に入力し、ブロツク切換とコア
切換の選択を自動的に行うようにしているが、作
業者が温度計等により直接不純窒素の温度を検出
し、手動でブロツク切換とコア切換の選択を行う
ようにしてもよい。
In this embodiment, the signal from the temperature sensor 14 is input to the switching control device 15 to automatically select between block switching and core switching. Alternatively, the block switching or core switching may be manually selected.

また同実施例では、膨脹タービン5の出力側温
度、すなわち導入される不純窒素の温度を検出す
るようにしているが、この不純窒素の温度と通路
A,B内の温度は互いに追従するものであり、同
通路A,B内の温度を直接検出し、この検出温度
に基づいてブロツク切換とコア切換の選択を行う
ようにしても上記と同様の効果を得ることができ
る。
Further, in the same embodiment, the output side temperature of the expansion turbine 5, that is, the temperature of the impure nitrogen introduced, is detected, but the temperature of this impure nitrogen and the temperature in the passages A and B follow each other. However, the same effect as described above can be obtained by directly detecting the temperature in the passages A and B and selecting between block switching and core switching based on the detected temperature.

(発明の効果) 以上のように本発明は、各コアに送られる不純
窒素の温度を検出し、この温度が所定値以上の場
合には全コアを複数のブロツクに分けてその1ブ
ロツク毎に通路を順次切換え、同温度が所定値以
下の場合には各コア毎に通路を順次切換えるもの
であるので、不純窒素の温度が高く、原料空気内
のCO2やH2Oが通路の奥部で固化して蓄積し易い
状態では、ブロツク切換により迅速に不純窒素を
導入してCO2およびH2Oを除去して通路の閉塞を
防止しながら、定常運転時では、コア切換を行う
ことにより原料空気の圧力、流量の変動の縮小を
抑制することができる。この圧力、流量の変動に
より、製品窒素や製品酸素の品質の安定化や製品
アルゴンの製造量の増大、さらに原料空気圧縮機
の運転範囲の拡大などの効果を得ることができ
る。
(Effects of the Invention) As described above, the present invention detects the temperature of impure nitrogen sent to each core, and when this temperature is higher than a predetermined value, divides all the cores into a plurality of blocks and divides each core into multiple blocks. The passages are sequentially switched, and if the same temperature is below a predetermined value, the passages are switched sequentially for each core, so the impure nitrogen temperature is high and CO 2 and H 2 O in the raw air are transferred to the deep part of the passage. In conditions where impure nitrogen is likely to solidify and accumulate, block switching quickly introduces impure nitrogen and removes CO 2 and H 2 O to prevent passage blockage. During steady operation, core switching It is possible to suppress fluctuations in the pressure and flow rate of raw air. This variation in pressure and flow rate can provide effects such as stabilizing the quality of product nitrogen and product oxygen, increasing the production amount of product argon, and expanding the operating range of the raw air compressor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の空気分離装置の構造図、第2図
は同空気分離装置における切換式主熱交換器の構
造図、第3図は同切換式主熱交換器における通路
の切換構造図、第4図は上記空気分離装置の精留
塔上塔における気体の組成分布を示すグラフ、第
5図は本発明方法が実施される空気分離装置の構
造図、第6図は同装置における切換式主熱交換器
の電磁弁の切換制御を示す構造図、第7図はブロ
ツク切換およびコア切換の説明図、第8図は時間
と原料空気流量との関係を示すグラフ、第9図は
時間と精留塔上塔の塔差圧との関係を示すグラ
フ、第10図時間と粗アルゴン塔の塔差圧との関
係を示すグラフ、第11図は原料空気圧縮機の性
能曲線を示すグラフである。 2……切換式主熱交換器、3……精留塔、6…
…コア、14……温度センサ、15……切換制御
装置、A,B……通路。
Fig. 1 is a structural diagram of a conventional air separation device, Fig. 2 is a structural diagram of a switching type main heat exchanger in the same air separation device, and Fig. 3 is a structural diagram of passage switching in the switching type main heat exchanger. Fig. 4 is a graph showing the gas composition distribution in the upper column of the rectification column of the air separation device, Fig. 5 is a structural diagram of the air separation device in which the method of the present invention is implemented, and Fig. 6 is the switching system in the same device. A structural diagram showing the switching control of the solenoid valve of the main heat exchanger, Fig. 7 is an explanatory diagram of block switching and core switching, Fig. 8 is a graph showing the relationship between time and raw air flow rate, and Fig. 9 is a graph showing the relationship between time and raw air flow rate. Figure 10 is a graph showing the relationship between time and the differential pressure in the crude argon column, and Figure 11 is a graph showing the performance curve of the raw air compressor. be. 2... Switchable main heat exchanger, 3... Rectification column, 6...
... Core, 14 ... Temperature sensor, 15 ... Switching control device, A, B ... Passage.

Claims (1)

【特許請求の範囲】[Claims] 1 空気分離装置に設けられ、複数のコアからな
り、各コアにおいて原料空気の流れる通路と精留
塔から送られる不純窒素の流れる通路が切換可能
な切換式主熱交換器において、上記コアに送られ
る不純窒素の温度を検出し、この温度が所定値以
上の場合には全コアを複数のブロツクに分けてそ
の1ブロツク毎に通路を順次切換え、同温度が所
定値以下の場合には各コア毎に通路を順次切換え
ることを特徴とする空気分離装置における切換式
主熱交換器の通路切換方法。
1. In a switching type main heat exchanger installed in an air separation device, consisting of a plurality of cores, and in each core, a passage through which feed air flows and a passage through which impure nitrogen sent from a rectification column flows can be switched. Detects the temperature of impure nitrogen flowing through the air, and if this temperature is above a predetermined value, all cores are divided into multiple blocks and the passages are sequentially switched for each block, and when the same temperature is below a predetermined value, each core is 1. A method for switching passages in a switching type main heat exchanger in an air separation device, characterized in that the passages are sequentially switched for each passage.
JP62185276A 1987-07-23 1987-07-23 Path switching of switching type main heat exchanger for air separator Granted JPS6428478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62185276A JPS6428478A (en) 1987-07-23 1987-07-23 Path switching of switching type main heat exchanger for air separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62185276A JPS6428478A (en) 1987-07-23 1987-07-23 Path switching of switching type main heat exchanger for air separator

Publications (2)

Publication Number Publication Date
JPS6428478A JPS6428478A (en) 1989-01-31
JPH0325718B2 true JPH0325718B2 (en) 1991-04-08

Family

ID=16167996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62185276A Granted JPS6428478A (en) 1987-07-23 1987-07-23 Path switching of switching type main heat exchanger for air separator

Country Status (1)

Country Link
JP (1) JPS6428478A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2807150B1 (en) * 2000-04-04 2002-10-18 Air Liquide PROCESS AND APPARATUS FOR PRODUCING OXYGEN ENRICHED FLUID BY CRYOGENIC DISTILLATION

Also Published As

Publication number Publication date
JPS6428478A (en) 1989-01-31

Similar Documents

Publication Publication Date Title
CA2448467C (en) Nitrogen rejection method and apparatus
US5141544A (en) Nitrogen rejection unit
AU707805B2 (en) Air separation
US5471843A (en) Process and installation for the production of oxygen and/or nitrogen under pressure at variable flow rate
EP2692411A2 (en) Systems and methods for recovering helium form feed streams containing carbon dioxide
US3735599A (en) Process for automatic control of air separation apparatus
US7546748B2 (en) Process and apparatus for the separation of air by cryogenic distillation
EP0908689A2 (en) Method and apparatus for air distillation
GB2301101A (en) Process for the recovery of carbon monoxide from a purge gas containing at least carbon monoxide,nitrogen and hydrogen
JPH0325718B2 (en)
AU656062B2 (en) Air separation
US20100211221A1 (en) Method For Controlling A Cryogenic Distillation Unit
JP6753298B2 (en) Air liquefaction separation method and air liquefaction separation device
US20180003435A1 (en) Apparatus for operating an air separation plant
US11029086B2 (en) Method and apparatus for reducing process disturbances during pressurization of an adsorber in an air separation unit
US4239647A (en) Method and apparatus for manufacturing ammonia synthesis gas from a stream of gas rich in hydrogen and a stream of nitrogen
KR20210070988A (en) Method for obtaining at least one air product and an air separation system
JP3065968B2 (en) Air liquefaction separation device and air liquefaction separation method
JP2004533572A (en) Method and equipment for feeding an air separation unit by a gas turbine
US3059438A (en) Apparatus and method for fractionation of gas
US3060697A (en) Apparatus for and method of separating gases
JP2512041B2 (en) Operation control method for cryogenic refrigerator
JPH0350483A (en) Air separator
CA3030081A1 (en) Method and apparatus for the production of air gases by the cryogenic separation of air with variable liquid production and power usage
US11320198B2 (en) Method for improved startup of an air separation unit having a falling film vaporizer