JPH03255370A - Control device of vehicle body - Google Patents

Control device of vehicle body

Info

Publication number
JPH03255370A
JPH03255370A JP2052630A JP5263090A JPH03255370A JP H03255370 A JPH03255370 A JP H03255370A JP 2052630 A JP2052630 A JP 2052630A JP 5263090 A JP5263090 A JP 5263090A JP H03255370 A JPH03255370 A JP H03255370A
Authority
JP
Japan
Prior art keywords
vehicle body
acceleration sensor
control device
circuit
pulse width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2052630A
Other languages
Japanese (ja)
Other versions
JP2769379B2 (en
Inventor
Masanori Kubota
久保田 正則
Masayoshi Suzuki
鈴木 政善
Shotaro Naito
祥太郎 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP2052630A priority Critical patent/JP2769379B2/en
Publication of JPH03255370A publication Critical patent/JPH03255370A/en
Application granted granted Critical
Publication of JP2769379B2 publication Critical patent/JP2769379B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0828Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type being suspended at one of its longitudinal ends

Abstract

PURPOSE:To simplify a control device by using a servo capacitance type acceleration sensor as an acceleration sensor, and inputting a pulse width modulation signal of a capacitance servo circuit as a sensor detecting signal to a waveform shaping circuit. CONSTITUTION:An output signal of a pulse width modulator 8 of a capacitance- type acceleration sensor 10 is directly taken into a control circuit 20 since it is a digital signal, and digitally operated. A pulse edge of the voltage input to the circuit 20 is shaped by a waveform shaping circuit 22 and input to a digital input port 23. The circuit 20 knows when a vehicle wheel is locked at the breaking time from operations of detecting signals of a velocity sensor or the like and detecting signals of the acceleration sensor 10, with outputting a control signal to release the lock of the vehicle wheel to an object 21 to be controlled from an output port 24. Since the output of the acceleration sensor is directly taken into the control device, the control device is simplified, thereby lowering the manufacturing costs.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は車体制御装置に係り、特に、静電容量式加速度
センサの検出信号によりサスペンションやトラクション
、アンチロックブレーキ等を制御する車体制御装置に関
する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a vehicle body control device, and more particularly to a vehicle body control device that controls suspension, traction, anti-lock brakes, etc. using detection signals from a capacitive acceleration sensor. .

〔従来の技術〕[Conventional technology]

自動車の各種制御は、ディジタル信号で演算処理を行う
CPUを搭載した制御装置で行うのが一般的になってき
ており、各種センサのアナログ検出信号をA/D変換器
でディジタル信号に変換してから制御装置に取り込む様
になっている。例えば、特開平1−95923号公報や
特開平1−95924号公報記載の従来技術では、加速
度センサのアナログ出力信号をA/D変換器でディジタ
ル信号に変換し、制御装置に入力するようになっている
It has become common for various types of control of automobiles to be performed by control devices equipped with a CPU that performs arithmetic processing using digital signals. Analog detection signals from various sensors are converted into digital signals using A/D converters. The information is then imported into the control device. For example, in the conventional technology described in JP-A-1-95923 and JP-A-1-95924, an analog output signal of an acceleration sensor is converted into a digital signal by an A/D converter, and the signal is input to a control device. ing.

車体制御ではなく、エンジン制御に使用する制御装置と
して、エアフローセンサの検出出力信号をアナログ信号
ではなく、直接にディジタル信号となるように工夫した
ものが、特開昭56−51619号公報に記載されてい
る。
Japanese Patent Laid-Open No. 56-51619 describes a control device used for engine control rather than vehicle body control, in which the detection output signal of an air flow sensor is converted directly into a digital signal instead of an analog signal. ing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した加速度センサを用いる制御装置は、アナログ検
出信号をディジタル信号に変換するためのA/D変換器
が必要であり、制御装置の入力部の構成が複雑になりコ
ストがかさむという問題がある。近年の自動車制御にあ
っては、エンジン制御はエンジン制御用の制御装置、車
体制御は車体制御用の制御装置と、夫々CPUを搭載し
た制御装置を別々に設けるのが普通になってきており、
1台の自動車には数種類から多い車種で2,30種類も
の制御装置を搭載するようになっている。従って、個々
の制御装置のコストの低廉化を図らないと、全体として
非常に高価なものになってしまう。また、エンジン回り
にセンサを取り付けた場合、エンジンからのノイズや温
度の影響が信号線に乗りやすく、それに対する対策を講
じると、これもコストを上昇させる原因となってしまう
という問題がある。特に、温度の影響による補償をCP
Uの演算処理で行うと、CPUの負担が大きくなり、他
の処理に影響が出てしまう。更に、個々の加速度センサ
は特性にバラツキがあるが、この従来技術はその特性の
バラツキに対応して検出出力を調整することができず、
高精度の制御ができないという問題もある。
The control device using the above-mentioned acceleration sensor requires an A/D converter for converting an analog detection signal into a digital signal, and there is a problem that the configuration of the input section of the control device becomes complicated and costs increase. In recent years, it has become common for automobile control to have separate control devices equipped with CPUs, one for engine control and one for vehicle body control, each equipped with a CPU.
A single car is now equipped with as many as 2 to 30 types of control devices, ranging from several types to many types. Therefore, unless efforts are made to reduce the cost of each individual control device, the entire control device will become very expensive. Furthermore, when a sensor is installed around the engine, noise and temperature from the engine tend to affect the signal line, and if countermeasures are taken, this also causes an increase in costs. In particular, CP compensates for the effects of temperature.
If this is done using U's arithmetic processing, the load on the CPU will be heavy and other processing will be affected. Furthermore, individual acceleration sensors have variations in characteristics, and this conventional technology cannot adjust the detection output in response to the variations in characteristics.
There is also the problem that high-precision control is not possible.

エアフローセンサの出力をディジタル信号とし。The output of the air flow sensor is converted into a digital signal.

直接この出力信号を制御装置に入力できるようにした従
来技術は、A/D変換器を設けなくて良いという利点は
あるが5本来アナログ信号として出力されるセンサ出力
をディジタル信号として出力させるための特別な回路構
成が必要である。この回路構成は、熱線式エアフローセ
ンサ特有の回路であり、この従来技術を本発明の対象で
ある車体制御装置に適用することはできない。
The conventional technology that allows this output signal to be input directly to the control device has the advantage that it does not require an A/D converter, but it has the advantage of not having to provide an A/D converter. Special circuit configuration required. This circuit configuration is unique to a hot wire type air flow sensor, and this prior art cannot be applied to the vehicle body control device that is the object of the present invention.

本発明の第1の目的は、加速度センサの出力信号をA/
D変換器を通さずにディジタル制御装置に入力すること
ができ、更に特別なノイズ対策の不要な車体制御装置を
提供することにある。
The first object of the present invention is to convert the output signal of the acceleration sensor into A/
It is an object of the present invention to provide a vehicle body control device that can input data to a digital control device without passing through a D converter and does not require special noise countermeasures.

本発明の第2の目的は、個々のセンサの特性によらず高
精度の制御を可能とする車体制御装置を提供することに
ある。
A second object of the present invention is to provide a vehicle body control device that enables highly accurate control regardless of the characteristics of individual sensors.

本発明の第3の目的は、制御装置の演算処理装置が実行
する温度補償のための演算処理の負担を軽減する車体制
御装置を提供することにある。
A third object of the present invention is to provide a vehicle body control device that reduces the burden of arithmetic processing for temperature compensation executed by an arithmetic processing unit of a control device.

〔課題を解決するための手段〕[Means to solve the problem]

上記第1の目的、加速度センサとしてサーボ式の静電容
量式加速度センサを用い、静電サーボ回路のパルス幅変
調信号をセンサ検出信号として制御装置の入力段に通常
設けられている波形整形回路に入力する構成とすること
で、達成される。
The first purpose is to use a servo-type capacitive acceleration sensor as an acceleration sensor, and use the pulse width modulation signal of the electrostatic servo circuit as a sensor detection signal to a waveform shaping circuit normally provided at the input stage of a control device. This is achieved by configuring the input.

上記第2の目的は、パルス幅変調信号(デユーティ電圧
波形)と加速度との関係を調整するゼロ・スパン調整回
路を設けることで、達成される。
The second object is achieved by providing a zero-span adjustment circuit that adjusts the relationship between the pulse width modulation signal (duty voltage waveform) and acceleration.

上記第3の目的は、温度補償回路を設けることで、達成
される。
The third objective is achieved by providing a temperature compensation circuit.

〔作 用〕[For production]

静電容量式加速度センサに取り付けられる静電サーボ回
路は、可動電極が加速度を受けて動こうとしたとき、こ
の動きによる静電容量の変化に対応するパルス幅変調信
号を生成しこれを該センサの電極間に印加して可動電極
の動く方向と逆方向に吸引力を働かせ、可動電極が動か
ないように動作する。このパルス幅変調信号つまりデユ
ーティ電圧波形は、センサが受けた加速度の大きさとパ
ルス幅とが比例する信号である。つまり、静電サーボ式
の静電容量式加速度センサは、何等特別の回路を設計す
ることなく、このパルス幅変調信号を直接にディジタル
制御装置に入力することができる。信号線にノイズが乗
ったり信号線の容量によりパルス波形になまりが生じて
も、何のフィルタも付加することなく、ディジタル制御
装置の入力段に設けられた波形整形回路によりノイズ成
分等は除去される。従来の静電容量式加速度センサでは
、1述したパルス幅変調信号をアナログ信号に変換し、
それを再びA/D変換器でディジタル信号に変換してい
たが、本発明の構成により、A/D変換器は不要となる
When the movable electrode attempts to move due to acceleration, the electrostatic servo circuit attached to the capacitive acceleration sensor generates a pulse width modulation signal corresponding to the change in capacitance due to this movement, and transmits this signal to the sensor. It works by applying an attractive force between the electrodes in the direction opposite to the direction in which the movable electrode moves, so that the movable electrode does not move. This pulse width modulation signal, that is, the duty voltage waveform is a signal whose pulse width is proportional to the magnitude of acceleration received by the sensor. In other words, the electrostatic servo type capacitive acceleration sensor can directly input this pulse width modulation signal to the digital control device without designing any special circuit. Even if there is noise on the signal line or the pulse waveform is distorted due to the capacitance of the signal line, the noise components are removed by the waveform shaping circuit installed at the input stage of the digital control device, without adding any filters. Ru. Conventional capacitive acceleration sensors convert the pulse width modulation signal mentioned above into an analog signal,
The signal was converted back into a digital signal using an A/D converter, but the configuration of the present invention eliminates the need for an A/D converter.

静電容量式加速度センサの個々の特性にバラツキがあっ
ても、ゼロ・スパン調整回路でその出力特性を調整する
ことができるので、センサの特性によって制御特性が変
わることはない。
Even if there are variations in the individual characteristics of the capacitive acceleration sensor, the output characteristics can be adjusted using the zero/span adjustment circuit, so the control characteristics will not change depending on the sensor characteristics.

また、温度補償回路を設けて検出信号の温度補償をハー
ド的に行うことで、演算処理装置の演算処理負担の軽減
が図られる。
Further, by providing a temperature compensation circuit and performing temperature compensation of the detection signal using hardware, the computational processing load on the arithmetic processing device can be reduced.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を参照して説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明の一実施例に係る車体制御装置の全体
構成図である。静電容量式加速度センサ10の加速度検
出部9は、シリコンカンチレバー1の先端部に形成した
可動電極2と、これに対向して配置された固定電極3,
4からなる。図示しない車体に加わる加速度Gの大きさ
と方向に応じて、可動電極2が固定電極3,4間を図示
の例では上下し、この上下動による可動電極2と固定電
極3゜4との間の静電容量の変化ΔCから、可動電極2
の上下動の変位つまり加速度の大きさを検出することが
できる。
FIG. 1 is an overall configuration diagram of a vehicle body control device according to an embodiment of the present invention. The acceleration detection section 9 of the capacitive acceleration sensor 10 includes a movable electrode 2 formed at the tip of a silicon cantilever 1, a fixed electrode 3 disposed opposite to the movable electrode 2,
Consists of 4. Depending on the magnitude and direction of acceleration G applied to the vehicle body (not shown), the movable electrode 2 moves up and down between the fixed electrodes 3 and 4 in the illustrated example, and this vertical movement causes a change in the distance between the movable electrode 2 and the fixed electrodes 3 and 4. From the change in capacitance ΔC, the movable electrode 2
It is possible to detect the vertical displacement, that is, the magnitude of acceleration.

この固定電極3,4及び可動電極2(カンチレバー1を
介して)は、静電サーボ回路5と電気的に接続されてい
る。ここで、可動電極2と固定電極3との間に印加され
ている電圧をVl、可動電極2と固定電極4との間に印
加されている電圧をv2とする。可動電極2と固定電極
3,4との間には、夫々の印加電圧Vl、V2に応じた
静電気力が働く、この静電気力は、可動電極2と、固定
電極3,4との間のギャップが一定であれば、電圧Vl
、V2により一義的に定まる。それゆえ、電圧Vl、V
2を変化させることで、可動電極2に任意の静電気力を
働かせることができる。つまり、可動電極2の変位を静
電容量の変化から検出し、この変位が所定値doになる
ように、可動電極2と固定電極3,4間に静電気力をフ
ィードバック制御的に印加する。これにより、加速度G
により可動電極2に働く力と、静電気力とをバランスさ
せることができる。このバランスさせたときの静電気力
を電圧Vl、V2から検出することで、加速度Gの検出
が可能となる。
The fixed electrodes 3 and 4 and the movable electrode 2 (via the cantilever 1) are electrically connected to an electrostatic servo circuit 5. Here, it is assumed that the voltage applied between the movable electrode 2 and the fixed electrode 3 is Vl, and the voltage applied between the movable electrode 2 and the fixed electrode 4 is v2. An electrostatic force acts between the movable electrode 2 and the fixed electrodes 3 and 4 according to the applied voltages Vl and V2, respectively. This electrostatic force is caused by the gap between the movable electrode 2 and the fixed electrodes 3 and 4. is constant, the voltage Vl
, V2. Therefore, the voltages Vl, V
By changing 2, an arbitrary electrostatic force can be applied to the movable electrode 2. That is, the displacement of the movable electrode 2 is detected from the change in capacitance, and electrostatic force is applied between the movable electrode 2 and the fixed electrodes 3 and 4 in a feedback control manner so that this displacement becomes a predetermined value do. As a result, the acceleration G
This allows the force acting on the movable electrode 2 and the electrostatic force to be balanced. By detecting this balanced electrostatic force from the voltages Vl and V2, the acceleration G can be detected.

次に、静電サーボ回路5について説明する。この静電サ
ーボ回路5は、ΔC検出部6と、増幅器7と、パルス幅
変調器8とにより構成されている。
Next, the electrostatic servo circuit 5 will be explained. This electrostatic servo circuit 5 includes a ΔC detection section 6, an amplifier 7, and a pulse width modulator 8.

本実施例の場合、容量の変位ΔCが零となるように、可
動電極2に対する固定電極3,4に印加する電圧V1.
V2を変化させる1例えば、電圧Vl。
In the case of this embodiment, the voltage V1. applied to the fixed electrodes 3, 4 with respect to the movable electrode 2 is applied so that the displacement ΔC of the capacitance becomes zero.
For example, the voltage Vl.

■2を矩形波とし、そのパルス幅を変化させることで電
圧Vl、V2を変化させ、可動電極2を固定電極3,4
間の中央位置に保持させる。尚、本実施例の場合、電圧
Vlは電圧v2と逆位相でその大きさは等しくしである
。そして、電圧v1のデユーティ電圧波形のパルス幅に
より可動電極2が受けた加速度Gを検出するようになっ
ている。
2 is a rectangular wave, and by changing the pulse width, the voltages Vl and V2 are changed, and the movable electrode 2 is replaced with the fixed electrodes 3 and 4.
hold it in the center position between the two. In the case of this embodiment, the voltage Vl is in opposite phase to the voltage v2 and has the same magnitude. Then, the acceleration G applied to the movable electrode 2 is detected based on the pulse width of the duty voltage waveform of the voltage v1.

第2図、第3図に、デユーティ電圧波形と加速度Gの関
係を示す。両図において、デユーティ電圧波形■1のデ
ユーティ比をT w / Tで表し、第3図では、縦軸
に加速度Gを、横軸にデユーティ比をとっている。この
図に示されるように、静電容量式加速度センサ10から
加速度Gに比例した信号V1=デユーティ電圧波形が出
力される。
2 and 3 show the relationship between the duty voltage waveform and the acceleration G. In both figures, the duty ratio of the duty voltage waveform 1 is expressed as T w /T, and in FIG. 3, the vertical axis represents the acceleration G, and the horizontal axis represents the duty ratio. As shown in this figure, a signal V1=duty voltage waveform proportional to acceleration G is output from the capacitive acceleration sensor 10.

次に、制御回路20について説明する。制御回路20は
、MPU、RAM、ROM等を備え、制御対象(サスペ
ンション、トラクション、ブレーキシステム等)21を
制御するために、静電容量式加速度各種センサからの検
出信号を取り込んで各種演算を行う、上述した静電容量
式加速度センサ10のパルス幅変調器8の出力信号は、
ディジタル信号のため、これを制御回路20が直接取り
込んでディジタル演算することができる。静電容量式加
速度センサ10のパルス幅変調器8から信号線25を通
して制御回路20に直接入力される電圧Vl(デユーテ
ィ電圧波形)は、先ず、波形整形回路22でパルスエツ
ジが整形される。静電容量式加速度センサ10は車体の
エンジンルームや足回り箇所の様に。
Next, the control circuit 20 will be explained. The control circuit 20 includes an MPU, a RAM, a ROM, etc., and receives detection signals from various capacitive acceleration sensors and performs various calculations in order to control a controlled object (suspension, traction, brake system, etc.) 21. , the output signal of the pulse width modulator 8 of the capacitive acceleration sensor 10 described above is:
Since it is a digital signal, the control circuit 20 can directly take in this signal and perform digital calculations on it. The voltage Vl (duty voltage waveform) that is directly input from the pulse width modulator 8 of the capacitive acceleration sensor 10 to the control circuit 20 through the signal line 25 is first shaped into pulse edges by the waveform shaping circuit 22. The capacitive acceleration sensor 10 is installed in the engine room or undercarriage of a vehicle.

電気ノイズや温度環境の悪い所に設置され、ここから制
御回路20が設置される場所まで信号線25で接続され
るので、センサ10の検出信号が制御回路20に至るま
でには、ノイズが重畳したり信号線の容量でパルスエツ
ジがなまったりしてしまい、なまった信号を基に演算処
理すると、高精度の制御はできない。しかし、波形整形
回路22で整形した信号を使用することで、高精度制御
が可能となる。
It is installed in a place with poor electrical noise and temperature environment, and is connected by a signal line 25 from here to the place where the control circuit 20 is installed. Otherwise, the pulse edge may become dull due to the capacitance of the signal line, and if arithmetic processing is performed based on the distorted signal, highly accurate control cannot be achieved. However, by using the signal shaped by the waveform shaping circuit 22, highly accurate control becomes possible.

波形整形回路22で波形整形された加速度センサ検出信
号は、ディジタル入力ポート23に入力される。デユー
ティ値の測定は、例えばパルスの立ち上がりや立ち下が
りを基準に、MPU内のクロックで前記TwやTの時間
幅を計数することで算出する。
The acceleration sensor detection signal whose waveform has been shaped by the waveform shaping circuit 22 is input to the digital input port 23 . The duty value is measured, for example, by counting the time widths of Tw and T using a clock in the MPU, based on the rise and fall of the pulse.

制御回路20は、図示しない車速センサ等の検出信号と
前述した加速度センサ10の検出信号とからブレーキ時
の車輪ロック等を演算処理することで知り、車輪ロック
を解除するための制御信号を出力ボート24から制御対
象21に出力する。
The control circuit 20 calculates whether the wheels are locked during braking based on a detection signal from a vehicle speed sensor (not shown) and a detection signal from the acceleration sensor 10 described above, and outputs a control signal to release the wheel locks. 24 to the controlled object 21.

本実施例によれば、ディジタル演算処理装置がそのまま
処理することのできる加速度に比例したデユーティ電圧
波形を加速度センサが出力しそれを直接に制御装置側が
取り込む構成のため、従来必要であったA/D変換器が
不要となり、制御装置の構成が簡易となり製造コストの
低減や小型化が図れるという効果がある。また、制御装
置に設けられている波形整形回路をそのまま利用してノ
イズの除去や波形のなまりを矯正できるので、特別のノ
イズ除去フィルタ等も不要になるという効果もある。
According to this embodiment, the acceleration sensor outputs a duty voltage waveform proportional to acceleration that can be directly processed by the digital arithmetic processing unit, and the control unit directly takes in the duty voltage waveform. This eliminates the need for a D converter, simplifies the configuration of the control device, and has the effect of reducing manufacturing costs and downsizing. Further, since the waveform shaping circuit provided in the control device can be used as is to remove noise and correct waveform distortion, there is also the effect that a special noise removal filter or the like is not required.

第4図は、本発明の第2実施例に係る静電容量式加速度
センサの構成図である0本実施例の静電容量式加速度セ
ンサ10では、該センサ10側に、ゼロ・スパン調整回
路11と温度補償回路12を設けた点が第1実施例と異
なるのみで、他の構成は第1実施例と同じである0本実
施例の場合、ゼロ・スパン調整回路11は、パルス幅変
調器8の出力側と信号線25との間に設けられ、デユー
ティ電圧波形と加速度との関係を調整するものであり、
これにより5個々のセンサ10のゼロ点調整をすること
が可能となる。また、温度補償回路12は、これを設け
ることで、制御回路20側でのソフトウェアによる温度
補正用演算処理が不要となり、MPUの負担が軽減する
。これらを設けることで、ソフトウェアが簡略化され、
また、より一層の高精度の制御が可能となる。
FIG. 4 is a configuration diagram of a capacitance type acceleration sensor according to a second embodiment of the present invention. In the capacitance type acceleration sensor 10 of this embodiment, a zero/span adjustment circuit is provided on the sensor 10 side. The only difference from the first embodiment is that a temperature compensation circuit 11 and a temperature compensation circuit 12 are provided, and the other configurations are the same as the first embodiment. It is provided between the output side of the device 8 and the signal line 25, and adjusts the relationship between the duty voltage waveform and acceleration.
This makes it possible to adjust the zero point of each of the five sensors 10. Further, by providing the temperature compensation circuit 12, temperature correction calculation processing by software on the control circuit 20 side is not required, and the burden on the MPU is reduced. By providing these, the software is simplified and
Furthermore, even more precise control becomes possible.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、以下の効果がある。 According to the present invention, there are the following effects.

(a)サーボ式の静電容量式加速度センサに本来備わっ
ているパルス幅変調器の出力信号をそのままセンサ出力
として直接ディジタル制御装置に取り込む構成としたの
で、新たな回路構成の設計なしにA/D変換器やハード
フィルタが不要となり、制御装置の簡易化が達成でき、
省スペース化や低コスト化が図れる。
(a) Since the output signal of the pulse width modulator that is originally included in the servo-type capacitive acceleration sensor is directly input to the digital control device as a sensor output, A/ D-converters and hard filters are no longer required, simplifying the control device.
Space saving and cost reduction can be achieved.

(b)サーボ式静電容量式加速度センサにゼロ・スパン
調整回路を設けたので、センサ毎にゼロ点調整が可能と
なり、高精度制御が可能となる。
(b) Since the servo-type capacitive acceleration sensor is provided with a zero/span adjustment circuit, it is possible to adjust the zero point for each sensor, and high-precision control is possible.

(c)サーボ式静電容量式加速度センサに温度補償回路
を設けたので、温度補償の為の演算処理を制御装置がす
る必要が無くなり、ソフトウェアが簡略化され、また、
演算処理装置の処理負担が軽減される。
(c) Since a temperature compensation circuit is provided in the servo-type capacitive acceleration sensor, there is no need for the control device to perform arithmetic processing for temperature compensation, and the software is simplified.
The processing load on the arithmetic processing device is reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例に係る車体制御装置の構成
図、第2図はデユーティ電圧波形図、第3図は加速度と
デユーティ比との関係を示すグラフ、第4図は本発明の
第2実施例に係る車体制御装置の構成図である。 2・−・可動電極、3,4・・・固定電極、5・・・静
電サーボ回路、6・・・ΔC検出部、8・・・パルス幅
変調器。 9・・・加速度検圧部、10・・・静電容量式加速度セ
ンサ。 11・・・ゼロ・スパン調整回路、12・・・温度補償
回路。 20・・・制御回路、21・・・制御対象、22・・・
波形整形回路、25・・・信号線。
FIG. 1 is a configuration diagram of a vehicle body control device according to a first embodiment of the present invention, FIG. 2 is a duty voltage waveform diagram, FIG. 3 is a graph showing the relationship between acceleration and duty ratio, and FIG. 4 is a diagram of the present invention. FIG. 2 is a configuration diagram of a vehicle body control device according to a second embodiment of the present invention. 2... Movable electrode, 3, 4... Fixed electrode, 5... Electrostatic servo circuit, 6... ΔC detection section, 8... Pulse width modulator. 9... Acceleration pressure detection unit, 10... Capacitive acceleration sensor. 11...Zero/span adjustment circuit, 12...Temperature compensation circuit. 20... Control circuit, 21... Controlled object, 22...
Waveform shaping circuit, 25... signal line.

Claims (1)

【特許請求の範囲】 1、静電容量式加速度センサで検出した加速度信号をデ
ィジタル制御回路の演算処理装置が取り込んで各種演算
を行い車体の制御を行う車体制御装置において、前記静
電容量式加速度センサの出力信号をデューティ電圧波形
に変換する静電サーボ回路と、該デューティ電圧波形の
波形整形を行う波形整形回路とを備え、該波形整形回路
の出力を前記演算処理装置が取り込む構成としたことを
特徴とする車体制御装置。 2、静電容量式加速度センサで検出した加速度信号をデ
ィジタル制御回路が取り込んで各種演算を行い車体の制
御を行う車体制御装置において、前記静電容量式加速度
センサの出力信号から該静電容量式加速度センサの電極
間の容量変化量を検出するΔC検出部と、該ΔC検出部
の出力信号をパルス幅変調するパルス幅変調器と、該パ
ルス幅変調器の出力信号を前記ディジタル制御回路の入
力段に設けられた波形整形回路に直接入力する信号用電
線とを備えることを特徴とする車体制御装置。 3、車体に加わる加速度を静電容量式加速度センサで検
出し該加速度に応じて車体の制御を行う車体制御装置に
おいて、静電容量式加速度センサの出力電圧に応じたパ
ルス幅変調信号を該静電容量式加速度センサの電極間に
フィードバックし該静電容量式加速度センサの可動電極
が加速度を受けたときに動かないように制御する静電サ
ーボ回路の前記パルス幅変調信号を直接取り込んで演算
処理し車体制御を行うディジタル制御回路を備えること
を特徴とする車体制御装置。 4、車体に加わる加速度を静電容量式加速度センサで検
出し該加速度に応じて車体の制御を行う車体制御装置に
おいて、静電容量式加速度センサの出力電圧に応じたパ
ルス幅変調信号を該静電容量式加速度センサの電極間に
フィードバックし該静電容量式加速度センサの可動電極
が加速度を受けたときに動かないように制御する静電サ
ーボ回路の前記パルス幅変調信号を波形整形回路を介し
取り込んで演算処理し車体制御を行うディジタル制御回
路を備えることを特徴とする車体制御装置、 5、車体に加わる加速度を静電容量式加速度センサで検
出し該加速度に応じて車体の制御を行う車体制御装置に
おいて、静電容量式加速度センサの出力電圧に応じたパ
ルス幅変調信号を該静電容量式加速度センサの電極間に
フィードバックし該静電容量式加速度センサの可動電極
が加速度を受けたときに動かないように制御する静電サ
ーボ回路の前記パルス幅変調信号をゼロ・スパン調整回
路を介し取り込んで演算処理し車体制御を行うディジタ
ル制御回路を備えることを特徴とする車体制御装置。 6、車体に加わる加速度を静電容量式加速度センサで検
出し該加速度に応じて車体の制御を行う車体制御装置に
おいて、静電容量式加速度センサの出力電圧に応じたパ
ルス幅変調信号を該静電容量式加速度センサの電極間に
フィードバックし該静電容量式加速度センサの可動電極
が加速度を受けたときに動かないように制御する静電サ
ーボ回路の前記パルス幅変調信号をゼロ・スパン調整回
路と波形整形回路とを介し取り込んで演算処理し車体制
御を行うディジタル制御回路を備えることを特徴とする
車体制御装置。 7、静電容量式加速度センサで検出した加速度信号をデ
ィジタル制御回路の演算処理装置が取り込んで各種演算
を行い車体の制御を行う車体制御装置において、静電容
量式加速度センサの出力電圧に応じたパルス幅変調信号
を該静電容量式加速度センサの電極間にフィードバック
し該静電容量式加速度センサの可動電極が加速度を受け
たときに動かないように制御する静電サーボ回路に、前
記演算処理装置による前記静電容量式加速度センサの温
度特性を補償する演算にかかる負担を軽減させる温度補
償回路を設けたことを特徴とする車体制御装置。 8、請求項7において、前記ディジタル制御回路は前記
パルス幅変調信号を直接取り込む配線が接続されている
ことを特徴とする車体制御装置。 9、請求項8において、前記ディジタル制御回路は、前
記パルス幅変調信号を取り込む初段にパルス波形整形回
路を備えることを特徴とする車体制御装置。 10、請求項1乃至請求項9のいずれかにおいて、車体
制御は、サスペンションコントロール、トラクションコ
ントロール、アンチロックブレーキのいずれかであるこ
とを特徴とする車体制御装置。
[Scope of Claims] 1. In a vehicle body control device in which an arithmetic processing unit of a digital control circuit receives an acceleration signal detected by a capacitive acceleration sensor and performs various calculations to control the vehicle body, The device includes an electrostatic servo circuit that converts the output signal of the sensor into a duty voltage waveform, and a waveform shaping circuit that shapes the duty voltage waveform, and the arithmetic processing unit takes in the output of the waveform shaping circuit. A vehicle body control device featuring: 2. In a vehicle body control device in which a digital control circuit takes in an acceleration signal detected by a capacitance type acceleration sensor and performs various calculations to control the vehicle body, the output signal of the capacitance type acceleration sensor is used to detect the capacitance type acceleration sensor. A ΔC detection section that detects the amount of capacitance change between the electrodes of the acceleration sensor, a pulse width modulator that pulse width modulates the output signal of the ΔC detection section, and an output signal of the pulse width modulator that is input to the digital control circuit. 1. A vehicle body control device comprising a signal wire directly input to a waveform shaping circuit provided in a stage. 3. In a vehicle body control device that detects acceleration applied to a vehicle body using a capacitance type acceleration sensor and controls the vehicle body according to the acceleration, a pulse width modulation signal corresponding to the output voltage of the capacitance type acceleration sensor is transmitted to the static capacity type acceleration sensor. The pulse width modulation signal of the electrostatic servo circuit, which feeds back between the electrodes of the capacitive acceleration sensor and controls the movable electrode of the capacitive acceleration sensor so that it does not move when receiving acceleration, is directly captured and processed. A vehicle body control device comprising a digital control circuit for controlling the vehicle body. 4. In a vehicle body control device that detects acceleration applied to the vehicle body using a capacitance type acceleration sensor and controls the vehicle body according to the acceleration, a pulse width modulation signal corresponding to the output voltage of the capacitance type acceleration sensor is transmitted to the static capacity type acceleration sensor. The pulse width modulation signal of an electrostatic servo circuit that feeds back between the electrodes of a capacitive acceleration sensor and controls the movable electrode of the capacitive acceleration sensor so that it does not move when receiving acceleration is passed through a waveform shaping circuit. A vehicle body control device characterized by comprising a digital control circuit that performs arithmetic processing on the data and controls the vehicle body; 5. A vehicle body that detects acceleration applied to the vehicle body using a capacitive acceleration sensor and controls the vehicle body in accordance with the acceleration; In the control device, a pulse width modulation signal corresponding to the output voltage of the capacitive acceleration sensor is fed back between the electrodes of the capacitive acceleration sensor, and when the movable electrode of the capacitive acceleration sensor receives acceleration. A vehicle body control device comprising a digital control circuit that takes in the pulse width modulation signal of the electrostatic servo circuit that controls the electrostatic servo circuit so as not to move through a zero/span adjustment circuit, performs arithmetic processing, and controls the vehicle body. 6. In a vehicle body control device that detects acceleration applied to a vehicle body using a capacitance type acceleration sensor and controls the vehicle body according to the acceleration, a pulse width modulation signal corresponding to the output voltage of the capacitance type acceleration sensor is transmitted to the static capacity type acceleration sensor. A zero/span adjustment circuit for controlling the pulse width modulation signal of an electrostatic servo circuit that feeds back between electrodes of a capacitive acceleration sensor so that the movable electrode of the capacitive acceleration sensor does not move when receiving acceleration. A vehicle body control device characterized by comprising a digital control circuit that performs arithmetic processing by inputting data through a waveform shaping circuit and a waveform shaping circuit to control the vehicle body. 7. In a vehicle body control device in which an arithmetic processing unit of a digital control circuit receives an acceleration signal detected by a capacitance acceleration sensor and performs various calculations to control the vehicle body, the acceleration signal detected by the capacitance acceleration sensor is The arithmetic processing is applied to an electrostatic servo circuit that feeds back a pulse width modulation signal between the electrodes of the capacitive acceleration sensor and controls the movable electrode of the capacitive acceleration sensor so that it does not move when receiving acceleration. A vehicle body control device characterized by being provided with a temperature compensation circuit that reduces the burden on the device of calculating the temperature characteristics of the capacitance type acceleration sensor. 8. The vehicle body control device according to claim 7, wherein the digital control circuit is connected to a wiring that directly takes in the pulse width modulation signal. 9. The vehicle body control device according to claim 8, wherein the digital control circuit includes a pulse waveform shaping circuit at an initial stage that takes in the pulse width modulation signal. 10. The vehicle body control device according to any one of claims 1 to 9, wherein the vehicle body control is one of suspension control, traction control, and anti-lock brake.
JP2052630A 1990-03-06 1990-03-06 Body control device Expired - Lifetime JP2769379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2052630A JP2769379B2 (en) 1990-03-06 1990-03-06 Body control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2052630A JP2769379B2 (en) 1990-03-06 1990-03-06 Body control device

Publications (2)

Publication Number Publication Date
JPH03255370A true JPH03255370A (en) 1991-11-14
JP2769379B2 JP2769379B2 (en) 1998-06-25

Family

ID=12920142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2052630A Expired - Lifetime JP2769379B2 (en) 1990-03-06 1990-03-06 Body control device

Country Status (1)

Country Link
JP (1) JP2769379B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145837A (en) * 2008-11-10 2016-08-12 ジェーコ テクノロジー ベスローテン フェンノートシャップ Mems base capacitive sensor to be used for seismic survey collection system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052773A (en) * 1983-08-31 1985-03-26 Tokyo Keiki Co Ltd Ad converter
JPH01253657A (en) * 1988-04-01 1989-10-09 Hitachi Ltd Acceleration sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6052773A (en) * 1983-08-31 1985-03-26 Tokyo Keiki Co Ltd Ad converter
JPH01253657A (en) * 1988-04-01 1989-10-09 Hitachi Ltd Acceleration sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016145837A (en) * 2008-11-10 2016-08-12 ジェーコ テクノロジー ベスローテン フェンノートシャップ Mems base capacitive sensor to be used for seismic survey collection system

Also Published As

Publication number Publication date
JP2769379B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
US5541437A (en) Acceleration sensor using MIS-like transistors
US5441300A (en) Three-dimensional acceleration sensor and airbag using the same
US4584885A (en) Capacitive detector for transducers
US6681165B2 (en) Control device for electric power steering apparatus
US7233847B2 (en) Sensor system
JPH06191326A (en) System for adjusting operation dynamic characteristic of automobile
JP2002311045A (en) Acceleration sensor
JPH0784167B2 (en) Anti skid device
JPH08327482A (en) Sensor device and its adjusting method
JPH03255370A (en) Control device of vehicle body
JPH0526902A (en) Acceleration sensor, and antilock brake system, active suspension system and air bag system using the sensor
JPH03293565A (en) Pwm electrostatic servo type accelerometer
JP4559707B2 (en) Accelerometer
JP4449152B2 (en) Sensor signal processing circuit
JP3525541B2 (en) Electric power steering device
US6384594B1 (en) Revolution speed detecting apparatus for extracting signal corresponding to revolution speed
JP2907247B2 (en) Crosswind detector
JP3747153B2 (en) Square circuit and signal processing circuit using square circuit
JPS6136648B2 (en)
JPH0682472A (en) Distortion gauge type acceleration sensor
JP2760200B2 (en) How to adjust the output gain of the acceleration sensor
SU429642A1 (en) AUTOMATIC CONTROL SYSTEM OF MULTIDIMENSIONAL NONSTATIONARY OBJECT1 ^ GNF "FOVD
JPH06265573A (en) Acceleration sensor
JPH01153966A (en) Acceleration detecting device
JPH07209320A (en) Acceleration sensor