JPH03254738A - Blood vessel position-measuring device - Google Patents

Blood vessel position-measuring device

Info

Publication number
JPH03254738A
JPH03254738A JP4956990A JP4956990A JPH03254738A JP H03254738 A JPH03254738 A JP H03254738A JP 4956990 A JP4956990 A JP 4956990A JP 4956990 A JP4956990 A JP 4956990A JP H03254738 A JPH03254738 A JP H03254738A
Authority
JP
Japan
Prior art keywords
blood vessel
living body
supersonic
signal
doppler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4956990A
Other languages
Japanese (ja)
Inventor
Akira Hagiwara
明 萩原
Koji Ishihara
石原 耕司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP4956990A priority Critical patent/JPH03254738A/en
Publication of JPH03254738A publication Critical patent/JPH03254738A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE:To measure the position of a blood vessel with high precision by catching the blood vessel within a supersonic beam convergence region in a living body and judging the blood vessel on the basis of the doppler shift frequency obtained from the reflection waves and preventing the erroneous judgement of the echo signal of the blood vessel. CONSTITUTION:A supersonic contactor 8 is constituted by arranging a plurality of vibrators in array form, and a variable delaying circuit 7 is formed form a plurality of variable delaying elements for providing each individual delaying time for the input/output signal of each vibrator element. A supersonic wave receiving/transmission means carries out the receiving/transmission of supersonic waves into a measured living body through the variable delaying circuit 7 and the supersonic contactor 8, and an electronic scan control part 9 controls the delay time for each of a plurality of variable delay time elements, in order to form the convergence region of the supersonic beams in the prescribed direction and distance in the body, and a doppler frequency-detecting circuit 5 detects the doppler shift frequency of the received echo signal supplied from the living body, and a blood vessel judging and position-measuring part 6 judges if the output signal of the doppler frequency-detecting means is the echo signal supplied from the blood vessel, and if the judgement is 'YES', the position is measured. Accordingly, the blood vessel position can correctly be measured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電子走査型超音波送受信手段、ドプラ周波数
検出手段及び血管判別・位置測定手段を備え、被測定生
体内の血管位置を測定する血管位置測定装置に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention includes an electronic scanning ultrasound transmitting/receiving means, a Doppler frequency detection means, and a blood vessel discrimination/position measuring means, and measures the position of blood vessels in a living body to be measured. The present invention relates to a blood vessel position measuring device.

[従来の技術] 従来生体内の血管位置を測定する方法として、例えば超
音波パルスによる反射法が採用されていた。
[Prior Art] Conventionally, as a method for measuring the position of a blood vessel in a living body, for example, a reflection method using ultrasonic pulses has been adopted.

第6図は従来の超音波測定装置の概略ブロックである。FIG. 6 is a schematic block diagram of a conventional ultrasonic measuring device.

図において、30は超音波送受信装置であり、内部に送
信部31受信部32、伝播時間測定部33を含んでいる
。34は超音波探触子てあり、内部に超音波振動子を含
み、電気信号と音響信号の相互変換を行うことにより、
超音波の送波及び受波を行なう。35は超音波探触子3
4と超音波送受信装置30とを接続する接続ケーブルで
ある。
In the figure, 30 is an ultrasonic transmitting/receiving device, which includes a transmitting section 31, a receiving section 32, and a propagation time measuring section 33 inside. 34 is an ultrasonic probe, which contains an ultrasonic transducer inside and mutually converts electrical signals and acoustic signals.
Transmits and receives ultrasonic waves. 35 is ultrasound probe 3
4 and the ultrasonic transmitter/receiver 30.

第7図(a)及び(b)は第6図の動作を説明するため
の測定対象と測定波形を示す図であり、第7図(a)は
測定対象を、同図(b)はエコー信号をそれぞれ示して
いる。
7(a) and 7(b) are diagrams showing the measurement target and measurement waveforms to explain the operation of FIG. 6. FIG. 7(a) shows the measurement target and FIG. Each signal is shown.

第7図(a)及び(b)を参照し、第6図の動作を説明
する。
The operation of FIG. 6 will be explained with reference to FIGS. 7(a) and 7(b).

超音波送受信装置30内の送信部31から例えば数MH
z程度の周波数のバースト波を一定の繰り返し周期によ
り送信し、接続ケーブル35を介し超音波探触子34を
駆動する。超音波探触子34は入力する電気信号を音響
信号に変換し、変換後の超音波を生体内に入射する。生
体内に入射された超音波は、生体内における音響インピ
ーダンスの異なる境界面(例えば脂肪と筋肉の境界面、
筋肉と血管の境界面等)からその一部が反射され、再び
超音波探触子34により超音波が電気信号に変換され、
この変換後の電気信号は接続ケーブル35を介して受信
部32へ供給される。受信部32は人力信号の増幅、レ
ンジゲート処理等を行ない出力信号を伝播時間測定部3
3に供給する。伝播時間測定部33は前記バースト波の
送信から受信エコーが得られるまでの時間(即ち超音波
伝播時間)を測定し、その伝播速度からエコー信号が得
られた測定対象物までの距離を算出する。第7図(a)
に示される音響インピーダンスの異なる境界面と血管の
各位置に対応して、同図(b)に示される波形のように
それぞれのエコー信号が得られる状態が示されている。
For example, several MH from the transmitter 31 in the ultrasonic transmitter/receiver 30
A burst wave having a frequency of approximately z is transmitted at a constant repetition period to drive the ultrasonic probe 34 via the connection cable 35. The ultrasonic probe 34 converts the input electric signal into an acoustic signal, and makes the converted ultrasonic wave enter the living body. Ultrasonic waves incident into a living body are transmitted to interfaces with different acoustic impedances (for example, the interface between fat and muscle,
A portion of the ultrasound waves is reflected from the interface between muscles and blood vessels, etc.), and the ultrasound probe 34 converts the ultrasound waves into electrical signals again.
This converted electrical signal is supplied to the receiving section 32 via the connection cable 35. The receiving section 32 performs amplification, range gate processing, etc. of the human signal, and transmits the output signal to the propagation time measuring section 3.
Supply to 3. The propagation time measurement unit 33 measures the time from the transmission of the burst wave until the received echo is obtained (that is, the ultrasonic propagation time), and calculates the distance to the measurement object from which the echo signal was obtained from the propagation velocity. . Figure 7(a)
The state in which echo signals are obtained as shown in the waveforms shown in FIG. 2B is shown corresponding to the interfaces with different acoustic impedances and the respective positions of the blood vessels shown in FIG.

第7図(b)の縦軸はエコー信号の振幅であり、これは
音響インピーダンスの差の大小に関係し、横軸は時間で
あり、これは反射物標までの距離(即ち生体表面からの
深度)に比例する。
The vertical axis in Figure 7(b) is the amplitude of the echo signal, which is related to the magnitude of the difference in acoustic impedance, and the horizontal axis is time, which is the distance to the reflective target (i.e., the distance from the biological surface). depth).

生体内の血管は、生体表面に接触させる超音波探触子3
4の位置を変えながら、超音波送受信装置30により得
られるエコー信号を検出することにより、その位置(即
ち超音波探触子を置いた生体表面から垂直下方の生体内
の計測された深度位置)を測定する。
Blood vessels in the living body are detected using an ultrasound probe 3 that is brought into contact with the surface of the living body.
By detecting the echo signal obtained by the ultrasound transmitting/receiving device 30 while changing the position of the ultrasound probe 4, the position (i.e., the measured depth position in the living body vertically downward from the living body surface where the ultrasound probe is placed) is detected. Measure.

[発明が解決しようとする課題] 上記のような従来の血管位置測定装置では、単に血管か
ら反射してくる受信エコーの伝播時間を計測して血管位
置を測定しているから、血管以外の音響インピーダンス
の異なる境界面からの反射エコーが混入した場合に、血
管からの受信エコーを特定するのが困難であるという問
題点があった。
[Problems to be Solved by the Invention] In the conventional blood vessel position measuring device as described above, the blood vessel position is measured by simply measuring the propagation time of the received echo reflected from the blood vessel. There has been a problem in that when reflected echoes from interfaces with different impedances are mixed, it is difficult to identify received echoes from blood vessels.

またその径が細い血管から反射される受信エコーの振幅
は小さいので、有効な信号検出か難しいという問題点も
あった。
Furthermore, since the amplitude of received echoes reflected from blood vessels with small diameters is small, there is also the problem that it is difficult to detect signals effectively.

本発明は、かかる問題点を解決するためになされもので
、径の細い血管からの受信エコーを検出するときにも、
また血管以外の物標からの反射波が存在していても、正
しく血管の位置を測定することができる血管位置測定装
置を得ることを目的とする。
The present invention was made to solve such problems, and even when detecting received echoes from blood vessels with a small diameter,
Another object of the present invention is to provide a blood vessel position measuring device that can accurately measure the position of a blood vessel even if reflected waves from targets other than blood vessels are present.

[課題を解決するための手段] 本発明に係る血管位置測定装置は、複数の振動子をアレ
イ状に配列してなる超音波探触子と、前記複数の各振動
子の人力信号及び出力信号に対して、それぞれ個別の遅
延時間を与える複数の可変遅延素子よりなる可変遅延回
路と、前記可変遅延回路及び超音波探触子を介して被測
定生体内に超音波の送信及び受信を行なう超音波送受信
手段と、前記被測定生体内の所定の方位及び距離に超音
波ビームの集束域を形成させるため、前記複数の可変遅
延素子毎の遅延時間を制御する電子走査制御手段と、前
記超音波送受信手段により被測定生体から得られた受信
エコー信号のドプラシフト周波数を検出するドプラ周波
数検出手段と、該ドプラ周波数検出手段の出力信号が血
管からのエコー信号であるかを判別し、該判別結果が血
管の場合に、その位置を測定する血管判別・位置測定手
段とを備えたものである。
[Means for Solving the Problems] A blood vessel position measuring device according to the present invention includes an ultrasonic probe formed by arranging a plurality of transducers in an array, and a human power signal and an output signal of each of the plurality of transducers. , a variable delay circuit including a plurality of variable delay elements each giving an individual delay time; a sound wave transmitting/receiving means; an electronic scanning control means for controlling the delay time of each of the plurality of variable delay elements in order to form a focused region of the ultrasound beam at a predetermined direction and distance within the living body; Doppler frequency detection means for detecting the Doppler shift frequency of the received echo signal obtained from the living body to be measured by the transmitting and receiving means; and determining whether the output signal of the Doppler frequency detection means is an echo signal from a blood vessel; In the case of a blood vessel, the device includes blood vessel discrimination/position measuring means for measuring the position of the blood vessel.

[作用] 本発明においては、複数の振動子をアレイ状に配列して
超音波探触子を構成し、前記複数の各振動子の人力信号
及び出力信号に対して、それぞれ個別の遅延時間を与え
る複数の可変遅延素子により可変遅延回路を形成する。
[Operation] In the present invention, an ultrasonic probe is constructed by arranging a plurality of transducers in an array, and individual delay times are set for the human input signal and the output signal of each of the plurality of transducers. A variable delay circuit is formed by the plurality of variable delay elements provided.

そして超音波送受信手段は前記可変遅延回路及び超音波
探触子を介して被測定生体内に超音波の送信及び受信を
行ない、電子走査制御手段は前記被測定生体内の所定の
方位及び距離に超音波ビームの集束域を形成させるため
、前記複数の可変遅延素子毎の遅延時間を制御し、ドプ
ラ周波数検出手段は前記超音波送受信手段により被測定
生体から得られた受信エコー信号のドプラシフト周波数
を検出し、血管判別・位置測定手段は前記ドプラ周波数
検出手段の出力信号が血管からのエコー信号であるかを
判別し、該判別結果が血管の場合に、その位置を測定す
る。
The ultrasonic transmitting/receiving means transmits and receives ultrasonic waves into the living body to be measured via the variable delay circuit and the ultrasonic probe, and the electronic scanning control means transmits and receives ultrasonic waves within the living body to be measured in a predetermined direction and distance. In order to form a focused region of the ultrasound beam, the delay time of each of the plurality of variable delay elements is controlled, and the Doppler frequency detection means detects the Doppler shift frequency of the received echo signal obtained from the living body to be measured by the ultrasound transmission/reception means. The blood vessel discriminating/positioning means determines whether the output signal of the Doppler frequency detecting means is an echo signal from a blood vessel, and if the determination result indicates that it is a blood vessel, the position of the blood vessel is measured.

[実施例] 第1図は本発明の一実施例を示す血管位置測定装置の概
略ブロック図である。図において、1は送信波発生回路
であり、一定な周波数f。(例えばlO〜20MHz程
度)の送信波を発生して、ドプラ周波数検出回路5へ供
給し、またその発生した送信波の一部を一定の繰り返し
周期のバースト波として送信部2へ供給する。2は送信
部であり、送信波発生回路1からの人力信号を増幅出力
し、可変遅延回路7を介して超音波探触子8を駆動して
超音波ビームを送波する。3は受信部であり、超音波探
触子8及び可変遅延回路7を介して人力される受信信号
を増幅し出力する。4はレンジゲート回路であり、電子
走査制御部9から人力されるレンジ設定信号に基づき、
超音波ビームの集束域近傍の信号のみを取り出すための
ゲイティング動作を行なう。5はドプラ周波数検出回路
で、反射信号を得られる物標が移動する場合に、超音波
の受信周波数は送信周波数からシフト(これをドプラシ
フトという)するので、このドプラシフト周波数を検出
する回路である。本実施例においては血管内の血流速度
をドプラシフト周波数として検出することを目的とする
。6は血管判別・位置測定部であり、ドプラ周波数検出
回路5の出力信号が、血管からのエコー信号であり、心
臓等からの反射信号でないことを判別し、その判別結果
が血管の場合に、電子走査制御部9から得られる超音波
集束ビームの方位信号と、超音波の送信からドプラ検出
信号が得られるまでの超音波伝播時間(この時間は生体
表面から血管までの距離に比例する)とから血管の位置
を測定し、この測定結果を図示されない表示器又はプリ
ンタ等へ出力する。
[Embodiment] FIG. 1 is a schematic block diagram of a blood vessel position measuring device showing an embodiment of the present invention. In the figure, 1 is a transmission wave generation circuit, which has a constant frequency f. A transmission wave (for example, about 10 to 20 MHz) is generated and supplied to the Doppler frequency detection circuit 5, and a part of the generated transmission wave is supplied to the transmitter 2 as a burst wave with a constant repetition period. A transmitter 2 amplifies and outputs the human power signal from the transmit wave generating circuit 1, drives the ultrasound probe 8 via the variable delay circuit 7, and transmits an ultrasound beam. 3 is a receiving section, which amplifies and outputs a received signal inputted manually via the ultrasonic probe 8 and the variable delay circuit 7. 4 is a range gate circuit, which operates based on a range setting signal manually inputted from the electronic scanning control section 9.
A gating operation is performed to extract only signals near the focal region of the ultrasound beam. Reference numeral 5 denotes a Doppler frequency detection circuit, which detects the Doppler shift frequency since the reception frequency of the ultrasonic wave shifts from the transmission frequency (this is called a Doppler shift) when the target object from which a reflected signal can be obtained moves. The purpose of this embodiment is to detect the blood flow velocity in a blood vessel as a Doppler shift frequency. Reference numeral 6 denotes a blood vessel discrimination/position measurement unit, which discriminates whether the output signal of the Doppler frequency detection circuit 5 is an echo signal from a blood vessel and not a reflected signal from a heart or the like, and if the discrimination result is a blood vessel, The azimuth signal of the focused ultrasound beam obtained from the electronic scanning control unit 9, the ultrasound propagation time from the transmission of the ultrasound until the Doppler detection signal is obtained (this time is proportional to the distance from the biological surface to the blood vessel), The position of the blood vessel is measured from the position of the blood vessel, and the measurement result is output to a display, printer, etc. (not shown).

7は可変遅延回路であり、内部にN個の可変遅延素子7
−1〜7−Nを含む。また各可変遅延素子7−1〜7−
Nの遅延時間(その入力端に信号を供給し、出力側に信
号が出力されるまでの遅れ時間)は電子走査制御部9に
より制御される。8は超音波探触子であり、内部にアレ
イ状に配列されたN個の超音波振動子8−1〜B−Nを
含んでいる。9は電子走査制御部であり、例えば操作員
の手動操作に基づき、各可変遅延素子7−1〜7−Nの
それぞれの遅延時間を可変設定する。この結果、超音波
ビーム集束域の位置が制御され、操作員は血管がこの集
束域内に入るように操作を行うことができる。このよう
に電子走査制御部9は、各可変遅延素子7−1〜7−N
毎に遅延時間設定信号を供給するほか、レンジゲート回
路4へ超音波ビーム集束域までの距離に対応したレンジ
設定信号を供給し、さらに血管判別・位置測定部6へ超
音波ビームの走査方位信号を供給する。
7 is a variable delay circuit, which has N variable delay elements 7 inside.
-1 to 7-N. In addition, each variable delay element 7-1 to 7-
The delay time of N (the delay time from when a signal is supplied to the input end until the signal is output to the output side) is controlled by the electronic scanning control section 9. Reference numeral 8 denotes an ultrasonic probe, which includes N ultrasonic transducers 8-1 to BN arranged in an array inside. Reference numeral 9 denotes an electronic scanning control section, which variably sets the delay time of each of the variable delay elements 7-1 to 7-N based on, for example, manual operation by an operator. As a result, the position of the ultrasound beam focus zone is controlled, and the operator can manipulate the blood vessel so that it falls within this focus zone. In this way, the electronic scanning control section 9 controls each of the variable delay elements 7-1 to 7-N.
In addition to supplying a delay time setting signal for each time, a range setting signal corresponding to the distance to the ultrasound beam focusing area is supplied to the range gate circuit 4, and a scanning direction signal of the ultrasound beam is also supplied to the blood vessel discrimination/position measurement unit 6. supply.

第2図は本発明に係る血流から得られる反射波のドプラ
効果を説明する図である。図において、血管内を血流速
度Vで流れる血流に含まれる赤血球などの散乱粒子に送
信周波数f。の超音波を入射すると、その反射波の周波
数は血流のドプラ効果によりf。+f、に変化する。同
図は血管に対して入射角θで超音波が入射し、入射方向
の速度成分v ” cosθに比例したドプラ周波数f
dが得られる例を示している。
FIG. 2 is a diagram illustrating the Doppler effect of reflected waves obtained from blood flow according to the present invention. In the figure, a transmission frequency f is applied to scattered particles such as red blood cells contained in blood flowing at a blood flow velocity V in a blood vessel. When an ultrasonic wave is incident, the frequency of the reflected wave becomes f due to the Doppler effect of blood flow. +f. In the figure, an ultrasonic wave is incident on a blood vessel at an incident angle θ, and the Doppler frequency f is proportional to the velocity component v ” cos θ in the incident direction.
An example in which d is obtained is shown.

第3図は本発明に係るドプラ周波数検出回路のブロック
図であり、ドプラ周波数検出回路5は周波数混合器51
とローパスフィルタ(以下LPFという)52により構
成される。同図においては、周波数f の送信波と、周
波数f  +fdの受信波0 か周波数混合器51により混合され、2つの周波数の和
の周波数と差の周波数を出力するが、この差の周波数の
みが、LPF52を通過して、ドプラ周波数fdとして
出力される。
FIG. 3 is a block diagram of a Doppler frequency detection circuit according to the present invention, in which the Doppler frequency detection circuit 5 includes a frequency mixer 51.
and a low-pass filter (hereinafter referred to as LPF) 52. In the figure, a transmitted wave with a frequency f and a received wave 0 with a frequency f + fd are mixed by a frequency mixer 51, and a sum frequency and a difference frequency of the two frequencies are output, but only this difference frequency is output. , and is output as a Doppler frequency fd.

第4図(a)〜(e)は第1図の動作を説明するための
測定対象と測定波形を示す図であり、第4図(a)は測
定対象を、同図(b)はドプラ検出信号を、同図(C)
はレンジゲート信号をそれぞれ示している。図において
、同図(a)に示される音響インピーダンスの異なる境
界面は静止していて、速度成分がないのて、この境界面
における反射波からはドプラ検出信号は得られない。そ
して血管からの反射波は、その血流速度に対応したドプ
ラ検出信号が得られる。この状態が同図(b)に示され
る。
4(a) to 4(e) are diagrams showing the measurement target and measurement waveforms to explain the operation of FIG. 1, and FIG. 4(a) shows the measurement target, and FIG. The detection signal is shown in the same figure (C).
indicate range gate signals, respectively. In the figure, since the boundary surface with different acoustic impedances shown in FIG. 3(a) is stationary and has no velocity component, no Doppler detection signal can be obtained from the reflected wave at this boundary surface. A Doppler detection signal corresponding to the blood flow velocity is obtained from the reflected wave from the blood vessel. This state is shown in the same figure (b).

またレンジゲート信号は同図(a)に示された血管を含
むように、そのゲート位置とゲート幅が設定される。こ
のレンジゲート信号内に含まれるエコー信号からドプラ
周波数信号を検出し、超音波の送信からドプラ周波数信
号検出までの伝播時間を測定する状態が同図(C)に示
されている。
Furthermore, the gate position and gate width of the range gate signal are set so that the range gate signal includes the blood vessel shown in FIG. The state in which the Doppler frequency signal is detected from the echo signal contained in the range gate signal and the propagation time from the transmission of the ultrasonic wave to the detection of the Doppler frequency signal is measured is shown in the same figure (C).

第5図は本発明に係る超音波ビームの集束状態を説明す
る図である。同図はアレイ状に配列された超音波振動子
7−1〜7−Nを駆動して超音波を送信するタイミング
と、各超音波振動子7−1〜7−Nに受信出力された信
号を合成するタイミングとの制御を、それぞれの振動子
に接続された各可変遅延素子の遅延時間の制御により行
ない、所望の位置(方位及び距離)にビーム集束域を得
る状態を示している。
FIG. 5 is a diagram illustrating the focused state of the ultrasonic beam according to the present invention. The figure shows the timing of driving the ultrasonic transducers 7-1 to 7-N arranged in an array to transmit ultrasonic waves, and the signals received and output to each of the ultrasonic transducers 7-1 to 7-N. The timing of synthesizing the beams is controlled by controlling the delay time of each variable delay element connected to each vibrator, and a beam focusing area is obtained at a desired position (azimuth and distance).

本実施例においては、操作員か手動操作により第1図の
電子走査制御部9を制御し、生体内の血管の存在する位
置に、前記超音波ビーム集束域を設定することにより、
細い径の血管からも有効な反射信号を得ることができる
。しかし本発明は上記実施例に限定されるものではなく
、本装置内にあらかじめ電子走査制御部9の血管探知制
御動作を規定したプログラムを内蔵し、該プログラムに
基づき自動的に前記ビーム集束域の位置を変化させて、
その内部に血管が入ったかどうかを探知するようにして
もよい。
In this embodiment, an operator manually controls the electronic scanning control section 9 shown in FIG. 1 to set the ultrasound beam focusing area at a position where a blood vessel exists in the living body.
Effective reflected signals can be obtained even from small diameter blood vessels. However, the present invention is not limited to the above-mentioned embodiments, and a program that prescribes the blood vessel detection control operation of the electronic scanning control unit 9 is built into the device, and the beam focusing area is automatically adjusted based on the program. change the position,
It may also be possible to detect whether a blood vessel has entered the inside.

第2図〜第5図を参照し、第1図の動作を説明する。送
信波発生回路1から出力される周波数foのバースト波
は、送信部2で信号増幅された後に、可変遅延回路7内
の各可変遅延素子7−1〜7−Nを介して超音波探触子
8内の各超音波振動子8−1〜8−Nに供給される。こ
の各可変遅延素子7−1〜7−111のそれぞれの信号
遅延時間は電子走査制御部9により制御されるので、超
音波探触子8は第5図で説明したように超音波ビームの
集束を行ない、生体内の所定の位置にその集束域を形成
する。本装置の操作者は、前記電子走査制御部9を操作
し、第2図で説明したように生体内の測定対象とする所
望の血管がこの集束域内に入るように制御を行なう。こ
の集束域内に血管が入ると、ビーム集束の結果、血管の
径が細い場合にも十分なる反射信号を得ることができる
The operation in FIG. 1 will be explained with reference to FIGS. 2 to 5. The burst wave of frequency fo outputted from the transmission wave generation circuit 1 is signal-amplified by the transmission section 2, and then sent to the ultrasonic probe via each of the variable delay elements 7-1 to 7-N in the variable delay circuit 7. It is supplied to each of the ultrasonic transducers 8-1 to 8-N in the child 8. Since the signal delay time of each variable delay element 7-1 to 7-111 is controlled by the electronic scanning control section 9, the ultrasound probe 8 focuses the ultrasound beam as explained in FIG. to form a focused area at a predetermined location within the body. The operator of this apparatus operates the electronic scanning control section 9 to perform control so that a desired blood vessel to be measured in the living body falls within this focusing area, as explained in FIG. When a blood vessel enters this focusing area, as a result of beam focusing, a sufficient reflected signal can be obtained even when the diameter of the blood vessel is small.

ここで、生体内で反射信号を得る物標が静止している場
合は、受信周波数は送信周波数と同一のf、である。し
かし第2図で説明したように、血管からは血管内の赤血
球などの粒子の移動速度のためドプラ効果を生じ、受信
周波数はf。+f。
Here, when the target object from which the reflected signal is obtained in the living body is stationary, the reception frequency is f, which is the same as the transmission frequency. However, as explained in FIG. 2, the Doppler effect occurs from the blood vessel due to the moving speed of particles such as red blood cells within the blood vessel, and the reception frequency is f. +f.

に変化する。このように生体内の静止物標又は移動物標
からそれぞれ反射された超音波反射波は、再び超音波探
触子8内の各超音波振動子8−1〜8−Nにより受波さ
れ、その各出力は可変遅延回路7内の各可変遅延素子7
−1〜7−Nを介して合成され、受信部3に供給される
。受信部3て信号増幅された受信波は、第4図(C)に
示されるように、レンジゲート回路4より発生されるゲ
ート幅内の信号のみが取り出されて、ドプラ周波数検出
回路5へ供給される。
Changes to In this way, the ultrasound reflected waves reflected from the stationary target or the moving target in the living body are received again by each of the ultrasound transducers 8-1 to 8-N in the ultrasound probe 8, and Each output of each variable delay element 7 in the variable delay circuit 7
-1 to 7-N and then supplied to the receiving section 3. From the received wave whose signal has been amplified by the receiving section 3, only the signal within the gate width generated by the range gate circuit 4 is extracted and supplied to the Doppler frequency detection circuit 5, as shown in FIG. 4(C). be done.

ドプラ周波数検出回路5は、第3図で説明したように、
送信波発生回路1から人力される周波数foの送信波と
、レンジゲート回路4から人力される前記レンジゲート
内の受信波とを比較して、受信波のドプラシフト周波数
を検出する。例えば前例の受信周波数がf  +fdの
場合は、ドプラシフト周波数fdを検出して、この周波
数データを血管判別・位置測定部6へ供給する。血管判
別・位置測定部6はこのドプラ周波数データから血流速
度を算出し、この算出値を用いて受信信号が血管からの
反射波であるかを判別する。即ち生体内においては心臓
や横隔膜のように運動をする物標も存在するが、その物
標の位置、大きさ、運動形態(例えば心臓などは往復運
動をするが、血流は必ず一方向に流れるので、ドプラ周
波数が周期的にf  +f  となったりf o   
f dとなったりOd することはない。必ずどちらか一方のみである。)、運
動速度(例えば人体内の血流速度はほぼ一定の範囲内で
あり、その値は既知である。)等により、このドプラ周
波数検出データが血管からの反射波でるあかどうかを判
別することができる。この判別結果が血管の場合に、血
管判別・位置測定部6は、その位置を次のようにして検
出する。血管の方位は、電子走査制御部9から供給され
る超音波ビームの走査方位信号により読取り、血管まで
の距離は第4図(e)に示すように、超音波の送信から
ドプラ検出信号が得られるまでの超音波の伝播時間から
算出することができる。このようにして測定対象とする
血管の方位と距離が測定される。そしてこの測定結果は
図示されない表示器またはプリンタにより操作員に知ら
せるため出力される。
As explained in FIG. 3, the Doppler frequency detection circuit 5
The Doppler shift frequency of the received wave is detected by comparing the transmitted wave of frequency fo that is manually inputted from the transmitted wave generation circuit 1 with the received wave within the range gate that is manually inputted from the range gate circuit 4. For example, if the reception frequency in the previous example is f 2 +fd, the Doppler shift frequency fd is detected and this frequency data is supplied to the blood vessel discrimination/position measurement section 6. The blood vessel determination/position measurement unit 6 calculates the blood flow velocity from this Doppler frequency data, and uses this calculated value to determine whether the received signal is a reflected wave from the blood vessel. In other words, in living organisms there are objects that move, such as the heart and diaphragm, but the position, size, and form of movement of these objects (for example, the heart makes reciprocating motion, but blood flow always flows in one direction). As the current flows, the Doppler frequency periodically becomes f + f or f o
It does not become f d or Od. There is always only one. ), movement speed (for example, the blood flow speed in the human body is within a substantially constant range, and its value is known), etc., to determine whether this Doppler frequency detection data is a reflected wave from a blood vessel. I can do it. If the discrimination result is a blood vessel, the blood vessel discrimination/position measurement unit 6 detects its position as follows. The direction of the blood vessel is read by the scanning direction signal of the ultrasound beam supplied from the electronic scanning control unit 9, and the distance to the blood vessel is determined by the Doppler detection signal obtained from the ultrasound transmission, as shown in FIG. 4(e). It can be calculated from the propagation time of the ultrasonic wave. In this way, the direction and distance of the blood vessel to be measured are measured. The measurement results are outputted to the operator via a display or printer (not shown).

[発明の効果コ 以上のように本発明によれば、電子走査型超音波送受信
手段、ドプラ周波数検出手段及び血管判別・位置測定手
段を備え、生体内の超音波ビーム集束域内に血管を捕捉
し、その反射波から得られるドプラシフト周波数に基づ
き血管であるかどうかを判別するようにしたので、従来
のように血管以外のエコー信号を誤って測定することが
なく、また径の細い血管の場合にも十分な反射信号が得
れるので、血管を見落とすことがなく、血管位置を精度
良く測定することかできる効果が得られる。
[Effects of the Invention] As described above, according to the present invention, the apparatus is equipped with an electronic scanning ultrasound transmitting/receiving means, a Doppler frequency detection means, and a blood vessel discrimination/positioning means, and is capable of capturing blood vessels within an ultrasound beam focusing area within a living body. Since it is determined whether a blood vessel is a blood vessel or not based on the Doppler shift frequency obtained from the reflected wave, there is no need to erroneously measure echo signals other than blood vessels, and it is also possible to detect blood vessels with small diameters. Since a sufficient reflected signal can be obtained, blood vessels are not overlooked and the blood vessel position can be accurately measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す血管位置測定装置の概
略ブロック図、第2図は本発明に係る血管から得られる
反射波のドプラ効果を説明する図、第3図は本発明に係
るドプラ周波数検出回路のブロック図、第4図(a)〜
(c)は第1図の動作を説明するための測定対象と測定
波形を示す図、第5図は本発明に係る超音波ビームの集
束状態を説明する図、第6図は従来の超音波測定装置の
概略ブロック図、第7図(a)及び(b)は第6図の動
作を説明するための測定対象と測定波形を示す図である
。 図において、1は送信波発生回路、2.31は送信部、
3.32は受信部、4はレンジゲート回路、5はドプラ
周波数検出回路、6は血管判別・位置測定部、7は可変
遅延回路、7−1〜7−Nは可変遅延素子、8.34は
超音波探触子、8−1〜g−Nは超音波振動子、9は電
子走査制御部、30は超音波送受信装置、33は伝播時
間測定部、35は接続ケーブルである。 fo°送信周波数 ■、血流速度
FIG. 1 is a schematic block diagram of a blood vessel position measuring device showing an embodiment of the present invention, FIG. 2 is a diagram illustrating the Doppler effect of reflected waves obtained from a blood vessel according to the present invention, and FIG. Block diagram of such Doppler frequency detection circuit, FIG. 4(a)-
(c) is a diagram showing the measurement target and measurement waveform to explain the operation of Figure 1, Figure 5 is a diagram to explain the focused state of the ultrasound beam according to the present invention, and Figure 6 is a diagram showing the conventional ultrasound beam. A schematic block diagram of the measuring device, FIGS. 7(a) and 7(b), is a diagram showing a measurement target and a measurement waveform for explaining the operation of FIG. 6. In the figure, 1 is a transmission wave generation circuit, 2.31 is a transmitter,
3.32 is a receiving section, 4 is a range gate circuit, 5 is a Doppler frequency detection circuit, 6 is a blood vessel discrimination/position measuring section, 7 is a variable delay circuit, 7-1 to 7-N are variable delay elements, 8.34 is an ultrasonic probe, 8-1 to gN are ultrasonic transducers, 9 is an electronic scanning control section, 30 is an ultrasonic transmitter/receiver, 33 is a propagation time measuring section, and 35 is a connection cable. fo° transmission frequency ■, blood flow velocity

Claims (1)

【特許請求の範囲】 複数の振動子をアレイ状に配列してなる超音波探触子と
、 前記複数の各振動子の入力信号及び出力信号に対して、
それぞれ個別の遅延時間を与える複数の可変遅延素子よ
りなる可変遅延回路と、 前記可変遅延回路及び超音波探触子を介して被測定生体
内に超音波の送信及び受信を行なう超音波送受信手段と
、 前記被測定生体内の所定の方位及び距離に超音波ビーム
の集束域を形成させるため、前記複数の可変遅延素子毎
の遅延時間を制御する電子走査制御手段と、 前記超音波送受信手段により被測定生体から得られた受
信エコー信号のドプラシフト周波数を検出するドプラ周
波数検出手段と、 該ドプラ周波数検出手段の出力信号が血管からのエコー
信号であるかを判別し、該判別結果が血管の場合に、そ
の位置を測定する血管判別・位置測定手段とを備えたこ
とを特徴とする血管位置測定装置。
[Claims] An ultrasonic probe including a plurality of transducers arranged in an array, and an input signal and an output signal of each of the plurality of transducers,
a variable delay circuit comprising a plurality of variable delay elements each giving an individual delay time; and an ultrasonic transmitting/receiving means for transmitting and receiving ultrasonic waves into a living body to be measured via the variable delay circuit and an ultrasonic probe. , electronic scanning control means for controlling the delay time of each of the plurality of variable delay elements in order to form a focused region of the ultrasound beam in a predetermined direction and distance within the living body; Doppler frequency detection means for detecting a Doppler shift frequency of a received echo signal obtained from a living body to be measured; 1. A blood vessel position measuring device comprising: blood vessel discrimination/position measuring means for measuring the position of the blood vessel.
JP4956990A 1990-03-02 1990-03-02 Blood vessel position-measuring device Pending JPH03254738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4956990A JPH03254738A (en) 1990-03-02 1990-03-02 Blood vessel position-measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4956990A JPH03254738A (en) 1990-03-02 1990-03-02 Blood vessel position-measuring device

Publications (1)

Publication Number Publication Date
JPH03254738A true JPH03254738A (en) 1991-11-13

Family

ID=12834842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4956990A Pending JPH03254738A (en) 1990-03-02 1990-03-02 Blood vessel position-measuring device

Country Status (1)

Country Link
JP (1) JPH03254738A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136394A (en) * 2007-12-04 2009-06-25 Fujifilm Corp Position identifying system, position identifying method, and program
JP2009136327A (en) * 2007-12-03 2009-06-25 Fujifilm Corp Position identifying system, position identifying method, and program
JP2009136395A (en) * 2007-12-04 2009-06-25 Fujifilm Corp Position identifying system, position identifying method, and program
CN110392553A (en) * 2017-03-10 2019-10-29 皇家飞利浦有限公司 For positioning the positioning device and system of acoustic sensor
JP2019188005A (en) * 2018-04-27 2019-10-31 キヤノンメディカルシステムズ株式会社 Ultrasonic diagnostic apparatus and paracentesis support program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136327A (en) * 2007-12-03 2009-06-25 Fujifilm Corp Position identifying system, position identifying method, and program
JP2009136394A (en) * 2007-12-04 2009-06-25 Fujifilm Corp Position identifying system, position identifying method, and program
JP2009136395A (en) * 2007-12-04 2009-06-25 Fujifilm Corp Position identifying system, position identifying method, and program
CN110392553A (en) * 2017-03-10 2019-10-29 皇家飞利浦有限公司 For positioning the positioning device and system of acoustic sensor
JP2019188005A (en) * 2018-04-27 2019-10-31 キヤノンメディカルシステムズ株式会社 Ultrasonic diagnostic apparatus and paracentesis support program

Similar Documents

Publication Publication Date Title
EP0146073B1 (en) Ultrasonic diagnosing apparatus
US7785259B2 (en) Detection of motion in vibro-acoustography
US9717471B2 (en) Method and apparatus for multiple-wave doppler velocity meter
JP2005512651A (en) Position sensor in ultrasonic transducer probe
JPH03188841A (en) Ultrasonic diagnostic device
JPH03500454A (en) Ultrasonic reflection transmission imaging method and device excluding artificial structures
JP2001061840A (en) Ultrasonograph
EP0212899A2 (en) Ultrasonic testing of materials
JPH0790026B2 (en) Ultrasonic diagnostic equipment
JPH03254738A (en) Blood vessel position-measuring device
JPH02264646A (en) Ultrasonic wave doppler diagnostic device
JPH069562B2 (en) Ultrasonic diagnostic equipment
JPH01145043A (en) Ultrasonic diagnostic apparatus
JPH0499566A (en) Ultrasonic diagnostic device
JPH0368694B2 (en)
JPS60220051A (en) Ultrasonic diagnostic apparatus
JPH069563B2 (en) Ultrasonic diagnostic equipment
JP3862831B2 (en) Ultrasonic diagnostic equipment
JP2856471B2 (en) Ultrasound diagnostic equipment
JP3142282B2 (en) Ultrasound diagnostic equipment
JP2526623B2 (en) Ultrasonic diagnostic equipment
JPH059096B2 (en)
KR20230169902A (en) Methods for measuring shear wave parameters and ultrasonic apparatus
JPH04108434A (en) Ultrasonic diagnostic device
JPS6252572B2 (en)