JPH03256724A - Molding method for fiber reinforced thermoplastic synthetic resin - Google Patents

Molding method for fiber reinforced thermoplastic synthetic resin

Info

Publication number
JPH03256724A
JPH03256724A JP5358190A JP5358190A JPH03256724A JP H03256724 A JPH03256724 A JP H03256724A JP 5358190 A JP5358190 A JP 5358190A JP 5358190 A JP5358190 A JP 5358190A JP H03256724 A JPH03256724 A JP H03256724A
Authority
JP
Japan
Prior art keywords
mold
cooling
molding
molded product
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5358190A
Other languages
Japanese (ja)
Other versions
JPH068015B2 (en
Inventor
Hitoshi Yoshida
均 吉田
Noboru Matsunaga
昇 松永
Kazuyoshi Azeyanagi
和好 畔柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Janome Corp
Original Assignee
Agency of Industrial Science and Technology
Janome Sewing Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Janome Sewing Machine Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP5358190A priority Critical patent/JPH068015B2/en
Publication of JPH03256724A publication Critical patent/JPH03256724A/en
Publication of JPH068015B2 publication Critical patent/JPH068015B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To quench a molded product easily without generating deformation just after molding by laminating fiber reinforced thermoplastic synthetic prepreg sheets, molding a material clamped by means of metallic sheets of rich stretching properties from both sides, applying water while a metal wire material having plastic deformation properties in a cooling mold of same shape having water-through properties while retaining a molded product just after cooling, and quenching. CONSTITUTION:A sheet-shaped molding material 5 composed of overlapped fiber reinforced thermoplastic synthetic resin prepreg sheets 6 and clamped by means of metallic material sheets 7 rich in stretching properties from both surfaces, up and down, are clamped between a pressurizing chamber 1 and an opening of a mold retaining chamber 3 and shaped following a cavity of a mold 8 by heating and pressurizing by a heating oven 11 in which both chambers 2 and 3 are accommodated. Then, a metal wire material 18 having plastic deformation properties is filled in a cooling frame 15 and pressed by a press platen 19 to form cooling molds 24 and 25 having water-through properties. A core side cooling mold 24 is accommodated in the cooling frame 15 to be used as a top force 22, and a molded product 21 released just after the completion of molding is set in a cooling device working as a bottom force 23 in which a cavity side cooling mold 25 is accommodated and the mold is closed. Then, high pressure water is applied from a water-through hole 16 of the cooling frame 15 through into a water drain outlet 17 to cool a molded product 21.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は合成樹脂の成形方法に係り、特に繊維強化熱可
塑性合成樹脂のプリプレグ材シートを用いての成形方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for molding synthetic resin, and particularly to a method for molding using a prepreg sheet of fiber-reinforced thermoplastic synthetic resin.

〔従来の技術〕[Conventional technology]

繊維強化合成樹脂は、単位重量当たりの剛性や機械的強
度である比剛性や比強度が金属材料に比べて優れ、また
、ある程度仕様に合わせた特性の材料を設計出来るので
、いわゆるチーラードマテリアルと呼ばれ、航空、宇宙
産業をはじめとし、舟艇、船舶、自動車、スポーツ関連
等に急速に普及しつつある。
Fiber-reinforced synthetic resins have better specific rigidity and specific strength, which are rigidity and mechanical strength per unit weight, than metal materials, and because it is possible to design materials with characteristics that match specifications to some extent, they are called chilled materials. It is rapidly becoming popular in the aviation and space industries, as well as boats, ships, automobiles, and sports-related industries.

繊維強化合成樹脂は、従来は、熱硬化性合fj、樹脂ベ
ースとして形成されていたが、最近は高性能の熱可塑性
合成樹脂が多く開発されたこともあって熱可塑性合成樹
脂もベース樹脂として利用されるようになり、連続繊維
に熱可塑性合成樹脂を含浸させたシート状繊維強化熱可
塑性合成樹脂、すなわち、FRTPシートが、プレス成
形用のいわゆるスタンパブルシートとして開発された。
Fiber-reinforced synthetic resins have traditionally been formed using thermosetting synthetic resins as base resins, but recently, as many high-performance thermoplastic synthetic resins have been developed, thermoplastic synthetic resins are also being used as base resins. A sheet-like fiber-reinforced thermoplastic synthetic resin in which continuous fibers are impregnated with a thermoplastic synthetic resin, that is, an FRTP sheet, has been developed as a so-called stampable sheet for press molding.

このFRTPシートとして、最近、英国ICI社からA
 ro@atic P olymer Composi
teとしてPEEK(ポリエーテルエーテルケトン)樹
脂を炭素繊維で強化したシート材(A P C−2)が
開発され、PEEK樹脂は、耐熱、耐スチーム、耐薬品
、耐放射線性等や難燃性にすぐれていて、電線被覆、コ
ンビュウター用ラッピングワイヤ、航空機用のコネクタ
やエンジン周辺部品、原子力発電用コネクタ、熱水ポン
プ等積々の用途で利用されていることから、このPEE
K樹脂をベースにしたFRTPも広い用途が期待される
As this FRTP sheet, A
ro@atic Polymer Composi
A sheet material (AP C-2) made of PEEK (polyether ether ketone) resin reinforced with carbon fiber was developed as a te. PEEK resin has properties such as heat resistance, steam resistance, chemical resistance, radiation resistance, etc. This PEE is of excellent quality and is used in numerous applications such as electrical wire coating, computer wrapping wire, aircraft connectors and engine peripheral parts, nuclear power generation connectors, and hot water pumps.
FRTP based on K resin is also expected to have a wide range of applications.

従来のFRTPシートの成形方法は、所定の成形温度に
加熱した成形材を加熱された型にセットしてプレスする
ホットプレス底形や、成形材がセットされた成形型の配
備された加圧室内を所定温度に加熱後圧搾空気を導入し
成形材を型に倣わせて押圧する空圧成形により行われ、
成形終了後は成形品を型内で所定温度に冷却した後、型
から取り出していた。
Conventional methods for forming FRTP sheets include a hot press bottom shape in which a molding material heated to a predetermined molding temperature is set in a heated mold and pressed, and a pressurizing chamber equipped with a mold in which the molding material is set. This is done by pneumatic molding, in which compressed air is introduced after heating the material to a predetermined temperature, and the molded material is pressed to conform to the mold.
After molding was completed, the molded product was cooled to a predetermined temperature within the mold and then taken out from the mold.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

PEEK樹脂のような結晶性樹脂をベース樹脂としたF
RTPシートの成形を行った場合、成形品の結晶化度の
バラツキによる物性への影響が問題となる。
F whose base resin is crystalline resin such as PEEK resin.
When molding an RTP sheet, a problem arises in that variations in the degree of crystallinity of the molded product affect physical properties.

すなわち、成形品は、成形後の冷却速度によって結晶化
度がバラツキ、例えば、冷却速度が10℃/分以下で徐
冷されると結晶化度が高まって靭性が低下し、冷却速度
が700℃/分と急冷されると結晶化度が低くなって強
度、剛性、耐薬品性等が低下する。
In other words, the degree of crystallinity of a molded product varies depending on the cooling rate after molding. For example, if the cooling rate is slowly cooled at 10°C/min or less, the crystallinity will increase and the toughness will decrease, and if the cooling rate is 700°C or less, the crystallinity will increase. When the material is rapidly cooled to 1/min, the degree of crystallinity decreases, resulting in a decrease in strength, rigidity, chemical resistance, etc.

したがって、成形品の結晶化度をコントロールするため
には成形後の冷却速度の厳密なコントロールが必要とな
るが、前記したような従来の型内冷却による成形法では
これは容易なことではなく、成形品には結晶化度のバラ
ツキに基づいて物性のバラツキが発生する。
Therefore, in order to control the crystallinity of the molded product, it is necessary to strictly control the cooling rate after molding, but this is not easy with the conventional molding method using in-mold cooling as described above. Variations in physical properties occur in molded products due to variations in crystallinity.

このため、結晶性合成樹脂をベースとする成形材を成形
した場合には、成形品を、成形終了直後に一旦急冷して
結晶化度の低い状態とした後、200〜300℃−20
分程度のアンニールを行って所定の結晶化度に戻すよう
な調整を行うことが好ましい。
For this reason, when molding a molding material based on crystalline synthetic resin, the molded product is once rapidly cooled to a low crystallinity state immediately after molding is completed, and then heated at 200 to 300°C - 200°C.
It is preferable to perform annealing for about 1 minute to return the crystallinity to a predetermined degree.

しかしながら400℃程度と高温の成形直後の成形品を
型から取り出しての水冷等により急冷することは容易で
はなく、しかもこの冷却作業の際に成形品に変形が生じ
てしまうという問題があった。
However, it is not easy to quickly cool a molded product at a high temperature of about 400° C. by water cooling or the like after taking it out of the mold, and there is a problem in that the molded product is deformed during this cooling process.

本発明は、前記したような従来技術の欠点を解消し、成
形品の成形直後の急冷作業を成形品に変形を発生させる
ことなく容易に行うことができる繊維強化熱可塑性合成
樹脂のシート状成形材の成形方法を提供することを目的
とするものである。
The present invention solves the above-mentioned drawbacks of the prior art, and provides sheet-like molding of fiber-reinforced thermoplastic synthetic resin that allows for easy quenching of a molded product immediately after molding without causing deformation of the molded product. The purpose of this invention is to provide a method for forming materials.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち本発明は、所定枚数の繊維強化熱可塑性合成樹
脂プリプレグ材シートを積層し両面から展延性に富んだ
金属材シートで挟持した成形材を成形型を基に成形し、
塑性変形性を持つ金属線材を成形型と同一形状で通水性
を持って圧縮成形により形成した冷却型に前記成形型か
ら成形直後に取り出した成形品を保持しつつ通水し成形
品を急冷することを特徴とする繊維強化熱可塑性合成樹
脂の成形方法である。
That is, the present invention involves forming a molded material in which a predetermined number of fiber-reinforced thermoplastic synthetic resin prepreg sheets are laminated and sandwiched between highly malleable metal sheets from both sides using a mold,
The molded product taken out from the mold immediately after molding is held in a cooling mold formed by compression molding of a metal wire material with plastic deformability in the same shape as the mold and water permeable, and the molded product is rapidly cooled by passing water through it while holding the molded product. This is a method for molding a fiber-reinforced thermoplastic synthetic resin.

〔作  用〕[For production]

本発明は前記したように構成され、先ず、成形品は、両
面から金属材シートによって保持されて成形されている
ので400℃と高温であっても成形終了直後に成形品を
成形型から取り出すことが容易であり、次いで、この成
形品を冷却型に保持しつつ急冷するので成形品は全く変
形することなく冷却され、しかも冷却型は、塑性変形性
を持つ金属線材の圧縮成形によって通水面積の大きい通
水路を設は冷却効果の大きな状態で安価に容易に形成さ
れる。
The present invention is constructed as described above, and first, since the molded product is molded while being held by metal sheets from both sides, the molded product cannot be taken out from the mold immediately after molding is completed, even at a high temperature of 400°C. The molded product is then rapidly cooled while being held in the cooling mold, so the molded product is cooled without deforming at all.Moreover, the cooling mold has a water-permeable area that is compressed by compression molding of a metal wire with plastic deformability. A large water passage can be easily formed at low cost with a large cooling effect.

〔実施例〕〔Example〕

本発明の実施例について先ず成形材シートを空圧成形に
より成形する状態を第1図及び第2図により説明する。
Regarding embodiments of the present invention, first, the state in which a forming material sheet is formed by air pressure forming will be explained with reference to FIGS. 1 and 2.

第1図において、(1)は圧搾空気を導入するための給
気管(9)を持つ加圧室、(3)は通気性の成形型(8
)をキャビティ部を開口に臨ませて配備した排気管(1
0)を持つ成形型保持室で1両室は開口を介して対向し
て加熱炉(11)中に配備されている。
In Figure 1, (1) is a pressurized chamber with an air supply pipe (9) for introducing compressed air, and (3) is a breathable mold (8).
) with the cavity facing the opening (1)
One mold holding chamber having a mold holding chamber (0) is disposed in a heating furnace (11) facing each other through an opening.

(5)は、FRTPのプリプレグ材シート(6)を所定
枚数重ね合わせ上下両面から展延性に富んだ金属材シー
ト(7)で挾んだシート状成形材で、このシート状成形
材(5)は、加圧室(1)及び成形型保持室(3)の開
口の間に、開口の周囲に設けられたフランジ部(2)、
(4)で挾んで保持されている。
(5) is a sheet-shaped molded material made by stacking a predetermined number of FRTP prepreg material sheets (6) and sandwiching them between upper and lower surfaces of highly malleable metal sheets (7). is a flange portion (2) provided around the opening between the pressurizing chamber (1) and the mold holding chamber (3);
It is held in place by (4).

次に、成形の具体的条件について説明すると、プリプレ
グ材シート(6)としては、P E E K411脂を
マトリックス材とする炭素繊維プリプレグ材(化成ファ
イバーライト社、 APC−2、密度り、6i/cxl
、炭素繊維体積分率61%、樹脂含有率32%)の厚さ
0.125mmのシートを用い、このシートを第3図に
示すように繊維配向を45°ずつずらしての4枚重ねと
し、この2組み合計8枚重ねを、展延性に富んだ金属材
シート(7)としての厚さ0.8mの超塑性アルミニウ
ムシート(スカイアルミ、A7475)で挾み成形材シ
ート(5)とし、加圧室(1)及び成形型保持室(3)
の開口の間に保持した。
Next, to explain the specific conditions for molding, the prepreg material sheet (6) is a carbon fiber prepreg material (Kasei Fiberlite Co., Ltd., APC-2, density, 6i/ cxl
, a carbon fiber volume fraction of 61%, and a resin content of 32%) with a thickness of 0.125 mm were used, and the sheets were stacked in four layers with the fiber orientation shifted by 45 degrees as shown in Figure 3. A total of 8 sheets of these two sets are sandwiched between 0.8 m thick superplastic aluminum sheets (Sky Aluminum, A7475) as highly malleable metal sheets (7), and processed. Pressure chamber (1) and mold holding chamber (3)
was held between the openings.

加圧室(1)及び成形型保持室(3)を収納する循環熱
風炉のような加熱炉(11)は、成形する材料のベース
樹脂であるPEEK樹脂の成形温度の400℃に保たれ
ているので、成形材シート(5)が400℃に達した後
に、加圧室(1)に6kgf/ cdの圧力の圧搾空気
を送って加圧する。
A heating furnace (11) such as a circulating hot air stove that houses a pressurizing chamber (1) and a mold holding chamber (3) is maintained at 400°C, which is the molding temperature of PEEK resin, which is the base resin of the material to be molded. Therefore, after the molding material sheet (5) reaches 400°C, compressed air at a pressure of 6 kgf/cd is sent to the pressurizing chamber (1) to pressurize it.

これにより、所定の成形温度に加熱されている成形材シ
ート(5)は、成形型(8)のキャビティに倣うよう徐
々に変形して行き、この際、成形型(8)がコンクリー
ト型のような通気性を持った型であるので、キャビティ
内の空気は成形材シート(5)の変形にともなう押圧に
よって排気管(10)を通して型外に排出され一層変形
が進み、最終的にはキャビティに密着し完全にキャビテ
ィに倣って賦形される。
As a result, the molding material sheet (5) heated to a predetermined molding temperature gradually deforms to follow the cavity of the mold (8), and at this time, the mold (8) is shaped like a concrete mold. Since the mold has good air permeability, the air inside the cavity is discharged out of the mold through the exhaust pipe (10) by the pressure caused by the deformation of the molding material sheet (5), further deforming it, and eventually it is released into the cavity. It fits tightly and is shaped to perfectly resemble the cavity.

成形材シート(5)を成形型(8)のキャビティに押圧
した状態を所定時間保つと、第2図に示すような状態と
なって成形を終了するが、この場合、プリプレグ材シー
ト(6)を上下両面から挾む金属材シート(7)として
超塑性アルミニウムシートのような極めて展延性に富ん
だ金属材料を利用すると。
If the molding material sheet (5) is kept pressed into the cavity of the molding die (8) for a predetermined period of time, the molding will end in the state shown in Fig. 2, but in this case, the prepreg material sheet (6) When a highly malleable metal material such as a superplastic aluminum sheet is used as the metal sheet (7) that sandwiches the material from both the upper and lower sides.

金属材シート(7)がプリプレグ材シート(6)に良く
密着して同時に変形して成形される。
The metal sheet (7) closely adheres to the prepreg sheet (6) and is simultaneously deformed and molded.

次に、前記したようにして成形された成形品を急冷する
ための冷却型の形成方法についてキャビティ側の型の作
り方を示す第4図を基に説明する。
Next, a method of forming a cooling mold for rapidly cooling the molded article formed as described above will be explained based on FIG. 4, which shows how to make a mold on the cavity side.

(12)は、型枠(14)に収納されたコンクリート類
のコア型であり、(13)は、製品の肉厚分補填用とし
てコア型(12)の表面に装着されたカプセル型であり
、このカプセル型03)は、コア型(12)を基に、厚
さ0.8mの超塑性アルミニウム合金シート(7475
系)2枚の510℃、圧力4kgf/−の条件での空圧
成形により形成したものである。
(12) is a concrete core mold housed in the formwork (14), and (13) is a capsule mold attached to the surface of the core mold (12) to compensate for the wall thickness of the product. , this capsule type 03) is based on the core type (12) and is made of a superplastic aluminum alloy sheet (7475) with a thickness of 0.8 m.
System) Two sheets were formed by pneumatic molding at 510°C and a pressure of 4 kgf/-.

(15)は、前記コア型(12)を収納する型枠(14
)の上に載置された通水口(16)及び排水口(17)
を持つ冷却型枠であり、この冷却枠(15)内に500
0系アルミニウム合金切削くずのような塑性変形性を持
つ金属線材(18)を充填し、この金属線材(18)を
油圧等の加圧機構にてプレス! (19)を介して適度
の空隙度となるよう押圧し、通水性を持つ冷却型を形成
する。
(15) is a formwork (14) that accommodates the core mold (12).
) A water inlet (16) and a drain outlet (17) placed on top of the
This is a cooling formwork with 500 mm inside this cooling frame (15).
Filled with metal wire (18) that has plastic deformability like 0-series aluminum alloy cutting waste, and press this metal wire (18) with a pressure mechanism such as hydraulic pressure! (19) to form a cooling mold with water permeability.

(20)はプレス盤(19)の周囲に装着されたOリン
グであり、このOリング(20)の装゛着によって冷却
型枠(15)とプレス盤(19)との気密性が保たれ、
冷却型に通水した際の漏水が防げ、さらに、金属線材の
プレス底形の際のバックラッシュの発生を防ぎ冷却型の
形成を円滑に行わせることができる。
(20) is an O-ring installed around the press plate (19), and by installing this O-ring (20), airtightness between the cooling formwork (15) and the press plate (19) is maintained. ,
It is possible to prevent water leakage when water is passed through the cooling mold, and furthermore, it is possible to prevent the occurrence of backlash when pressing the metal wire into the bottom shape, and to smoothly form the cooling mold.

前記したのと全く同様にしてコア側の冷却型も形成し、
キャビティ側及びコア側の再冷却型に成形品を保持しつ
つ急冷を行う方法について、第5図及び第6図により説
明する。
A cooling mold on the core side is also formed in exactly the same manner as described above.
A method of rapidly cooling the molded product while holding it in the recooling molds on the cavity side and the core side will be explained with reference to FIGS. 5 and 6.

第5図に示すように、前記した塑性変形性の金属線材か
ら冷却型を形成した圧縮成形装置がそのまま冷却装置と
して利用され、冷却型枠(15)にコア側冷却型(24
)が収納され上型(22)となり、キャビティ側冷却型
(25)が収納され下型(23)となっていて、この冷
却装置に、成形型から成形終了直後に取り出した成形品
(21)を型が開いた状態で先ずセットする。
As shown in FIG. 5, the compression molding apparatus in which a cooling mold is formed from the plastically deformable metal wire is used as it is as a cooling device, and the core-side cooling mold (24) is attached to the cooling mold (15).
) is housed to form the upper mold (22), and the cavity side cooling mold (25) is stored to form the lower mold (23). First, set the mold with it open.

次に、第6図に示すように、成形品(21)の型へのセ
ットが終わったなら直ちに型を閉じ、コア側及びキャビ
ティ側の冷却型(24) (25)に冷却型枠(15)
の通水口から高圧水を通水し成形品(21)の冷却を行
なう。
Next, as shown in Fig. 6, as soon as the molded product (21) is set in the mold, the mold is closed, and the cooling mold frame (15) is placed in the cooling mold (24) (25) on the core side and cavity side. )
High pressure water is passed through the water inlet to cool the molded product (21).

この場合、通水口(16)と排水口(17)とでは水圧
に約2kgf/Jの差が生まれており、したがって、成
形品(21)は上下両面から加圧されつつ冷却され変形
するのが防がれている。
In this case, there is a difference in water pressure of approximately 2 kgf/J between the water inlet (16) and the drain outlet (17), so the molded product (21) is cooled and deformed while being pressurized from both the upper and lower sides. It is prevented.

成形品(21)は、冷却後に型を開いて冷却装置から取
り出され1次の結晶化度を再調整するためのアンニーリ
ング処理に移る。
After cooling, the molded product (21) is opened, taken out from the cooling device, and then subjected to an annealing process to readjust the primary crystallinity.

〔発明の効果〕〔Effect of the invention〕

第7図は、本発明の冷却効果を示し、黒丸実線で示され
るaの曲線が本発明の冷却装置により急冷した場合の冷
却曲線であり、白丸点線で示されるbの曲線は比較例と
しての室温で自然冷却した場合の冷却曲線である。
FIG. 7 shows the cooling effect of the present invention, where the curve a shown by solid black circles is the cooling curve when the cooling device of the present invention is rapidly cooled, and the curve b shown by dotted white circles is the cooling curve for a comparative example. This is a cooling curve when naturally cooled at room temperature.

この図から、本発明によると、成形品の取り出し温度す
なわち冷却開始温度が成形温度の400℃と一致してい
て、成形品は、上下両面に金属シートが貼着していて取
り扱いが容易で、成形終了直後に成形装置から取り出し
冷却装置にセットできたこと、及び、400℃から1分
足らずで常温まで冷却され、冷却速度が非常に速いこと
が明らかとなる。
From this figure, according to the present invention, the take-out temperature of the molded product, that is, the cooling start temperature, matches the molding temperature of 400°C, and the molded product has metal sheets attached to both the top and bottom surfaces, making it easy to handle. It is clear that the molding device was able to be taken out from the molding device and set in the cooling device immediately after the molding was completed, and that the cooling rate was extremely fast, as it was cooled from 400° C. to room temperature in less than 1 minute.

この結果、急冷後の成形品は、結晶性合成樹脂の結晶化
は殆ど進んでおらず、その後のアンニリング処理によっ
て、結晶化度を適切な状態に容易に再調整し、物理及び
化学的性質がバラツクのを防ぐことができた。
As a result, in the molded product after quenching, the crystallization of the crystalline synthetic resin has hardly progressed, and the degree of crystallinity can be easily readjusted to an appropriate state through the subsequent annealing treatment, resulting in improved physical and chemical properties. was able to prevent variations.

また、急冷の終わった成形品はいかなる形状の場合でも
全く変形しておらず、これは、冷却型の形成方法が極め
て簡易であるにもかかわらず、製品形状に良く対応して
いることを示している。
In addition, the molded product after quenching did not deform at all, no matter what shape it was in. This shows that although the method of forming the cooling mold is extremely simple, it corresponds well to the product shape. ing.

以上のように、本発明は、熱可塑性合成樹脂、特に、結
晶性の熱可塑性合成樹脂をベースとするシート状繊維強
化合或樹脂成形材に対し、物性に優れた適確な製品を容
易に形成する成形法を提供する。
As described above, the present invention facilitates the production of appropriate products with excellent physical properties for sheet-like fiber-reinforced composites or resin molded materials based on thermoplastic synthetic resins, particularly crystalline thermoplastic synthetic resins. A molding method is provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図は本発明の実施例を示し、第1図及び第
2図は成形状態を示し、第1図は成形前を、第2図は成
形後を示す図、第3図はプリプレグ材シートを積層する
状態を示す図、第4図は冷却型の形成方法を示す図、第
5図及び第6図は急冷状態を示し、第5図は急冷前を、
第6図は急冷時を示す図、第7図は急冷効果を示す図で
ある。 (5)・・・成形材シート、(6)・・・プリプレグ材
シート、(7)・・・金属材シート、(8)・・・成形
型、(18)・・・金属線材、(21)・・・成形品、
(24) (25)・・・冷却型。 第 1 図 第 2 図 第 図 第 図 第 図 第 7 図 ・−一−・a o−−−−Ob 冷却時間
Figures 1 to 6 show examples of the present invention, Figures 1 and 2 show the molding state, Figure 1 before molding, Figure 2 after molding, and Figure 3 4 is a diagram showing a state in which prepreg material sheets are laminated, FIG. 4 is a diagram showing a method of forming a cooling mold, FIGS. 5 and 6 are in a quenched state, and FIG. 5 is before quenching.
FIG. 6 is a diagram showing the case of rapid cooling, and FIG. 7 is a diagram showing the rapid cooling effect. (5) Molding material sheet, (6) Prepreg material sheet, (7) Metal material sheet, (8) Molding die, (18) Metal wire, (21 )···Molding,
(24) (25)... Cooling type. Figure 1 Figure 2 Figure Figure Figure 7 Figure・-1-・a o----Ob Cooling time

Claims (1)

【特許請求の範囲】[Claims]  所定枚数の繊維強化熱可塑性合成樹脂プリプレグ材シ
ートを積層し両面から展延性に富んだ金属材シートで挟
持した成形材を成形型を基に成形し、塑性変形性を持つ
金属線材を成形型と同一形状で通水性を持って圧縮成形
により形成した冷却型に前記成形型から成形直後に取り
出した成形品を保持しつつ通水し成形品を急冷すること
を特徴とする繊維強化熱可塑性合成樹脂の成形方法。
A predetermined number of fiber-reinforced thermoplastic synthetic resin prepreg sheets are laminated and sandwiched between highly malleable metal sheets on both sides, and the molding material is molded using a mold, and a metal wire material with plastic deformability is molded into the mold. A fiber-reinforced thermoplastic synthetic resin characterized in that the molded product taken out from the mold immediately after molding is held in a cooling mold having the same shape and water permeability and formed by compression molding, and the molded product is rapidly cooled by passing water therethrough. molding method.
JP5358190A 1990-03-07 1990-03-07 Method for molding fiber-reinforced thermoplastic synthetic resin Expired - Lifetime JPH068015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5358190A JPH068015B2 (en) 1990-03-07 1990-03-07 Method for molding fiber-reinforced thermoplastic synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5358190A JPH068015B2 (en) 1990-03-07 1990-03-07 Method for molding fiber-reinforced thermoplastic synthetic resin

Publications (2)

Publication Number Publication Date
JPH03256724A true JPH03256724A (en) 1991-11-15
JPH068015B2 JPH068015B2 (en) 1994-02-02

Family

ID=12946809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5358190A Expired - Lifetime JPH068015B2 (en) 1990-03-07 1990-03-07 Method for molding fiber-reinforced thermoplastic synthetic resin

Country Status (1)

Country Link
JP (1) JPH068015B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199168A (en) * 1992-04-15 1994-07-19 Kotobukiya Furonte Kk Molding method of automobile carpet and mold
JP2020163719A (en) * 2019-03-29 2020-10-08 積水化成品工業株式会社 Manufacturing method of crystalline resin foam container

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102320125A (en) * 2011-06-09 2012-01-18 应革 Method for shaping automobile shell in one step

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06199168A (en) * 1992-04-15 1994-07-19 Kotobukiya Furonte Kk Molding method of automobile carpet and mold
JP2020163719A (en) * 2019-03-29 2020-10-08 積水化成品工業株式会社 Manufacturing method of crystalline resin foam container

Also Published As

Publication number Publication date
JPH068015B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
US8708691B2 (en) Apparatus for resin transfer molding composite parts
US8480823B1 (en) Induction forming of metal components with integral heat treatment
EP0389798A2 (en) Process for impregnation of glass fiber reinforcement with thermoplastic resins and for producing articles from the impregnated glass fiber
US3818085A (en) Press method of making expanded thermoplastic sheet
US10500798B2 (en) Method of forming carbon-fiber product and implementation device thereof
JPS63199627A (en) Method of molding syntactic foam
US8591681B2 (en) Method for producing composite material mold for composite material long member
JPS60112424A (en) Method of improving surface finish
JPH03256724A (en) Molding method for fiber reinforced thermoplastic synthetic resin
JPS62257839A (en) Fiber-reinforced plastic composite thin-board and molding method thereof
JPH032010A (en) Method and device for molding thermoplastic material fed in thin sheetform state
EP3590672B1 (en) Thermal processing and consolidation system and method
GB2155846A (en) Moulding foamable materials
CN106671559A (en) Production method for stopping glue flow in laminating process of copper-clad plate
JPH03207631A (en) Method for forming fiber reinforced thermoplastic synthetic resin
CN1048520A (en) The thermoforming process of plastic sheet and device thereof
JPH0563287B2 (en)
US5987957A (en) Method of forming a metal-thermoplastic-metal laminate
JPH0361515A (en) Molding method for fiber reinforced thermoplastic synthetic resin
Aroujalian et al. Effect of processing parameters on compression resistance of a plug‐assist vacuum thermoformed container
JPH03166914A (en) Method for molding fiber reinforced thermoplastic synthetic resin
JP3309913B2 (en) Method for producing thermoplastic composite material
WO2020147233A1 (en) Laptop computer housing and fabrication method therefor
KR19980051720A (en) Forming method of composite structure using structural foam material
CN117507417A (en) Apparatus and method for producing fiber-reinforced resin molded article

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080202

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090202

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100202

Year of fee payment: 16

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 17

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 17

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 17