JPH03257042A - Glass having low transmissivity - Google Patents
Glass having low transmissivityInfo
- Publication number
- JPH03257042A JPH03257042A JP5435490A JP5435490A JPH03257042A JP H03257042 A JPH03257042 A JP H03257042A JP 5435490 A JP5435490 A JP 5435490A JP 5435490 A JP5435490 A JP 5435490A JP H03257042 A JPH03257042 A JP H03257042A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- metal
- layer
- implanted
- ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011521 glass Substances 0.000 title claims abstract description 63
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 3
- 238000005468 ion implantation Methods 0.000 claims description 9
- 230000031700 light absorption Effects 0.000 claims description 6
- 150000002500 ions Chemical class 0.000 abstract description 10
- 239000002184 metal Substances 0.000 description 25
- 229910052751 metal Inorganic materials 0.000 description 25
- 239000010410 layer Substances 0.000 description 21
- 238000002834 transmittance Methods 0.000 description 17
- 238000005299 abrasion Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 4
- 239000011247 coating layer Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000005357 flat glass Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 229910021645 metal ion Inorganic materials 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000006062 low-transmittance glass Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005354 aluminosilicate glass Substances 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004313 glare Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
Landscapes
- Surface Treatment Of Glass (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、可視光線の一部を透過し、かつ、可視光線の
一部を吸収するガラスに関し、とりわけ建築物や自動車
の窓ガラスとして使用するのに適したガラスに関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to glass that transmits a portion of visible light and absorbs a portion of visible light, and is particularly suitable for use as window glass for buildings and automobiles. Regarding glass suitable for use.
省エネルギーやプライバシーの保護の観点から、建物や
自動車において透過率の低いガラスが使われてきている
。これらはガラス中に可視光線を吸収する成分を含有さ
せる場合(熱線吸収ガラス)とガラス表面に透過率を低
下させる反射膜を形成する場合(熱線反射ガラス)とに
大別される。近年、再放射が少なく省エネルギー効果が
高いということと外観が美しいということでスパッタリ
ング法で膜をガラス表面に被覆した低透過率の熱線反射
ガラスが多く用いられている。このような太陽光の透過
率が低いガラスとしては、特開昭60=36355号に
開示されているような金属の窒化物の膜を透明な酸化物
の膜と組み合せてガラス表面上に被覆したものや、特開
昭62−158139号に開示されているようにCr、
Ni、 Tiなどの金属膜を透明な酸化物の膜と組み
合せてガラス表面上に被覆したものが知られている。Glass with low transmittance has been used in buildings and automobiles from the viewpoint of energy conservation and privacy protection. These are broadly classified into cases in which a component that absorbs visible light is contained in the glass (heat ray absorbing glass) and cases in which a reflective film that reduces transmittance is formed on the glass surface (heat ray reflective glass). In recent years, low-transmittance heat-reflecting glass, which is coated with a film on the glass surface using a sputtering method, has been widely used because of its low re-radiation, high energy-saving effect, and beautiful appearance. Glass with low sunlight transmittance is made by coating the glass surface with a metal nitride film combined with a transparent oxide film, as disclosed in Japanese Patent Application Laid-Open No. 60-36355. Cr, as disclosed in Japanese Patent Application Laid-Open No. 62-158139,
It is known that a glass surface is coated with a combination of a metal film such as Ni or Ti and a transparent oxide film.
しかしながら、上記したガラス板の表面に金属窒化物の
膜や金属の膜を被覆しガラスでは、被膜とガラスとの密
着性が必ずしも十分でなく、外部からのスクラッチなど
により傷がつきやすいという欠点があった。また硫黄、
塩素といった微量の腐食性ガスや、酸素のような酸化性
ガスの存在により被膜が変質したり劣化し、光学特性が
変化してしまうといった重大な問題点があった。However, when the surface of the glass plate is coated with a metal nitride film or a metal film, the adhesion between the film and the glass is not necessarily sufficient, and the drawback is that it is easily damaged by external scratches. there were. Also sulfur,
There have been serious problems in that the presence of trace amounts of corrosive gases such as chlorine or oxidizing gases such as oxygen causes the film to change or deteriorate, resulting in changes in optical properties.
上記に述べた問題点を解決するために本発明はなされた
ものであって、本発明はSi、 A1. Ti。The present invention has been made to solve the above-mentioned problems. Ti.
Cr、 Co、 Ni、 Zrからなる元素の群から選
ばれた少なくともひとつを、イオン注入法によりガラス
板に打ち込むことにより、前記ガラス板の内部の表面近
傍に光の吸収層を形成したガラス板である。A glass plate in which a light absorption layer is formed near the inner surface of the glass plate by implanting at least one element selected from the group of elements consisting of Cr, Co, Ni, and Zr into the glass plate using an ion implantation method. be.
上記した1群の元素は、いずれもイオン注入法によりガ
ラス板の内部の表面近傍に打ち込むことにより、ガラス
板の可視光線透過率を低下させると同時に、反射光およ
び透過光によるガラスの色調をギラギラした黄金の・よ
うな色調でなく、落ち着いた中性色または中性色に近い
色調とすることができる。また反射色または透過色の色
調を微妙に変化させるために、上記した元素の2つ以上
からなる合金を用いることができる。また上記した一部
の元素は比較的小さい原子番号から選ばれており、これ
らの元素または合金は容易に、イオン化してガラス板に
イオン注入することができる。All of the above-mentioned elements in the first group are implanted near the inner surface of the glass plate by ion implantation to reduce the visible light transmittance of the glass plate and at the same time make the color tone of the glass due to reflected and transmitted light glare. Rather than a dark golden tone, the color can be a calm neutral color or a color close to a neutral color. Further, in order to subtly change the color tone of the reflected color or the transmitted color, an alloy consisting of two or more of the above-mentioned elements can be used. Moreover, some of the above-mentioned elements are selected from relatively small atomic numbers, and these elements or alloys can be easily ionized and ion-implanted into the glass plate.
ガラス板内部に形成する光の吸収層は、減圧された雰囲
気中で金属をイオン化し、前記金属のイオンを加速して
ガラスの内部に打ち込む公知のイオン注入法を用いるこ
とができる。イオン注入される金属の密度はガラスの原
子密度とほぼ同程度であるのが望ましく、イオン注入さ
れる金属の基体内部の深さ方向への密度分布は、イオン
注入時の金属イオンのドーズ量や加速度を調整すること
により制御される。イオン注入される金属の濃度の深さ
方向の分布は通常、ガウス分布またはガウス分布に近似
した分布となる。イオン注入される金属層の最も密度が
大きいガラス表面からの深さは、3〜30nmに調整さ
れ、とりわけ、窓ガラスとして使用する場合は、可視光
線の反射率や可視光線透過率などの光学的特性から5〜
15ndこ調整されるのが好ましい。また、前記イオン
注入された原子密度がほぼガウス分布で表わされる金属
からなる光吸収層の厚みは、ガウス分布がもつ標準偏差
で表わして、3〜20nmが好ましく、さらに5〜Lo
ngが光学特性のうえから特に好ましい。The light absorption layer formed inside the glass plate can be formed by a known ion implantation method in which metal is ionized in a reduced pressure atmosphere, the metal ions are accelerated, and then implanted into the inside of the glass. It is desirable that the density of the metal to be ion-implanted is approximately the same as the atomic density of the glass, and the density distribution of the metal to be ion-implanted in the depth direction inside the substrate depends on the dose of metal ions during ion implantation and the atomic density of the glass. Controlled by adjusting acceleration. The concentration distribution of the ion-implanted metal in the depth direction usually has a Gaussian distribution or a distribution approximating a Gaussian distribution. The depth from the glass surface where the metal layer to be ion-implanted has the highest density is adjusted to 3 to 30 nm, and especially when used as a window glass, optical factors such as visible light reflectance and visible light transmittance are From the characteristics 5~
It is preferable to adjust by 15nd. Further, the thickness of the light absorption layer made of a metal in which the ion-implanted atomic density is approximately represented by a Gaussian distribution is preferably 3 to 20 nm, more preferably 5 to 20 nm, expressed by the standard deviation of the Gaussian distribution.
ng is particularly preferred from the viewpoint of optical properties.
前記した金属層の深さ方向の密度分布は、イオン注入す
るときのイオンのドーズ量、イオンの打ち込み加速電圧
、イオン注入後の熱処理条件により調整される。またガ
ラス内部の深さ方向に形成される金属の密度分布は、尾
を引くような分布となるが、分布が実質的にガラス内部
に存在すれば尾の部分がガラスの表面にまで到達してい
てもかまわない。The density distribution in the depth direction of the metal layer described above is adjusted by the ion dose during ion implantation, the ion implantation acceleration voltage, and the heat treatment conditions after ion implantation. In addition, the density distribution of metal formed in the depth direction inside the glass becomes a tail-like distribution, but if the distribution exists substantially inside the glass, the tail will reach the surface of the glass. It doesn't matter.
本発明に用いられるガラス板は、とくにガラス組成が限
定されることはなく、石英ガラス、高シリカガラス、ソ
ーダライムシリカガラス、アルミノ硅酸ガラス、硼ケイ
酸ガラスなどのケイ酸塩ガラスやリン酸塩ガラスを用い
ることができる。The glass plate used in the present invention is not particularly limited in glass composition, and may include silicate glasses such as quartz glass, high silica glass, soda lime silica glass, aluminosilicate glass, and borosilicate glass, Salt glass can be used.
本発明にかかる太陽光の透過率を低下させる金属からな
る光の吸収層は、ガラスの内部の表面近傍に形成されて
、ガラスの表面に露出していないので、外部からのスク
ラッチや摩耗により、また腐蝕性のガスとの接触により
変質、劣化することがない。また光を吸収する金属層の
金属の種類、金属の密度分布を調整することにより、種
々の割合で太陽光の透過率を滅じたガラスとすることが
できる。The light absorbing layer made of metal that reduces the transmittance of sunlight according to the present invention is formed near the inner surface of the glass and is not exposed on the surface of the glass, so it is not exposed to scratches or abrasion from the outside. Also, it will not change or deteriorate due to contact with corrosive gases. Furthermore, by adjusting the type of metal in the light-absorbing metal layer and the density distribution of the metal, it is possible to create glass that reduces sunlight transmittance at various ratios.
第1図(alは本発明にかかるガラスの一部断面図で、
ガラス板1の内部の表面近傍に、イオン注入法により打
ち込まれた金属からなる光の吸収層2が形成されている
。第1図中)は打ち込まれた金属のガラス内部の深さ方
向の密度分布を模式的に表わす図で、第2図、第3図は
本発明の実施例の光学特性を示す図、第4図は金属の層
がガラス表面に被覆された従来のガラスの一部断面図で
、金属の被覆層3の上に、透明な層4が被覆されている
。FIG. 1 (al is a partial cross-sectional view of the glass according to the present invention,
A light absorbing layer 2 made of metal implanted by ion implantation is formed near the inner surface of the glass plate 1 . 1) is a diagram schematically representing the density distribution of the implanted metal in the depth direction inside the glass, FIGS. 2 and 3 are diagrams showing the optical characteristics of the embodiment of the present invention, and FIG. The figure is a partial cross-sectional view of a conventional glass in which the glass surface is coated with a metal layer, and a transparent layer 4 is coated on the metal coating layer 3.
実施例1 ガラス板として5fi厚の石英ガラスを用いた。Example 1 A 5-fi thick quartz glass was used as the glass plate.
イオン注入装置を用いてCrイオンを9 keVの加速
電圧でlXl0”個/−のドーズ量で注入した。Using an ion implanter, Cr ions were implanted at an acceleration voltage of 9 keV at a dose of 1X10''/-.
その後約550℃の温度で1時間熱処理を施した。Thereafter, heat treatment was performed at a temperature of about 550° C. for 1 hour.
これによって、約Ionmの深さに最大密度をもち、注
入厚みが約5nmのCr原子の層を形成した。(Crの
密度分布は二次イオン質量分析装置により観測した。)
得られたサンプル1の可視光及び近赤外線領域での透過
率と反射率を測定したところ、第2図のようにニュート
ラルな色調の低透過率ガラスが得られた。第2図でTは
透過率、Rは反射率を示し、RaおよびR□は、それぞ
れイオン注入したガラス面、イオン注入したガラス面と
は反対の面から光を入射したときの反射率である。サン
プル1の耐久性を評価した。耐摩耗性は、テーパー摩耗
試験機を用いて500gの荷重で300回の回転摩耗を
加えた後、JIS R3212に準じてヘーズ値を測定
した結果、約1.5%という優れた耐摩耗性を示した。This formed a layer of Cr atoms having a maximum density at a depth of about Ionm and an implantation thickness of about 5 nm. (The density distribution of Cr was observed using a secondary ion mass spectrometer.)
When the transmittance and reflectance of the obtained Sample 1 in the visible light and near infrared regions were measured, a low transmittance glass with a neutral color tone was obtained as shown in FIG. In Figure 2, T indicates transmittance, R indicates reflectance, and Ra and R□ are the reflectances when light is incident from the ion-implanted glass surface and the surface opposite to the ion-implanted glass surface, respectively. . The durability of Sample 1 was evaluated. Wear resistance was determined by measuring the haze value in accordance with JIS R3212 after applying 300 rotational abrasions with a load of 500g using a taper abrasion tester. Indicated.
耐薬品性は1規定硫酸及び1規定苛性ソーダにそれぞれ
6時間浸漬した後、透過率変化を測定したが、実質上変
化はなかった。For chemical resistance, changes in transmittance were measured after immersion in 1N sulfuric acid and 1N caustic soda for 6 hours, and there was virtually no change.
実施例2 ガラス板として5鶴厚の石英ガラスを用いた。Example 2 A quartz glass with a thickness of 5 mm was used as the glass plate.
イオン注入装置を用いてTiイオンを8 keVの加速
電圧でlXl0”個/clIのドーズ量で注入した。Using an ion implanter, Ti ions were implanted at an acceleration voltage of 8 keV at a dose of 1X10''/clI.
その後約550℃の温度で1時間熱処理を施した。Thereafter, heat treatment was performed at a temperature of about 550° C. for 1 hour.
これによって、約10n+*の深さに最大密度をもち、
注入厚みが約5nlllのTi原子の層を形成した。(
Tiの密度分布は二次イオン質量分析装置により観測し
た。)得られたサンプル2の可視光及び近赤外線領域で
の透過率と反射率を測定したところ、第3図のようにニ
ュートラルな色調の低透過率ガラスが得られた。第3図
でTは透過率、Rは反射率を示し、R^+R1は、それ
ぞれイオン注入したガラス面、イオン注入したガラス面
とは反対面から光を入射したときの反射率である。サン
プル2の耐久性を実施例1と同様の方法で評価したとこ
ろ、テーパー摩耗試験でのヘーズ率は約1.5%であり
、耐薬品性では実質上透過率の変化はなかった。This results in a maximum density at a depth of about 10n+*,
A layer of Ti atoms with an implantation thickness of approximately 5nlll was formed. (
The density distribution of Ti was observed using a secondary ion mass spectrometer. ) The transmittance and reflectance of the obtained sample 2 in the visible light and near infrared regions were measured, and as shown in FIG. 3, a low transmittance glass with a neutral color tone was obtained. In FIG. 3, T indicates transmittance, R indicates reflectance, and R^+R1 indicates reflectance when light is incident from the ion-implanted glass surface and the surface opposite to the ion-implanted glass surface, respectively. When the durability of Sample 2 was evaluated in the same manner as in Example 1, the haze rate in the taper abrasion test was approximately 1.5%, and there was virtually no change in transmittance in terms of chemical resistance.
実施例3
実施例1とは、金属の種類および打ち込むときの金属イ
オンの加速電圧を変えたことのほかは同じようにして、
ガラスの内部の表面近傍に、Al。Example 3 Same as Example 1 except that the type of metal and the accelerating voltage of the metal ions during implantation were changed.
Al near the inner surface of the glass.
St、 Ni、 Co、 Zrの単独の金属からなる吸
収層をそれぞれ形成したサンプル3〜7を作成した。こ
れらのサンプルの光学特性を第1表にサンプル1および
2とまとめて示す。またサンプル3〜7についても実施
例1と同様の耐摩耗試験をおこなったところ、ヘーズ率
はいずれも1.5%程度であった。Samples 3 to 7 were prepared in which absorbing layers each made of a single metal such as St, Ni, Co, or Zr were formed. The optical properties of these samples are shown together with Samples 1 and 2 in Table 1. Further, when samples 3 to 7 were also subjected to the same abrasion resistance test as in Example 1, the haze rate was about 1.5% in all of them.
また実施例1と同様の耐薬品性試験をおこなったところ
、透過率の変化はほとんど無く、外観上の変化は認めら
れなかった。Further, when the same chemical resistance test as in Example 1 was conducted, there was almost no change in transmittance and no change in appearance was observed.
比較例 ガラス板として5fi厚の石英ガラスを用いた。Comparative example A 5-fi thick quartz glass was used as the glass plate.
このガラスの表面に8.5nmのNi層、28nmのS
nO□層を順次スパッタリングにより被覆して比較サン
プルを得た。Ni層の被覆は、Niターゲットを用いた
アルゴン100%からなる0、04Paの圧力の雰囲気
内での直流スパッタリングによりおこない、SnO□層
の被覆はSnターゲットを用いたアルゴン60%酸素4
0%の組成の混合ガスからなる0、04Paの圧力の雰
囲気内での直流スパッタリングによりおこなった。得ら
れた比較サンプルの可視光線透過率は46%であった。On the surface of this glass is a 8.5 nm Ni layer and a 28 nm S layer.
Comparative samples were obtained by successively sputtering coatings of nO□ layers. The Ni layer was coated by direct current sputtering in an atmosphere of 0.04 Pa pressure consisting of 100% argon using a Ni target, and the SnO□ layer was coated using argon 60% oxygen 4 using a Sn target.
This was carried out by direct current sputtering in an atmosphere of a pressure of 0.04 Pa consisting of a mixed gas with a composition of 0%. The visible light transmittance of the obtained comparison sample was 46%.
実施例と同様に耐摩耗性試験をおこなったところ、30
回転で多数のキズが被覆層の表面に観察された。また実
施例1と同じ耐薬品性試験をおこなったところ、被覆層
は肉眼でみて著しく変質劣化していた。When a wear resistance test was conducted in the same manner as in the example, 30
Many scratches were observed on the surface of the coating layer due to rotation. Further, when the same chemical resistance test as in Example 1 was conducted, the coating layer was found to have significantly deteriorated in quality as seen with the naked eye.
上記から、本発明にかかるガラスは、機械的強度ならび
に化学的安定性が著しく改善されていることが分る。From the above, it can be seen that the glass according to the present invention has significantly improved mechanical strength and chemical stability.
本発明のガラスにおいては、太陽光の一部を吸収し光の
透過率を減少させる金属層は、ガラス板の内部に形成さ
れ表面に露出していないので、スクラッチや摩耗などの
機械的な外力や外部雰囲気からの化学的侵蝕を受けない
。したがって窓ガラスとして用いるときは、合わせガラ
スや複層ガラスとすることがなく、単板で使用すること
ができる。In the glass of the present invention, the metal layer that absorbs a portion of sunlight and reduces light transmittance is formed inside the glass plate and is not exposed on the surface, so it is not exposed to mechanical external forces such as scratches or abrasion. It is not subject to chemical attack from the outside atmosphere. Therefore, when used as window glass, it can be used as a single sheet without having to use laminated or double-glazed glass.
第1図は、本発明の詳細な説明するための一部断面図、
第2図、第3図は本発明の実施例の光学特性を示す図、
第4図は従来のガラスの一部断面図である。
1・・・ガラス板、2・・・イオン注入された金属から
なる光の吸収層、3・・・金属被覆層、4・・・被覆さ
れた透明な層FIG. 1 is a partial cross-sectional view for explaining the present invention in detail;
FIGS. 2 and 3 are diagrams showing optical characteristics of embodiments of the present invention,
FIG. 4 is a partial cross-sectional view of a conventional glass. DESCRIPTION OF SYMBOLS 1...Glass plate, 2...Light absorption layer made of ion-implanted metal, 3...Metal coating layer, 4...Coated transparent layer
Claims (1)
る元素の群から選ばれた少なくともひとつを、イオン注
入法によりガラス板に打ち込むことにより、前記ガラス
板の内部の表面近傍に光の吸収層を形成したガラス板。 2)前記光の吸収層を形成する元素の原子密度の最も大
きい部分が、前記ガラス板表面から3〜30nmとした
ことを特徴とする特許請求の範囲第1項記載のガラス板
。[Claims] 1) By implanting at least one element selected from the group consisting of Si, Al, Ti, Cr, Co, Ni, and Zr into the glass plate by ion implantation, the inside of the glass plate is A glass plate with a light absorption layer formed near its surface. 2) The glass plate according to claim 1, wherein a portion of the element forming the light absorption layer having the highest atomic density is 3 to 30 nm from the surface of the glass plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5435490A JPH03257042A (en) | 1990-03-06 | 1990-03-06 | Glass having low transmissivity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5435490A JPH03257042A (en) | 1990-03-06 | 1990-03-06 | Glass having low transmissivity |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03257042A true JPH03257042A (en) | 1991-11-15 |
Family
ID=12968300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5435490A Pending JPH03257042A (en) | 1990-03-06 | 1990-03-06 | Glass having low transmissivity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03257042A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010510152A (en) * | 2006-11-17 | 2010-04-02 | ベネク・オサケユキテュア | Method and apparatus for modifying a surface layer of glass, and glass article having a modified surface layer |
-
1990
- 1990-03-06 JP JP5435490A patent/JPH03257042A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010510152A (en) * | 2006-11-17 | 2010-04-02 | ベネク・オサケユキテュア | Method and apparatus for modifying a surface layer of glass, and glass article having a modified surface layer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0275474B1 (en) | Low emissivity film for high temperature processing | |
JP2505278B2 (en) | High-permeability, low-radioactive article and method for producing the same | |
JP2625079B2 (en) | Solar controlled durable thin film coating with low emissivity | |
US5059295A (en) | Method of making low emissivity window | |
CA1338403C (en) | Low emissivity film for automotive heat load reduction | |
US4806220A (en) | Method of making low emissivity film for high temperature processing | |
JP2505276B2 (en) | Gray highly permeable low emissivity article and its manufacturing method | |
US7534497B2 (en) | Temperable high shading performance coatings | |
JP3139031B2 (en) | Heat shielding glass | |
US5573839A (en) | Glass substrate coated with thin multifilms for protection against solar radiation | |
RU2676302C2 (en) | Thin-layer package glazing for sun protection | |
CA1279535C (en) | Coated glass article as a new article of manufacture | |
EP1893543B1 (en) | Coated glass pane | |
EA023911B1 (en) | Glazing provided with a stack of thin layers | |
WO2014191472A2 (en) | Low-emissivity glazing | |
US20200096687A1 (en) | Articles Coated with Coatings Containing Light Absorption Materials | |
US20230024206A1 (en) | Coating with Solar Control Properties for a Glass Substrate | |
SG187398A1 (en) | Heat reflecting glass and process for producing heat reflecting glass | |
CN107117832B (en) | Low-reflection low-permeability toughened single-silver low-emissivity coated glass and manufacturing method and application thereof | |
US20220119934A1 (en) | Heat-Treatable Coating with Blocking Layer Having Reduced Color Shift | |
CA1169722A (en) | Glazing possessing selective transmission and reflection spectra | |
JPH03257042A (en) | Glass having low transmissivity | |
WO1998034883A1 (en) | Improvements relating to solar control glass and glazing | |
US20240083808A1 (en) | Magnetron Sputtering Vapor Deposition Coating Composition Comprising Light Absorptive Materials | |
JPH08133793A (en) | Heat rays reflecting glass and its production |