JPH0325598A - Noncontact type monitoring system - Google Patents

Noncontact type monitoring system

Info

Publication number
JPH0325598A
JPH0325598A JP16045489A JP16045489A JPH0325598A JP H0325598 A JPH0325598 A JP H0325598A JP 16045489 A JP16045489 A JP 16045489A JP 16045489 A JP16045489 A JP 16045489A JP H0325598 A JPH0325598 A JP H0325598A
Authority
JP
Japan
Prior art keywords
identification marker
incorporating
monitoring system
detecting
circular cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16045489A
Other languages
Japanese (ja)
Inventor
Yoshiki Ono
芳樹 小野
Takaharu Ichiyanagi
隆治 一柳
Hideaki Ishihara
石原 英昭
Tetsuo Shimomura
哲生 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP16045489A priority Critical patent/JPH0325598A/en
Publication of JPH0325598A publication Critical patent/JPH0325598A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent erroneous recognition by attaching a fine constituent incorporating crystalline metal fiber with a circular cross-section whose magnetic characteristic shows a rectangular hysteresis loop on an object as an identification marker, and detecting a prescribed higher harmonic component induced by the steep magnetic inversion of the identification marker at a time passing a detecting part. CONSTITUTION:The fine constituent incorporating the crystalline metal fiber with the circular cross-section whose magnetic characteristic shows the rectangular hysteresis loop is attached on the object as the identification marker 3. Only the prescribed higher harmonic component can be detected at a frequency detection circuit 5 via a filter 4 by taking out an output signal induced at a detecting coil 2-b excited due to the steep magnetic inversion of the identification marker 3 at a time passing the an object detecting part 2 incorporating the detecting coil. Thereby, the problem of the erroneous recognition can be solved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、商品の盗難防止などの管理面の応用や、会員
制クラブなどの会員通用門の自動開閉システムへの応用
が可能で、無人監視が可能な事はさることながら、カー
ドリーダー及びそれらの読み込み操作等が不要で、特に
信頼性が大幅に改善された非接触の磁気式監視システム
に関するものである。
[Detailed Description of the Invention] (Field of Industrial Application) The present invention can be applied to management aspects such as preventing product theft, and to an automatic opening/closing system for members' gates in members-only clubs, etc. The present invention relates to a non-contact magnetic monitoring system that not only enables monitoring but also eliminates the need for card readers and reading operations, and in particular has significantly improved reliability.

(従来の技術) 従来、例えばゲート監視システムでは、検知方法として
、カードリーダーなどでチェソクすることにより無人化
されたものが種々開発されている。
(Prior Art) Conventionally, for example, in gate monitoring systems, various unmanned detection methods have been developed by checking with a card reader or the like.

(発明が解決しようとする課IJA) しかしながら従来のゲート監視システムは、当該ゲート
を通過するためには必ず専用のカードをリーダーに読み
込ませるという操作が必要で、例えば荷物を両手に持っ
て手が塞がっている場合や、自動車を運転している時は
カードリーダーの近くに車を寄せなければならず、さら
にいくら停車しているといえども前方正面から目を放さ
なければならない事による危険性を持つなど、あらゆる
面で不都合を招き、この読み込み操作は無い方が好まし
い。
(Issue IJA to be solved by the invention) However, in conventional gate monitoring systems, in order to pass through the gate, it is necessary to read a special card into a reader. If the car is blocked or you are driving, you will have to pull over close to the card reader, and even if you are stopped, you will have to take your eyes off the front. It is preferable not to have this loading operation, as it causes inconvenience in all aspects.

又、商品を万引きされるような場合などは万引き現場を
抑えない限り、その捜査、取り調べに関しては証拠が不
明瞭な為に不祥事を招く可能性もある。その場合隠匿さ
れた商品を検閲す.る事無く即座に判別できれば盗難防
止対策は飛躍的に向上する。
Furthermore, in cases where goods are shoplifted, unless the scene of the shoplifting is suppressed, the investigation and interrogation may lead to scandals because the evidence is unclear. In that case, the hidden products will be inspected. If it can be identified immediately without having to worry about it, the anti-theft measures will be dramatically improved.

以上のような問題点を解決するために非接触式の監視シ
ステムが最近種々考案され開発されているが、信頼性の
点では未だ達戒度が低く幾多の面で不祥事を起こしてい
る。即ち、従来のシステムでの最大の問題点は誤認にあ
った。
In order to solve the above-mentioned problems, various non-contact monitoring systems have been devised and developed recently, but their reliability is still low and scandals have occurred in many ways. That is, the biggest problem with conventional systems was misidentification.

本発明は、こうした事情に着目してなされたものであっ
て、従来の如く、専用のカードをリーダーに読み込ませ
るといった事が不要で、取扱上の安全性が高《、監視に
おける判別が迅速であり、且つ誤認がなく信頼性の高い
非接触的監視システムを提供しようとするものである。
The present invention has been developed in light of these circumstances, and does not require a dedicated card to be read into a reader as in the past, resulting in high handling safety and quick identification during monitoring. The aim is to provide a highly reliable non-contact monitoring system that is accurate and free from misidentification.

(問題点を解決するための手段) 上記問題点を解決するための手段、即ち本発明は、磁気
特性が直方形ヒステリシスループを示す円形断面の結晶
質金属(Fe−Si. Fe−Al. Fe−AI−S
t系合金及び不可避不純物からなる)繊維を内蔵した微
小構戊物を識別マーカーとして、監視する対象物に貼付
しておき、該対象物が励磁、検出コイルを内藏した該対
象物検知部を通過する時に生しる該識別マーカーの急峻
な磁化反転によって該検出コイルに誘起される出力信号
の高調波成分を検知し、その時点で警報発信やゲート出
入口封鎖を、あるいは逆に該信号を検知した時のみ開門
を実施する等の動作を行うことを特徴とする非接触式監
視システムである. (作用) 本発明は監視システムにおいて、磁気特性が直方形ヒス
テリシスループを示す従来に無い円形断面の結晶質金属
繊維を内蔵した微小構成物を識別マーカーとして対象物
に貼付しておき、該対象物が励磁、検出コイルを内蔵し
た該対象物検知部を通過する時に生じる該識別マーカー
の急峻な磁化反転によって該検出コイルに誘起される出
力信号のうち従来材料に無かった特定の高調波成分を検
知するものである。即ち、非磁性の物体はもとより、一
般に磁気を帯びた祠料あるいは帯磁し易い材料等からも
明瞭に区別されて検知するために最大の問題点である誤
認を解決した非接触式監視システムを提供できる。
(Means for Solving the Problems) Means for solving the above problems, that is, the present invention is a crystalline metal (Fe-Si. Fe-Al. -AI-S
A microstructure containing fibers (consisting of T-based alloys and unavoidable impurities) is attached as an identification marker to the object to be monitored, and when the object is excited, the object detection section with the detection coil inside is detected. Detects the harmonic component of the output signal induced in the detection coil by the sharp magnetization reversal of the identification marker that occurs when passing, and at that point issues an alarm, closes the gate entrance, or conversely detects the signal. This is a non-contact monitoring system that performs actions such as opening the gate only when the system is activated. (Function) The present invention provides a monitoring system in which a minute structure containing a crystalline metal fiber with an unprecedented circular cross section whose magnetic properties exhibit a rectangular hysteresis loop is affixed to an object as an identification marker. Detects a specific harmonic component that was not present in conventional materials among the output signals induced in the detection coil due to the sharp magnetization reversal of the identification marker that occurs when the identification marker passes through the object detection section that has a built-in excitation and detection coil. It is something to do. In other words, we provide a non-contact monitoring system that can clearly distinguish and detect not only non-magnetic objects but also generally magnetic abrasives or easily magnetized materials, which solves the biggest problem of misidentification. can.

(実施例) 以下に本発明の一実施例を基に説明するがこれによって
本発明が何等限定されるものではない。
(Example) The present invention will be described below based on an example, but the present invention is not limited thereby.

本発明ニ用いる識別マーカーとしては本発明のシステム
において目立たない方がよく、小寸法である事が望まし
い。
The identification marker used in the present invention is preferably inconspicuous in the system of the present invention, and is preferably small in size.

高調波戊分の発生は、磁化の時間的変化率によって大き
く左右される。そこで本発明者らは磁化の急峻な反転を
起こす直方形ヒステリシスループを示す結晶質金属糊維
を開発することによって従来に無い高調波特性を得る事
ができるのではないかと考え、鋭意検討の結果、例えば
溶融紡糸法によって直径70μ陶、長さ50IIllI
1の円形断面のFe−Si系結晶質合金繊維を作製し、
その後熱処理を実施した繊維の磁化曲線を調べたところ
第1図のように直方形ヒステリシスループを示し急峻な
磁化反転を起こす事が判明した。そして、当該繊維を励
振周波数60Hz ,磁界振幅0.5oe(13ス?フ
F)の正弦波磁界下に置き、急峻な磁化反転により検出
コイルに誘起される出力信号の周波数スペクトルを調べ
たところ、驚くべきことには第2図のように高周波数帯
域においてもレベルの大きな高調波或分を保持している
事が判明したのである。さらに、従来の磁性材料、即ち
直方形ヒステリシスループを示さない例えばPe−Ni
系合金繊維を同様にして周波数スペクトルを測定した結
果、第3図のように高調波或分は基本波或分に対して殆
ど出ていない事が判り、本発明における直方形ヒステリ
シスループを示す金属繊維は従来に無い優れた高調波特
性をもつ監視システム用の磁気式マーカーであることが
判明した。
The generation of harmonic components is largely influenced by the rate of change of magnetization over time. Therefore, the present inventors thought that it might be possible to obtain unprecedented harmonic characteristics by developing a crystalline metal glue fiber that exhibits a rectangular hysteresis loop that causes a sharp reversal of magnetization, and conducted extensive research. As a result, for example, by the melt spinning method, a diameter of 70μ and a length of 50IIllI
A Fe-Si crystalline alloy fiber with a circular cross section of 1 was prepared,
After examining the magnetization curve of the heat-treated fiber, it was found that it exhibited a rectangular hysteresis loop as shown in FIG. 1, and a steep magnetization reversal occurred. Then, the fiber was placed under a sinusoidal magnetic field with an excitation frequency of 60 Hz and a magnetic field amplitude of 0.5 oe (13 squares F), and the frequency spectrum of the output signal induced in the detection coil due to the steep magnetization reversal was investigated. Surprisingly, it was found that even in the high frequency band, as shown in Figure 2, some high-level harmonics are retained. Additionally, conventional magnetic materials, such as Pe-Ni, which do not exhibit rectangular hysteresis loops,
As a result of measuring the frequency spectrum of the alloy fibers in the same manner, it was found that almost no harmonics or components were emitted relative to the fundamental wave or component, as shown in Figure 3, indicating that the metal exhibiting the rectangular hysteresis loop in the present invention The fiber was found to be a magnetic marker for surveillance systems with unprecedented harmonic properties.

かくして本発明は例えば第4図に示すシステムのように
、非接触式監視システムにおいて、磁気特性が直方形ヒ
ステリシスループを示す従来に無い円形断面の結晶質金
属繊維を内蔵した微小構戊物を識別マーカー3として対
象物に貼付しておき、該対象物が励磁、検出コイルを内
蔵した該対象物検知部2を通過する時に生じる該識別マ
ーカーの急峻な磁化反転によって該検出コイル2−bに
誘起される出力信号のうちフィルター4を介して従来材
料に無かった特定の高調波戒分のみを取り出す事によっ
て周波数検知回路5で検知するものである為、これによ
って誤認の問題を解消することが可能となったのである
Thus, the present invention is capable of identifying, in a non-contact monitoring system such as the system shown in FIG. A marker 3 is affixed to an object, and a sharp magnetization reversal of the identification marker that occurs when the object passes through the object detection section 2, which has a built-in excitation and detection coil, induces it in the detection coil 2-b. The frequency detection circuit 5 detects only specific harmonics that were not present in conventional materials by extracting them from the output signal through the filter 4, which eliminates the problem of misidentification. It became.

例えば第4図のシステムにおいて、識別マーカー3とし
て従来の軟磁性Fe−Ni系合金繊維を用いたところ、
出力信号の高調波戒分が殆ど出ていない為に低い周波数
域で検知するシステムとならざるを得す、従ってハイバ
スフィルター4は介することが困難となり、その様なシ
ステムでは本発明における識別マーカーはさることなが
ら金属製のナイフをも誤認検知する場合が生じることが
判明している。これに比べて本発明におけるシステムで
は金属製品は言うまでもなく、上記軟磁性Fe−Ni系
合金をも全く誤認検知することが無かった。
For example, in the system shown in FIG. 4, when a conventional soft magnetic Fe-Ni alloy fiber is used as the identification marker 3,
Since there are almost no harmonics in the output signal, the system must detect in a low frequency range. Therefore, it is difficult to use the high-pass filter 4, and in such a system, the identification marker of the present invention cannot be used. It has been found that there are cases where metal knives are falsely detected. In contrast, the system according to the present invention did not misidentify or detect the soft magnetic Fe--Ni alloy, let alone metal products.

又、Fe−AI系合金、及びFe−AI−Si系合金に
おいても上記Fe−Si系合金と同様な性能を示す金属
繊維を製作する事に戒功し、磁気式マーカーとして使用
できることも判明している。
In addition, it has been discovered that Fe-AI alloys and Fe-AI-Si alloys can be used as magnetic markers by producing metal fibers that exhibit the same performance as the Fe-Si alloys. ing.

(発明の効果) 本発明の非接触式監視システムによれば、無人監視化が
可能なことはさることながら、カードリーダー及びそれ
らの読み込み操作等が不要であり、さらにこの種のシス
テムにおける重要な問題点であった誤認を憂慮する事が
なく、大きな信頼性を持って商品の盗難防止などの管理
面の応用や、会員制クラブなどの会員通用門の自動開閉
システムへの応用、あるいは夜間の病人の監視など、あ
らゆる監視システムへの応用が可能である。
(Effects of the Invention) According to the non-contact monitoring system of the present invention, not only is it possible to perform unmanned monitoring, but card readers and their reading operations are not required, and furthermore, this is an important feature in this type of system. There is no need to worry about misidentification, which was a problem, and it can be used for management purposes such as preventing product theft, for automatic opening/closing systems for members' gates in members-only clubs, or for nighttime use. It can be applied to all kinds of monitoring systems, such as monitoring sick people.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の識別マーカーに用いた直径70μ鵠
、長さ50nwaの円形断面のFe−Si系結晶質合金
繊維の室温における磁化曲線を示す図である。 第2図は、本発明の識別マーカーに用いた直径70μ鴎
、長さ50mの円形断面のFe−Si系結晶質合金繊維
の励振周波数60Hz,磁界振幅Q.5oe(H[?フ
F)の正弦波磁界(室温)下での出力パルスの周波数ス
ペクトルを示す図である。 第3図は、比較例の識別マーカーに用いた直径120μ
m、長さ5QuのFe−Ni系合金繊維の励振周波数6
0Hz ,磁界振幅0.5oe(z47?フF)の正弦
波磁界(室温)下での出力パルスの周波数スペクトルを
示す図である。 第4図は、本発明のシステムの概要を示すブロック図の
一例である。 1:低周波数発生装置 2:対象物検知部 3:識別マーカー 4:ハイパスフィルター 5:周波数検知回路 6:二次動作器
FIG. 1 is a diagram showing a magnetization curve at room temperature of a Fe--Si crystalline alloy fiber having a circular cross section and having a diameter of 70 μm and a length of 50 nwa used in the identification marker of the present invention. FIG. 2 shows an excitation frequency of 60 Hz and a magnetic field amplitude of Q. FIG. 5 is a diagram showing a frequency spectrum of an output pulse under a sinusoidal magnetic field (room temperature) of 5oe (H[?FF). Figure 3 shows the diameter 120μ used for the identification marker of the comparative example.
m, excitation frequency of Fe-Ni alloy fiber with length 5 Qu 6
FIG. 4 is a diagram showing the frequency spectrum of an output pulse under a sinusoidal magnetic field (room temperature) of 0 Hz and magnetic field amplitude of 0.5 oe (z47?F). FIG. 4 is an example of a block diagram showing an overview of the system of the present invention. 1: Low frequency generator 2: Object detection unit 3: Identification marker 4: High pass filter 5: Frequency detection circuit 6: Secondary actuator

Claims (1)

【特許請求の範囲】[Claims] (1)磁気特性が直方形ヒステリシスループを示す円形
断面の結晶質金属(Fe−Si、Fe−Al、Fe−A
l−Si系合金及び不可避不純物からなる)繊維を内蔵
した微小構成物を識別マーカーとして、監視する対象物
に貼付しておき、該対象物が励磁、検出コイルを内蔵し
た該対象物検知部を通過する時に生じる該識別マーカー
の急峻な磁化反転によって該検出コイルに誘起される出
力信号の高調波成分を検知し、その時点で警報発信やゲ
ート出入口封鎖を、あるいは逆に該信号を検知した時の
み開門を実施する等の動作を行うことを特徴とする非接
触式監視システム。
(1) Crystalline metals (Fe-Si, Fe-Al, Fe-A) with a circular cross section whose magnetic properties exhibit a rectangular hysteresis loop
A microstructure containing fibers (consisting of l-Si alloy and unavoidable impurities) is attached as an identification marker to the object to be monitored, and when the object is excited, the object detection unit with a built-in detection coil is activated. The harmonic component of the output signal induced in the detection coil by the sharp magnetization reversal of the identification marker that occurs when passing is detected, and at that point an alarm is issued, the gate entrance is closed, or conversely, when the signal is detected. A non-contact monitoring system that performs operations such as opening a gate only when
JP16045489A 1989-06-22 1989-06-22 Noncontact type monitoring system Pending JPH0325598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16045489A JPH0325598A (en) 1989-06-22 1989-06-22 Noncontact type monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16045489A JPH0325598A (en) 1989-06-22 1989-06-22 Noncontact type monitoring system

Publications (1)

Publication Number Publication Date
JPH0325598A true JPH0325598A (en) 1991-02-04

Family

ID=15715286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16045489A Pending JPH0325598A (en) 1989-06-22 1989-06-22 Noncontact type monitoring system

Country Status (1)

Country Link
JP (1) JPH0325598A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7623289B2 (en) 2004-07-22 2009-11-24 Olympus Corporation Observation apparatus having thermoregulation mechanism
US9663821B2 (en) 2004-06-07 2017-05-30 Fluidigm Corporation Optical lens system and method for microfluidic devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167997A (en) * 1986-12-29 1988-07-12 日立金属株式会社 Crime prevention sensor system
JPH01150447A (en) * 1987-12-08 1989-06-13 Toyobo Co Ltd Soft magnetic fiber having high square loop hysteresis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63167997A (en) * 1986-12-29 1988-07-12 日立金属株式会社 Crime prevention sensor system
JPH01150447A (en) * 1987-12-08 1989-06-13 Toyobo Co Ltd Soft magnetic fiber having high square loop hysteresis

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9663821B2 (en) 2004-06-07 2017-05-30 Fluidigm Corporation Optical lens system and method for microfluidic devices
US10106846B2 (en) 2004-06-07 2018-10-23 Fluidigm Corporation Optical lens system and method for microfluidic devices
US10745748B2 (en) 2004-06-07 2020-08-18 Fluidigm Corporation Optical lens system and method for microfluidic devices
US7623289B2 (en) 2004-07-22 2009-11-24 Olympus Corporation Observation apparatus having thermoregulation mechanism

Similar Documents

Publication Publication Date Title
JP2554613B2 (en) Amorphous anti-theft marker
JP3955624B2 (en) Metallic glass alloy for mechanical resonance marker monitoring system
US4660025A (en) Article surveillance magnetic marker having an hysteresis loop with large Barkhausen discontinuities
JP3152862B2 (en) Magnetic sign for electronic article monitoring device and manufacturing method
US5729200A (en) Magnetomechanical electronic article surveilliance marker with bias element having abrupt deactivation/magnetization characteristic
JPH0381897A (en) Magnetic object monitoring marker
EP0696786B1 (en) Electromagnetic sensor element and method and apparatus for making and using same
JPS58192197A (en) Monitor system with magnetomechanical marker
GB2156630A (en) Acoustic magnetostrictive marker
JPS6214873B2 (en)
US6181245B1 (en) Magnetomechanical electronic article surveillance marker with bias element having abrupt deactivation/magnetization characteristic
US6093261A (en) Metallic glass alloys for mechanically resonant marker surveillance systems
US5539380A (en) Metallic glass alloys for mechanically resonant marker surveillance systems
JPH0325598A (en) Noncontact type monitoring system
US6489891B1 (en) Apparatus for electronic article surveillance tag pollution reduction
CA2304474C (en) Metallic glass alloys for mechanically resonant marker surveillance systems
US5495231A (en) Metallic glass alloys for mechanically resonant marker surveillance systems
WO2003044754A1 (en) Electronic article surveillance markers for recorded media
US20080143533A1 (en) Magnetoacoustic markers based on magnetic microwire, and method of obtaining the same
JPH03198195A (en) Noncontact type monitoring system
JPH0329085A (en) Contactless monitor system
JPH03198196A (en) Noncontact type monitoring system
JPH02260098A (en) System and case for supervising commodity and activating /inactivating system for detected means
CA2217722C (en) Metallic glass alloys for mechanically resonant marker surveillance systems
AU738871B2 (en) Transverse magnetic field annealed amorphous magnetomechanical elements for use in electronic article surveillance system and method of making same