JPH03255936A - Spectrophotometer - Google Patents

Spectrophotometer

Info

Publication number
JPH03255936A
JPH03255936A JP5431490A JP5431490A JPH03255936A JP H03255936 A JPH03255936 A JP H03255936A JP 5431490 A JP5431490 A JP 5431490A JP 5431490 A JP5431490 A JP 5431490A JP H03255936 A JPH03255936 A JP H03255936A
Authority
JP
Japan
Prior art keywords
sample
weight
suction
pump
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5431490A
Other languages
Japanese (ja)
Inventor
Junichi Matsumoto
順一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP5431490A priority Critical patent/JPH03255936A/en
Publication of JPH03255936A publication Critical patent/JPH03255936A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)

Abstract

PURPOSE:To exactly recognize the assigned weight of a sample without correcting a suction weight by providing a sample weight sensor which measures the suction weight of the sample and stopping the suction when the sample of the specified weight is sucked. CONSTITUTION:A test tube 10 contg. the sample 1 is set in a sample holder 2 and a suction nozzle 11 is so positioned as to come into contact with the bottom of a test tube 10. A squeezing pump 6 is then started and the weights of the test tube 10 and the sample 1 are read by the weight sensor 3. The ultimate weight after the previously inputted suction weight is subtrated is determined and thereafter, the pump 6 is run to start the suction of the sample 1. The suction weight of the sample 1 is kept monitored at all times in a weight processing section and a sample control section as well as an absorptivity reading control section 4. The rotation of the pump 6 is stopped and the measurement of the absorbance is started when the ultimate weight is attained. The measurement of the absorbance is executed by leading the light from a light source section 9 to a flow cell 7, detecting the light transmittance thereof in a luminous intensity detecting section 8 and contrasting this transmittance with the previously formed calibration curve of the control section 4 to determine the concn.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、試料中の目的成分または活性値を測定する化
学分析の一つである分光光度計の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a spectrophotometer, which is a type of chemical analysis for measuring target components or activity values in a sample.

[従来の技術] 分光光度計は、たとえば可視分光光度法、紫外分光光度
法などに使用されているもので、−例を挙げるとたとえ
ば食品成分の分析といった食品分野、脂質やグルコース
などの血中成分分析などの臨床分野、水質分析などの環
境分野など様々な分野で一般的に用いられている。
[Prior Art] Spectrophotometers are used, for example, in visible spectrophotometry, ultraviolet spectrophotometry, etc. - for example, in the food field, such as the analysis of food components, and in blood samples such as lipids and glucose. It is commonly used in a variety of fields, including clinical fields such as component analysis and environmental fields such as water quality analysis.

この原理は、試料に発色試薬を添加して発色させ、その
試料の透過光の減少度(光透過率)を測定し、濃度換算
することにより、予め作成した検量線と対比して目的物
の濃度を求めるものである。
This principle works by adding a coloring reagent to a sample to develop a color, measuring the degree of decrease in transmitted light (light transmittance) of the sample, converting it into concentration, and comparing it with a pre-prepared calibration curve to determine the target product. This is to find the concentration.

前記測定試料の調製は、水や有機溶媒に溶かしたり懸濁
させることによって行う。
The measurement sample is prepared by dissolving or suspending it in water or an organic solvent.

ところで、分光光度計の測定試料の供給には、しごきポ
ンプが用いられているものである。しごきポンプを用い
る理由は、試料の交換が容易で、かつ試料をチューブ外
に出さずに試料を移送でき、外部の汚れなどの外乱の影
響を受けることが少ないからである。
By the way, a straining pump is used to supply a measurement sample to a spectrophotometer. The reason for using a straining pump is that it is easy to exchange the sample, the sample can be transferred without leaving the tube, and it is less affected by external disturbances such as dirt.

前記しごきポンプはシリコーン樹脂製などの樹脂チュー
ブを、円周壁の内壁に沿わせて配置し、中央部の複数の
円盤を同一方向に回転させることにより、液体試料の移
動を行わせるものである。
The straining pump moves a liquid sample by arranging a resin tube made of silicone resin or the like along the inner wall of a circumferential wall and rotating a plurality of disks in the center in the same direction.

ところが、しごきポンプを使用していると、しごきチュ
ーブは使用につれてひしゃげ(つぶれ)てくる。
However, when using a squeezing pump, the squeezing tube tends to collapse as it is used.

したがって、しごきポンプの回転時間により、試料の吸
引量を決めているが、チューブが劣化してくると同じ回
転時間でも吸引量が少くなり、試料がフローセルに到達
しなかったり、キャリーオーバが多くなるなどの課題が
あった。このため、従来方法においては、一定量の試料
を試験管にとり、ポンプを回転させて、試料がなくなり
、フローセルに気泡が入って出力信号が変化するまでの
時間を計り、試料量に対する回転時間に一定の係数をか
けることにより、吸引量の補正を行っていた。
Therefore, the amount of sample suction is determined by the rotation time of the squeezing pump, but as the tube deteriorates, the amount of suction decreases even with the same rotation time, and the sample may not reach the flow cell or carryover may increase. There were issues such as: For this reason, in the conventional method, a certain amount of sample is placed in a test tube, the pump is rotated, and the time until the sample runs out, air bubbles enter the flow cell, and the output signal changes, and the rotation time is calculated based on the amount of sample. The amount of suction was corrected by applying a certain coefficient.

[発明が解決しようとする課題] しかしながら、前記した従来技術においては、頻繁に補
正をしないと正確な吸引量を把握できず、一定量を正確
に採取しなければならず、また吸引ノズルからフローセ
ルまでの量が誤差となり、測定誤差につながるなどの課
題があった。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional technology, it is not possible to accurately determine the amount of suction without frequent correction, and a certain amount must be accurately sampled. There were issues such as errors in the amount up to and including measurement errors.

本発明は、前記従来技術の課題を解決するため、試料の
吸引量の補正を必要とせず、しかも正確に試料の指定の
重量の把握ができる技術を提供することを目的とする。
SUMMARY OF THE INVENTION In order to solve the problems of the prior art described above, it is an object of the present invention to provide a technique that does not require correction of the amount of sample aspirated and can accurately determine the specified weight of the sample.

[課題を解決するための手段] 前記目的を達成するため、本発明の分光光度計は、しご
きポンプを用いて試料を吸引してフローセルに導き、吸
光度を測定する分光光度計であって、前記試料の吸引量
を測定するための試料重量センサを備え、指定の重量の
試料が吸引されると吸引を停止する手段を備えたことを
特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the spectrophotometer of the present invention is a spectrophotometer that uses a straining pump to aspirate a sample, guide it to a flow cell, and measure the absorbance. The present invention is characterized in that it includes a sample weight sensor for measuring the amount of sample aspirated, and means for stopping the aspiration when a specified weight of sample is aspirated.

[作用コ 前記本発明の構成によれば、試料の吸引量を測定するた
めの試料重量センサを備え、指定の重量の試料が吸引さ
れると吸引を停止する手段を備えているので、試料の吸
引量の補正を必要とせず、しかも正確に試料の指定重量
の把握ができる。
[Function] According to the configuration of the present invention, a sample weight sensor is provided for measuring the amount of sample aspirated, and a means for stopping the aspiration when a specified weight of sample is aspirated. There is no need to correct the amount of suction, and the specified weight of the sample can be accurately determined.

[実施例コ 以下図面を用いて本発明の一実施例を説明する。[Example code] An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の概略図である。第1図にお
いて、1は試料、2は試料ホルダー 3は重量センサ、
4は重量処理部、及びポンプ制御部、並びに吸光度読取
り制御部、5はしごきチューブ、6はしごきポンプ部、
7はフローセル、8は吸光度検出部、9は光源部、10
は試料を入れた試験管、11は吸引ノズル、12は回折
格子である。
FIG. 1 is a schematic diagram of an embodiment of the present invention. In Figure 1, 1 is a sample, 2 is a sample holder, 3 is a weight sensor,
4 is a weight processing section, a pump control section, and an absorbance reading control section; 5 is a ladder tube; 6 is a ladder pump section;
7 is a flow cell, 8 is an absorbance detection section, 9 is a light source section, 10
1 is a test tube containing a sample, 11 is a suction nozzle, and 12 is a diffraction grating.

以上のように構成された本発明の一実施例の分光光度計
について、以下その作用を説明する。
The operation of the spectrophotometer according to one embodiment of the present invention constructed as described above will be explained below.

まず、試料ホルダー2に試料1を入れた試験管10をセ
ットし、吸引ノズル11が試験管IOのそこに当たるよ
うにセットする。次に、しごきポンプ部6のスタートボ
タン(図示せず)を押すと同時に、試験管10および試
料1の重量を重量センサ3によって重量を読み取り、予
め入力しておいた吸引重量を差し引いた到達重量を求め
てから、しごきポンプ6を回転させ、試料の吸引を始め
る。
First, the test tube 10 containing the sample 1 is set in the sample holder 2, and the suction nozzle 11 is set so as to hit that part of the test tube IO. Next, at the same time as pressing the start button (not shown) of the squeezing pump unit 6, the weight of the test tube 10 and the sample 1 is read by the weight sensor 3, and the achieved weight is obtained by subtracting the suction weight input in advance. After determining this, the straining pump 6 is rotated and suction of the sample is started.

しごきポンプ6を回転中、試料の吸引重量(試料減少量
)は、重量処理部及びポンプ制御部4によって常時モニ
タリングされ、到達重量に達したらしごきポンプ6の回
転を停止し、吸光度の測定を開始する。
While the ironing pump 6 is rotating, the suction weight of the sample (sample reduction amount) is constantly monitored by the weight processing unit and the pump control unit 4, and when the weight reaches the final weight, the rotation of the ironing pump 6 is stopped and absorbance measurement begins. do.

吸光度の測定は、光源部9から光を照射し、回折格子1
2を介してフローセルフを透過させ、吸光度検出部8で
その光透過率を検出し、これを吸光度読取り制御部4で
予め作成した検量線と対比して目的物の濃度を求める。
To measure the absorbance, light is irradiated from the light source 9 and the diffraction grating 1
2, the light transmittance is detected by the absorbance detection section 8, and this is compared with a calibration curve prepared in advance by the absorbance reading control section 4 to determine the concentration of the target substance.

前記調製試料は、通常は水溶液の場合が多いので、 試料の重量(g)=試料の容量(ml)とすればよいが
、たとえば比重が1以外の有機溶媒を使用する場合は、 試料の重量(g)=dx試料の容量(mA’)(但し、
dは比重を表す。)となる。たとえば、v(m/)の試
料を吸引させる場合には、重量mとして、m=dXv(
g)と設定する。この場合予め設定しておく値はmまた
はVで設定できるようにする。
The prepared sample is usually an aqueous solution, so the weight of the sample (g) = volume of the sample (ml). However, for example, when using an organic solvent with a specific gravity other than 1, the weight of the sample (g) = dx sample capacity (mA') (however,
d represents specific gravity. ). For example, when a sample of v (m/) is aspirated, m=dXv(
g). In this case, the preset value can be set as m or V.

以上説明した本発明の一実施例によれば、試料1の吸引
量を測定するための試料重量センサ3を備え、試料の吸
引重量は重量処理部及びポンプ制御部4によって常時モ
ニタリングされ、指定の重量の試料が吸引されると吸引
を停止する手段を備えているので、試料の吸引量の補正
を必要とせず、しかも正確に試料の指定重量の把握がで
きる。
According to the embodiment of the present invention described above, the sample weight sensor 3 is provided for measuring the amount of sample 1 sucked, and the sample weight is constantly monitored by the weight processing section and the pump control section 4, and the sample weight is constantly monitored by the weight processing section and the pump control section 4. Since the apparatus is equipped with a means for stopping suction when the weight of the sample is aspirated, there is no need to correct the amount of sample aspirated, and the specified weight of the sample can be accurately determined.

また、従来方法においては、たとえばオートサンプラー
などを接続して一度に多数の試料を流すような場合には
、最初に試料の吸引量の補正を行うので、最初の試料と
最後の試料では吸引量に差が出てくる可能性があり、測
定誤差が生じる恐れがあるが、本発明によれば、試料ご
とに補正を行うことができるので、その恐れはない。す
なわち、試料ごとに補正を行うので、吸引量の補正を予
め行う必要が無くなる。
In addition, in conventional methods, when an autosampler is connected and many samples are run at once, the amount of sample aspirated is corrected first. However, according to the present invention, correction can be made for each sample, so there is no such fear. That is, since correction is performed for each sample, there is no need to correct the suction amount in advance.

本発明は、吸光度を測定する分光光度計について説明し
たが、ほかの分光光度計についても応用することができ
る。すなわち、けい光やりん光を発生させ、このスペク
トルを、回折格子、石英プリズム、または光学フィルタ
などを用いて、有機化合物の同定や無機イオンの定性な
どの分析を行う装置などにも広く応用することができる
Although the present invention has been described with respect to a spectrophotometer that measures absorbance, it can also be applied to other spectrophotometers. In other words, it generates fluorescence or phosphorescence, and this spectrum is widely applied to devices that use diffraction gratings, quartz prisms, optical filters, etc. for analysis such as identification of organic compounds and qualitative analysis of inorganic ions. be able to.

[発明の効果コ 以上説明した通り、本発明によれば、試料の吸引量を測
定するための試料重量センサを備え、指定の重量の試料
が吸引されると吸引を停止する手段を備えているので、
試料ごとに補正を行うことができ、当初の試料の吸引量
の補正を必要とせず、しかも正確に試料の指定重量の把
握ができるという優れた効果を達成することができる。
[Effects of the Invention] As explained above, according to the present invention, a sample weight sensor is provided for measuring the amount of sample aspirated, and means is provided for stopping the aspiration when a specified weight of the sample is aspirated. So,
It is possible to perform correction for each sample, eliminate the need to correct the initial amount of sample aspirated, and achieve the excellent effect of accurately determining the designated weight of the sample.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略図である。 1・・・試料、2・・・試料ホルダー 3・・・重量セ
ンサ、4・・・重量処理部及びポンプ制御部並びに吸光
度読取り制御部、5・・・しごきチューブ、6・・・し
ごきポンプ部、7・・・フローセル、8・・・吸光度検
出部、9・・・光源部、10・・・試料を入れた試験管
、11・・・吸引ノズル、12・・・回折格子。
FIG. 1 is a schematic diagram of an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Sample, 2... Sample holder, 3... Weight sensor, 4... Weight processing section, pump control section, and absorbance reading control section, 5... Straining tube, 6... Straining pump section , 7... Flow cell, 8... Absorbance detection section, 9... Light source section, 10... Test tube containing sample, 11... Suction nozzle, 12... Diffraction grating.

Claims (1)

【特許請求の範囲】[Claims] (1)しごきポンプを用いて試料を吸引してフローセル
に導き、吸光度を測定する分光光度計であって、前記分
光光度計は、試料の吸引量を測定するための試料重量セ
ンサを備え、指定の重量の試料が吸引されると吸引を停
止する手段を備えたことを特徴とする分光光度計。
(1) A spectrophotometer that uses a straining pump to suck a sample, guide it to a flow cell, and measure its absorbance, the spectrophotometer being equipped with a sample weight sensor for measuring the amount of sample sucked, A spectrophotometer characterized in that the spectrophotometer is equipped with means for stopping suction when a weight of a sample is aspirated.
JP5431490A 1990-03-06 1990-03-06 Spectrophotometer Pending JPH03255936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5431490A JPH03255936A (en) 1990-03-06 1990-03-06 Spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5431490A JPH03255936A (en) 1990-03-06 1990-03-06 Spectrophotometer

Publications (1)

Publication Number Publication Date
JPH03255936A true JPH03255936A (en) 1991-11-14

Family

ID=12967123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5431490A Pending JPH03255936A (en) 1990-03-06 1990-03-06 Spectrophotometer

Country Status (1)

Country Link
JP (1) JPH03255936A (en)

Similar Documents

Publication Publication Date Title
US11422133B2 (en) Centripetal microfluidic platform for LAL reactive substances testing
US5230863A (en) Method of calibrating an automatic chemical analyzer
US5478750A (en) Methods for photometric analysis
US20160018301A1 (en) Automated Staining and Decolorization of Biological Material
CN1168173A (en) Capillary microcuvette
CN211877738U (en) Spectrophotometric assay and liquid handling system
JPH04130248A (en) Biochemical automatic analyzer
CN112305238A (en) Method for metering a liquid amount with a peristaltic pump
JPH0433386B2 (en)
US11125696B2 (en) Colorimetric analyzer with de-bubbling
US4715710A (en) Pump colorimetric analyzer
JPH03255936A (en) Spectrophotometer
CN118076896A (en) Laboratory analyzer unit
US3572952A (en) Float cuvette
FI57665C (en) KUVETTENHET
JPH0515082Y2 (en)
JP2727510B2 (en) Rate analysis method
JP2002257723A (en) Method and instrument for determining concentration of liquid sample
JPH0621865B2 (en) Method for measuring optical properties of sample
JP2007057317A (en) Automatic analyzer
JPS6398544A (en) Reaction container
JPS61164162A (en) Specimen analyzing method
JPS62226059A (en) Automatic chemical analyzer
JPH02203252A (en) Absorptiometer
Kapoor et al. Modular design of automated biochemistry analyzer